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ABSTRACT 

The set of finite group actions (up to equivalence) which operate on a prism manifold M, preserve a Heegaard Klein 
bottle and have a fixed orbifold quotient type, form a partially ordered set. We describe the partial ordering of these 
actions by relating them to certain sets of ordered pairs of integers. There are seven possible orbifold quotient types, and 
for any fixed quotient type we show that the partially ordered set is isomorphic to a union of distributive lattices of a 
certain type. We give necessary and sufficent conditions, for these partially ordered sets to be isomorphic and to be a 
union of Boolean algebras. 
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Distributive Lattice 

1. Introduction 

This paper examines the partially ordered sets consisting 
of equivalence classes of finite group actions acting on 
prism manifolds and having a fixed orbifold quotient 
type. For a fixed quotient type, we show that the partially 
ordered set is a union of distributive lattices of a certain 
type. These lattices have the structure of factorization 
lattices. The results in this paper relate to those in [1], 
where those authors study a family of orientation revers- 
ing actions on lens spaces which is partially ordered in 
terms of a subset of the lattice of Gaussian integers or- 
dered by divisibility (see also [2]). Finite group actions 
on prism manifolds were also studied in [3]. 

Let M be a prism manifold and let G be a finite group. 
A G-action on M is a monomorphism  : DiffG M   
where  Diff M  is the group of self-diffeomorphisms of 
M. Two group actions  : DiffG M   and : G   

 Diff M   are equivalent if there is a homeo-morphism 
:h M M   such that     1G h G h       , and we 

let    denote the equivalence class. If  : DiffG M   
is an action, let : M M   be the orbifold covering 
map. The set of equivalence classes of actions on prism 
manifolds forms a partially ordered set by defining 
       if there is a covering : M M    such that 

      . 
A prism manifold is defined as follows: Let 1 1T S S   

be a torus where  1 : 1S z z    is viewed as the 
set of complex numbers of norm 1 and  0,1I  . The 

twisted I-bundle over a Klein bottle is the quotient space 
   , , , ,1W T I u v t u v t    . Let D2 be a unit disk 

with 2 1D S   and let 1 2V S D   be a solid torus. 
Then the boundary of both V and W is a torus 1 1S S . 
For relatively prime integers b and d, there exist integers 
a and b such that 1ad bc   . The prism manifold 

 ,M b d  is obtained by identifying the boundary of V to 
the boundary of W by the homeomorphism : V W     
defined by    , ,a b c du v u v u v   for   1,u v V S    

1S . The integers b and d determine  ,M b d , up to ho- 
meomorphism. An embedded Klein bottle K in  ,M b d  
is called a Heegaard Klein bottle if for any regular 
neighborhood  N K  of K,  N K  is a twisted I-bundle 
over K and the closure of    ,M b d N K  is a solid 
torus. Any G-action which leaves a Heegaard Klein bot- 
tle invariant is said to split. 

We describe in Section 2, the G-actions (up to equiva- 
lence) which can act on a prism manifold and the seven 
possible quotient orbifolds  ,i    for 1 7i   where 
  and   are some positive integers. For example, the 
orbifold  1 ,   is an orbifold whose underlying 
space is a prism manifold with a simple closed curve as 
an exceptional set of type  . . ,k g c d   . The closure 
of the complement of the exceptional set is a twisted 
I-bundle over a Klein bottle. Section 3 gives necessary 
and sufficient conditions for an orbifold of type  ,i    
to be regularly covered by a prism manifold. 

Let  ,i    be the partially ordered set of equiva- 
lence classes of G-actions with orbifold quotient  
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 ,i   . Define a set 

     1 , , : . . , 1,

divides , 1 (mod 2), and or 2 .

b d g c d b d b

d d
b

 

  

    

   


 
 

We show in Sections 4 and 6 that the set  1 ,   is a 
distributive lattice which is isomorphic as a partially or- 
dered set to  1 ,  , and this implies that  1 ,   is 
also a distributive lattice. For 2 7i  , we show that 

 ,i    is isomorphic as a partially ordered set to a 
union of lattices of type  1 ,x y . In addition, we give 
necessary and sufficient conditions for two lattices of 
type  1 ,x y  to be isomorphic. 

A G-action is primitive if it does not contain a non- 
trivial normal subgroup which acts freely. These actions 
determine minimal elements in the partially ordered sets. 
We determine the primitive actions for each possible 
orbifold quotient in Section 5. 

