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ABSTRACT 

Let ,  and for any , B     1 : :D B B B a b a    2k       1 1kD B  k kD B D B . If 

 
 1, ,

limsupn

B n
d B

n





 is positive, then B is considered as a large set with 

1
b B b

  . Its difference set 

 has both high density and rich structure. The set  with  1D B A   1
a A a

   is also relatively large and it is a 

long standing conjecture that like sets with positive upper density they have arithmetic progression of arbitrary length. 

Here we show their difference set may not be substantial; for any k   there exists  such that kA   1
a Ak a

 
  * 1 0kd D A 

*

 

and .  

 

Keywords: Difference Set; Density; -Set 

1. Introduction 

A subset B of  has null density if  

 
 1, ,

0.
B n

n
 



  0d B 

lim
n

d B



 

Perhaps, the most prominent general result in this case 
is a theorem conjectured by Erdős and proved by Rusza 
[1]. It states that if  then  
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        (1) 

where .   1 :D B B B a b a   
Our concern here is to consider the null density subsets  

in the family 
1

a A a

   
 



 :n a A 
 A

:A   . These sets can  

be considered “large” sets among null density sets. To 
have a comparison with sets of higher densities, note that 
if  and ,  and 

 has Ramsey property, that is, if  and A is 
partitioned into finitely many sets then at least one of the 
elements of the partition lies in . These two proper- 
ties, being invariant under translation and having Ramsey 
property, hold for  

A n A n a  



 
 1, ,

0
A n

n

 




B

: limsupnB d B 

   


  

  1D B * then  is a as well. However, if   -set 
[2]. This means  1D B  is both large and structured set. 
For instance, it is syndetic: there exists a p such that 
   1,n n p D B    

*
 for any n in . By definition, a 

 -set intersects the difference set of any infinite natural 
sequence and amongst many structures it is IP which 
means there is a sequence of natural numbers  n n

b



  

 
 

 
such that all of its finite sums are in B [3]. 

From largeness point of view,  may be considered 
next to  for  [4]. Note that there is also a 
family  

* *
, ,

: 0limsupm n

A m n
A d A

m n 

      
  


  

 which *d A
 

B  

 is called the upper Banach density of A. 
We have that * and *  is invariant under trans- 
lation and satisfies Ramsey property [5]. Also, if * 
then  1D B * is   [5] and B has arithmetic progression 
of arbitrary length [6]. However, B may not be -large.  

  *2 ,2 1, , 2 :n n nB n n        but For instance, 

1
b B b

 




. 

Erdös conjectured that elements of  have arithme- 
tic progression of arbitrary length [7]. An important sub- 
set of natural numbers, which is the set of prime numbers 
lies in  and the conjecture was proved positively by 
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Green-Tao [8]. 
In order to present a substantial contrast of sets in  

with those in , we will show that for any 


 k 
A

 
there is  such that      1kD A

*

: a x b 

 0, , ,y y 
2y y

k D A D ; the 
kth difference set of A even does not lie in .  

Throughout this note, unless otherwise stated, by an 
interval we mean an interval of integers. So for instance, 

.   ,a b x 

2. Reference Set 

Here we introduce and investigate the properties of a 
subset of non-negative integers suitably defined for our 
later use. 

Let 0 1 2  be a set of non-negative in- 
tegers with the property that n , 1n n  for any 

. For any n  let ln be the largest integer strictly  

Y y 

1n 
y 



less than 1

2
n

ny
y

1 , , 1 1 2 2: 2 2 2
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 0 1,n n ny y y 
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. Set   
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i i
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Definition 1.1. Let Y be as above. The set of non- 
negative integers  

1 2

1 1
1 2

, , , ,
1 0 0 0

n

n n
n

ll l

Y k
n k k k

R c


   

         

is called the reference set associated to Y.  
The reference set can also be seen as follows. Set 

y y R

 
   

 
   

 
   

1 1 1

1 2

2 2 2

2 3

2 0, ,

2 0, ,

2 0,

n n n

n n

k y

y

k y

y

k y

y

 

 

 

 

 

 

 : ix x 
 \ 0YR

  , then  

 






1 1

2 1

1 1

3 2

2 2

1

0, ,

2

2

2n n

n n

y

l y

l y

l y



 

    

 

    

 

    

 















 

where . 2 2i i i ik y k y  i

Let us now examine when  for a given Y be-  

longs to 
1

a A a

     
  

 , ,y y   
y 

:A   . 

