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ABSTRACT

Let BcN, D'(B)=B-B={a-b:a>b,abeB} and for any k>=2, D"(B)=D*'(B)-D"'(B). If

B AL

- . . . . . . 1 .
d (B) =limsup, is positive, then B is considered as a large set with ZbeBE =00 . Its difference set

D' ( B) has both high density and rich structure. The set Ac N with Zae Aé = is also relatively large and it is a

long standing conjecture that like sets with positive upper density they have arithmetic progression of arbitrary length.

Here we show their difference set may not be substantial; for any k € N there exists A <N such that AT=®
“ka

and d"(D*'(A))=0.
Keywords: Difference Set; Density; A" -Set

1. Introduction
A subset B of N has null density if

d(B)= lim—|Bm{l’m’n}|

n—ow n

=0.

Perhaps, the most prominent general result in this case
is a theorem conjectured by Erdds and proved by Rusza
[1]. It states that if d(B)=0 then

_|D'(B)n{L-.nj)
lim
n—ow |Bm{l”n}|

=® )]

where D'(B):=B-B={a-b:a>b,abeB}.
Our concern here is to consider the null density subsets

in the family F = {A cN: zaeAl = oo}. These sets can
a

be considered “large” sets among null density sets. To
have a comparison with sets of higher densities, note that
if AeF and neN, A-n={a-n:acAleF and
F has Ramsey property, that is, if AeF and A is
partitioned into finitely many sets then at least one of the
elements of the partition lies in F . These two proper-
ties, being invariant under translation and having Ramsey
property, hold for

_ AL,
D:{BCN:d (B)zlimsupn_mM>0}
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as well. However, if BeD then D' (B) isa A-set
[2]. This means D'(B) is both large and structured set.
For instance, it is syndetic: there exists a p such that
[n,n+p]nD'(B)#@ foranynin N.By definition, a
A’ -set intersects the difference set of any infinite natural
sequence and amongst many structures it is IP which
means there is a sequence of natural numbers {bn}
such that all of its finite sums are in B [3].

From largeness point of view, F may be considered
next to D for Dc F [4]. Note that there is also a
family

neN

s * . |Am{m’“.’n}|
D" =<AcN:d"(A)=limsup,, ,,,——>0
m-n
which d"(A) is called the upper Banach density of A.
We have that D D" and D" is invariant under trans-
lation and satisfies Ramsey property [5]. Also, if B c D’
then D' (B) is A" [5] and B has arithmetic progression
of arbitrary length [6]. However, B may not be F -large.

For instance, B={2”,2”+1,---,2”+n:neN}eD* but

1
ZbeBB<OO‘

Erdds conjectured that elements of F have arithme-
tic progression of arbitrary length [7]. An important sub-
set of natural numbers, which is the set of prime numbers
lies in F and the conjecture was proved positively by
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Green-Tao [8].

In order to present a substantial contrast of sets in F
with those in D, we will show that for any ke N
there is Ae F such that D* (A)= D(Dk_1 (A)) ; the
kth difference set of A even does not liein D" .

Throughout this note, unless otherwise stated, by an
interval we mean an interval of integers. So for instance,
[a,b)={xeZ:a<x<b}.

2. Reference Set

Here we introduce and investigate the properties of a
subset of non-negative integers suitably defined for our
later use.

Let Y ={y,=0,Y,,Y,,---} be a set of non-negative in-
tegers with the property that y, €N, vy,,, >2y, for any
n>1. For any neN let |, be the largest integer strictly

less than J™L . Set Cook, = 2K Y +2Kyy, + 42k Y,
Yn s
for all those 0<Kk; <I,, i=1,---,n such that

2klyl +2k2y2 +”'+2knyn € [yoa yn+1) . AlSO set
Cuoy T Y1 H G + Y1 S Vo
dk] 'kn = .
Yiit otherwise.