In Section 6 we compute the maximum length of a 
chain in the partially ordered sets  ,i   . Further- 
more, if 0b  is the largest odd divisor of   such that  

 0. . , 1g c d b    and 0 1
i

k l
ii

b p


  is the prime decom-  

position, then we show that  1 ,   is a Boolean al- 
gebra if and only if 1il   for all 1 i k  . 

When  1 ,m n  is a prism manifold, we consider in 
Section 7 a partially ordered set of non-cyclic subgroups 
 ,m n  of   1 1π ,m n . We show that  ,m n  is a 

lattice isomorphic to  1 ,m n  where the partial order- 
ing on the groups is given by 2 1G G  if 2G  is a sub- 
group of 1G . The meet 1 2 1 2,G G G G   and the join 

1 2 1 2G G G G   . Moreover we show that there exists a 
sublattice   of  ,m n  which is a Boolean algebra, 
and a lattice homomorphism  ,m n    which re- 
stricts to the identity on  . 

Section 8 is devoted to several examples which illus- 
trate some of the main results. 

2. Actions on Prism Manifolds 

In this section we describe a set of G-actions on a prism 
manifold  ,M b d  which leave a Heegaard Klein bottle 
invariant and their quotient spaces  ,M b d G . We 
obtain seven quotient types  ,i    for 1 7i   where 
  and   are some positive integers. It follows by [4] 
that any G-action which leaves a Heegaard Klein bottle 
invariant is equivalent to one of the actions in Quotient 
type [i] for some 1 7i  , and    , ,iM b d G   . 
By [4] these actions are completely determined by their 
restriction to a Heegaard Klein bottle K. We begin by 
describing G-actions on K and note that these actions 
extend to all of  ,M b d . We will list the actions by 

their quotient type. 
Let  V k  be the orbifold solid torus with exceptional 

set the core of type k and let    B k V k   be the 
Conway ball, where    :V k V k   is the involution 
defined by    , ,u v u v  . The Conway sphere  

 B k    has 4 cone points, each of order 2. 
It is convenient to view the Klein bottle as the set of 

equivalence classes  

  1:1 2 2, ,

1 1
1, , 2 2 .

2 2

K ru r u S

u u u u u

   


   


 
 

1) Quotient type  1 ,  . For 2 1m n  , define 
actions  1 : Diffm K   and  1 2: Diffm K   by  

    
2π

2 11
i

nru rue 
 

  
 

 and     
π

2 1
1

1
1

i

nru ue
r

 
 

  
 

 where  

1 represents a generator of the group. The quotients 

1K   and 1K   are both Klein bottles. These actions 
extend to the prism manifold  ,M b d  and we denote 
these extensions using the same letters to obtain  

  1 : Diff ,m M b d   and   1 2: Diff ,m M b d  . 
The orbifold quotient for these actions is denoted by 

   1 1, V k W    , where 1W  is a twisted I-bundle 
over the Klein bottle and  : iV k W     is defined  

by  , ,k ku v u v u v
 

 
 

   
 

 where   and   are inte-  

gers, and  ,k g c d     . It follows that the quotient 
  1,M b d   is the orbifold denoted by   1 2 1 ,b n d  

and the qoutient   1,M b d   is the orbifold denoted by 
  1 2 1 , 2b n d . 

2) Quotient type  2 ,  . For 2m n  define ac- 
tions  2 : Diffm K   and  2 2: Diffm K      

by   
π

2 1
i

nru rue
 

  
 

, and     2

1
1,0 ru u

r
     

 and 

    
π

2 1,0
i

nru rue
 

  
 

. The quotients 2K   and 2K    

are both mirrored annuli. These actions extend to all of 
 ,M b d  and we obtain   2 2: Diff ,n M b d   and 

  2 2 2: Diff ,n M b d    . The orbifold quotient for 
these actions is denoted by    2 2, V k W    , where 

     2 , , , ,1W T I u v t u v t    is a twisted I-bundle 
over the mirrored annulus mA and ψ is defined as in Case 
1. The orbifold quotient    2 2, 2 ,M b d nb d   and 

   2 2, 2 , 2M b d nb d  . 
3) Quotient type  3 ,  . Define 3 2 2 1: n     

 Diff K  and  3 4: Diffn K   by  

    3

1
1,0 ru u

r
     

,     
π

2 1
3 1,0

i

nru rue 
 

  
 

, and 
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π

2
3

1
1

i

nru ue
r


 

  
 

. The quotients 3K   and 3K    

are mirrored Möbius bands. These actions extend to the 
prism manifold  ,M b d  and we obtain 3 2 2 1: n     

  Diff ,M b d  and   3 4: Diff ,n M b d  . The or-
bofold quotient for these actions is    3 3, V k W     
  3V k W  where      3 , , , ,1W T I u v t v u t    is 

a twisted I-bundle over the mirrored Möbius band mM. 
The orbifold quotient  

      3 3, 2 1 , 2 1M b d b n d b n d       

and  

   3 3, 2 , 2M b d nb d nb d    . 