Lemma 1.2. Suppose 0 1 2  with 

1n n  and let Y  be its associated reference set. 
Suppose for sufficiently large n, 

0,Y y 
y R2
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              (2) 

  \ 0R . Then .  for some  Y

Proof. First note that (2) implies  

1lim ;n
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                   (3) 

and also if we set  
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then n 

Now let for , 

1n  
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 I 1: card ,n n n Yy y R  . Then  
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where  

   1 1: 1 1 3 1 3 .n n n n n ne I I y y y y       
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Note that by (3) for sufficiently large n we have 
 . Now  
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Also by (5),  
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Therefore,  
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By considering (3) this implies  
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Now the proof is complete by the ratio test.  
Let , then an example for Y satisfying the above 

lemma is  

 20,2 , ,bY b  

For this example liminf ln n n n  

0

 
Remark 1.3. Similar arguments as the proof of the 

above lemma shows that if either (3) does not hold or if 
(3) holds but there is some 

.  

   such that for infinitely 
many n,  
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2 1 ,n n
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then 
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Yr R r
 

n

. We give a sketch of proof for the 

latter. 
Suppose   is defined as (4). Then by (8), we have 

limsup 1n n  . Let iI  be as above and set  
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left inequality in (5), we have  
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From (3), we have 
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 . This and the fact that 
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and we are done.  

3. Main Result 

We will show that comparing to a set of positive upper 
Banach density, the difference set,  of a  

set A with 
1

a A a
   * 0d A 

k

 and  can be very  

sparse. The next theorem gives a class of examples with 
this property.  

Theorem 2.1. Let  kA  , then there exists   

with 
1

ka A a
    0

k
kD A A 0 and  such that A  is  

  not * . In particular, * 1 0k
kd D A 

2b  0 0y

.  

Proof. Let ,  , , 1
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1
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0 1 2 . Consider the following symmetric 
subsets of integers:  

0

1 2 2
1 1

0 ,

1, , 1,0,1, , 1
2 2

j

j i i
i j j

i i

F

y y
F

y y  
 



      
  

 

0 j k

  (9) 

 2i 

0 10 1
0

:
j j j

n n

 and . Set  for 

jAj a
n a Fa F a F

I


  

 
 
 
 

   

0 1: , , na a a

 

where  a
0 1, , , n

j
a a aI  and  is the interval  

1
0 0 1 1 1

1
0 0 1 1 1

2 2 2 ,
2

2 2 2
2

n n j

n n j

y
a y a y a y

y
a y a y a y





    
    





 1

 


Ain . Hence j jA   and jA  is a union of subin-

tervals of non-zero integers with the first subinterval of 

length 1
12 j

y
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That is, 0A  has as half elements as Y  in R  10, ny   
which are shifted to the left appropriately. So  

   0 10,a A y 


10,

1 1
2 .

n Y nr R ya r  
 

 

 

By Lemma 1.2, one obtains that 
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  . (Later we will prove that  

1
ka A a    . So divergence of 

0 \ 0

1
a A a

0
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consequence of that as well). 
Now we claim that A  is not . First note that *
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  . Then the claim is 
established by noting that by the above definition for 
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To complete the proof, it remains to show that for each  
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Let kA  be the set defined in the proof of the above 
theorem and let  be a syndetic set with the larg- S  
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est gap smaller than b. Then the conclusion of the above 
theorem applies for A S

0 10, 1
1 1

k
. This conclusion also holds 

if we let  with  2, ,y y Y y  y e b ,  
 

1
1

p n
y

n n yy b 2

p

,  where e is an  1 n nb b  


1b 
p n

 1 1

  0d B 

 
even integer and  is an increasing integer valued 
function with . 

Also recall that the theorem of Rusza [1] for sets of 
null density states that the difference set is considerablely 
larger than the set itself, that is, if  then (1) 
holds. However, in examples such as those in the above 
theorem, one tries to have a difference set which is as 
small as possible. Our approach was to have the arithme- 
tic progression of long possible lengths. Therefore, such 
examples not only do not contradict the Erdös conjecture, 
but strongly are in the favor of it. 
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