Definition 1.1. Let Y be as above. The set of non-
negative integers

SR (VIVRAV](COET B )

n=1\_k =0ky=0  k,=0

is called the reference set associated to Y.
The reference set can also be seen as follows. Set
Q= [yO,yn)m R, , then

Ql :[O,yl):

0, :(Q] U-u(2ky, + Q) U
-~~U(2|1yl+Ql))m[0,yz),

Q, =(Q, U-U(2k,Yy, +Q,)U
---u(2l2y2+Qz))ﬁ[O,y3),

Q,., =(Q,u--U(2k,y, +Q, U
=020y, +9Q,))N[0.Y,)

where 2k;y; +Q; = {2k y; +X:xe Q} .
Let us now examine when R, \{0} for a given Y be-
1

longs to f{= {Ac N: ZaEA—zoo}].

a

Lemma 1.2. Suppose Y ={y, =0,¥,,Y,,} €N with
Yo > 2y, and let R, be its associated reference set.
Suppose for sufficiently large n,
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yn+1 yn

for some &>0.Then R, \{0}eF.
Proof. First note that (2) implies

2+¢
Yoz > [MJ , )

lim 2%, = oo; 3

and also if we set

_ ln(yn+2)_ln(yn+l)
o, =
2(ln(yn+l)_ln(yﬂ))
then liminf

e O > 1.
Now let for n>1, I, :=card([y,.Y,]R, ). Then

“)

D=2Vt (card (R, A[0.,.,))) <1,
2yn—l (5)
<3 Yo cana(R, [0, )

But for 0<k, <I,,
card (R, N[0, ,)) = card(R, [ 2k,¥,.(2k, +1)y,))

=(L+1++1).

So by estimating any %, re [an Yoo (2K, +1) yn) with

1
(2k, +1)y, ’
1 m
—>2, (6)
reRy N(0,Ym-1) r n=1
where

&= (1 4+ 1) (Y, +1/3Y, ++1 (Yo =3Y,))-

Note that by (3) for sufficiently large n we have
Yoo —3Y, > 0. Now

1 1 1
- 4ot
h: Il +oet In+1 % Ynit 3yn+l Ynio _3yn+1
€, Il—i_”'—i_ln L+L+...+ 1
Yn 3yn yn+1_3yn
1 1 1
4 et
:[1+ In+1 JX Ynsi 3yn+1 Yneo _3yn+1 )
|1+”'+In LJ’_LJ’_ _;,_;
Yn 3yn yn+1_3yn
Also by (5),
-2
., {y”“ yn](|1+---+|n).
2y,
Therefore,
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Yn+2=3Yn+1 1

Yn+1
hz[l_i_ym—l_zyn])( Yo x ! - _}y2x—1
€ 2yn Ynii 1+J.%nn 1

1 2x-1

dx

dx

Yn+2=3Yn+1 1

dx

Yn+1

1 1 2X —
2 Yni1=3Yn 1
1+ Yn

! 2x—1

By considering (3) this implies

1

dx

ln[ yn+2 j
liminf S04 > liminf | L x 1/
now g n—w | 2 In [ynH] (7)
Yn
=liminf &, > 1.
n—o0

Now the proof is complete by the ratio test.

Let b>2, then an example for Y satisfying the above
lemma is

Y =10,2b) ... (2b)* }

For this example liminf, , ¢, =lim,_, o, =D.
Remark 1.3. Similar arguments as the proof of the
above lemma shows that if either (3) does not hold or if

(3) holds but there is some & >0 such that for infinitely

many n,
2-¢

yn+2 < ( yn+1 j , (8)
yn+1 yn

then ZreRyl<°°' We give a sketch of proof for the

r
latter.
Suppose «, is defined as (4). Then by (8), we have
limsup, ,, o, <1.Let |; be as above and set
e, ::(|1+-~+In)(L+L+-~+ j . Using the
2y, 4y, 21y,

left inequality in (5), we have

m

> LlaiYe,

reRy N(0,¥m) r n=1
Now
1+ [ ldx
n+1 < yn+l + yn
en 2yn+1 J.I ldx

2 X
From (3), we have .[zl"l — o0, This and the fact that
X

Y

n+1

— 0 implies
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. € .
limsup—* <limsup e, <1

o €, n—w

and we are done.

3. Main Result

We will show that comparing to a set of positive upper
Banach density, the difference set, D(A) =A-A ofa

set A with ZaeAl:oo and d"(A)=0 can be very
a

sparse. The next theorem gives a class of examples with
this property.
Theorem 2 1. Let ke N, then there exists A cN

with > = and D*(A)c
ot " Inparuar, o (0 (4)) .

Proof. Let b>2, y, =0, y, =2"b, y, =y and
Y:{yoaylayzs“'}.

subsets of integers:

i —Ji . 9
Fiilz{ _ y| +L...’_1’0’1,.__’ _yl _1} ()

A, such that A, is

Consider the following symmetric

2"y
for 0<j<k and i>2.Set

O[UU UIJ

=0\ ayeFJaeFl  aeR]

— J . .
where a:=aj,a,,--a, and |, , ., isthe interval

~ay

{2a0y0+2a1y1+~-+2anyn—

2a,y, +2ay, +---+2a,y, + 231./1“ j
in N. Hence A;,, cA; and A, is a union of subin-

tervals of non-zero integers with the first subinterval of

I

Y and all others of length o

length G . To have a

Py
picture of A;’s consider A, which is a prototype for

others. Then A, may be considered as U:ZIAO”
which

Ao ADF\[O Y1) |: )gj Rvﬁ{yo,ij—ﬁ,

AOZ =A m[ylvyz): Ry m|:y1a%j____;

w|‘<

A=A O[YoYou) =Ry r{yn,y“”] Z
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That is, A, has as half elements as R, in [0, ynﬂ)
which are shifted to the left appropriately. So
» Yy .oy L
acAyN(0.Yn41) a reRy 0(0, Y1) r

1
By Lemma 1.2, one obtains that E rR 0 and
r

1
hence Za a0 T =% (Later we will prove that

ZaEAk L % So divergence of — will be a

aeAy\{0
consequence of that as well).

Now we claim that A, is not A’. First note that
{Yau =¥ 110 <0} <[ Vot = Yas Yot | - Then the claim is
established by noting that by the above definition for A,

Ab m[ynﬂ _yn’ yn+l] =0

which implies A, does not intersect
D'(Y \{0 })z{yi —y; > >1} and so itisnot A’.
The sets Fk] s and A;’s are defined in such a way
that D' (Aj) A, for 1< j<k. To see this, suppose
X and y are two elements of A; and X>y. Then there
exists NeN such that

Yi
2j+1

2a,Y, +2a)y, +---+2a,y, —

Yi

2]+1

<X<2a,Y, +2qy, +---+2a,y, +

and also m<n with
Y
2b,y, +2by, +--+2by, — 211“
N

J+1

<y<2byy, +2by, +---+2b,y, +

where a,b eF! .So a and b arein

_y| yi .
Lm Vol +1, Ty - 1} or equivalently,
—Yi

—+2<8 b <
27y,

Therefore, Xx—ye A,
To complete the proof, it remains to show that for each

AJ > ZaeA]

for Ay and we Wlll prove that for Ay and since A, < A

= . We already have proved this fact

0< j<k-1 we are done. So consider F* in (9) and
let
F*={0} =F),
. 4:{0,1,---,&’%-2},% >1,
2 yi 2 yl—l
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Also set

A=U U = U [y,

n:oboeFﬂ'j bneF,.;k

2byy, +---+2by, + ylj

1

1 .
Then ) A g >y A Now using the same argu-

ments as in Lemma 1.2, we prove that Zbe Ak% is di-
vergent.
If we let
I/ :=card([0,y,) N A )+,
I,::=card([yn71,yn)mA:),---,
then
, 1
|1:2_ky1a"'n
! yn 2yn—l ’ '
> 22— 2 (441 ),
e B o e )
Let |, be asin the definition of R, ; then
)y —>Ze
be/—\’(\{} neN
where
e =(1/+-+1)) L+L+---+—fk !
y, 3V, 27¢(21,-3)y,
—(|'+...+|') L+L+...+;
: " Yn 3yn 2_k (yn+1 _Syn)
So
’ I II
liminf 2L > fjm - e
n—w en n—ow |l+...+|n
LI 1
x yn+1 zik(ym-z 5yn+1)
RSN S
yn 2_k (yn+1 _Syn)
Y2 =5Yni1
I 2kVn+l dX
> liminf 11>< 2 2x =1
n—w 2 wﬁ 1
L[ 20 = dx
! 2x -1
n+2 _ N+l
= k1+ xllmlnf%: {11 >1.
2 n—ow y1 _y1 2

Let A,  be the set defined in the proof of the above
theorem and let S c N be a syndetic set with the larg-
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est gap smaller than b. Then the conclusion of the above
theorem applies for A, NS . This conclusion also holds
ifwelet Y ={y,=0,y,Y,,~-} with y,=e“"b,

Vo=, 25 <esh, <b <o
even integer and p(n) is an increasing integer valued
function with p(1)>1.

Also recall that the theorem of Rusza [1] for sets of
null density states that the difference set is considerablely
larger than the set itself, that is, if d (B) =0 then (1)
holds. However, in examples such as those in the above
theorem, one tries to have a difference set which is as
small as possible. Our approach was to have the arithme-
tic progression of long possible lengths. Therefore, such
examples not only do not contradict the Erdds conjecture,
but strongly are in the favor of it.

where € is an
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