4) Quotient type  4 ,  . For 2 1m n  , define 
the action    4 2 1: Dih Diffn K    by  

    
π

2 1
4 1,0

i

nru rue 
 

  
 

 and     4

1
0,1 ru u

r
     

.  

The quotient 4K   is the projective plane  2 2,2P  
containing two cone points of order two. This action ex- 
tends to  ,M b d  and we obtain  4 2 1: Dih n    

  Diff ,M b d . The orbifold quotient is  4 ,    
  4B k W  where    4 , ,1W I z t z t     is the 

twisted I-bundle over  2 2,2P  and   is the homeo- 
morphism of   induced by  . The orbifold quotient 

   4 4, (2 1),M b d b n d   . 
5) Quotient type  5 ,  . Define the following ac- 

tions:    5 2 1: Dih Diffn K    where  

    
π

2 1
5 1,0

i

nru rue 
 

  
 

 and     5 0,1 ru ru  ; 

   5 4 2: Dih Diffn K    where  

    
π

2 1
5

1
1,0

i

nru ue
r

 
 

  
 

 and       5 0,1 ru ru  ; 

   5 4 2: Dih Diffn K    where  

    
2π

4 2
5 1,0

i

nru rue 
 

  
 

 and     5

1
0,1 ru u

r
     

; 

and    5 4: Dih Diffn K   where  

    
π

2
5 1,0

i

nru rue
 

  
 

 and     5

1
0,1 ru u

r
     

. The  

orbifold quotient for all these actions is the mirrored disk 
 2 2, 2 . All these actions extend to   Diff ,M b d . If 

    5 , ,1W I z t r z t   , where r is a reflection 
exchanging a pair of cone points, is the twisted I-bundle 
over  2 2,2 , then the orbifold quotient for these ex-
tended actions is    5 5, B k W    . We obtain  

    5 5, 2 1 ,M b d b n d   , 

    3 5, 2 1 , 2M b d b n d   , 

    5 5, 4 2 ,M b d b n d    

and  

   5 5, 4 ,M b d nb d  . 

6) Quotient type  6 ,  . Define actions 6 6, :   
   2Dih Diffn K  as follows:  

    
π

6

1
1,0

i

nru ue
r


 

  
 

 and       6 0,1 ru ru   if 

n is even, and     
2π

6

1
1,0

i

nru ue
r


 

  
 

 and  

    6

1
0,1 ru u

r
     

 if n is odd. The quotients 5K    

and 5K   are both a mirrored disk  2 2   containig 
a cone point of order two and two cone points of order 
two on the mirror. These actions extend to the prism  
manifold  ,M b d  and we obtain  6 6 2, :Dih n     

  Diff ,M b d . The orbifold quotient for these actions is  
denoted by    6 6, B k W     where  

    6 , ,1W I z t r z t    the twisted I-bundle over  

the mirrored disk  2 2 , and r is a reflection leaving 
two cone points fixed and exchanging the other two cone 
points. The orbifold quotients   5,M b d   and  

  6,M b d   are both  6 ,bn d bn d  . 
7) Quotient type  7 ,  . Define  7 2: Dih n   

 Diff K  and    7 2 2: Dih Diffn K     as fol- 

lows:     
π

7 1,0
i

nru rue
 

  
 

,       7 0,1 ru ru  , and 

    7

1
1,0,0 ru u

r
     

,     
π

7 0,1,0
i

nru rue
 

  
 

, and  

      7 0,0,1 ru ru  . The quotients 7K   and 7K   

are both a mirrored disk  2 0   containig four cone 

points of order two on the mirror. These actions extend to 
the prism manifold  ,M b d  and we obtain  

    7 2: Dih Diff ,n M b d    

and  

    7 2 2:Dih Diff ,n M b d    .  

If     7 , ,1W I z t r z t   , where r is a reflection 
leaving each cone points fixed, then 7W  is a twisted 
I-bundle over the mirrored disk  2 0 . The orbifold 
quotient for these extended actions is  6 ,    
  6B k W . We obtain    7 7, 2 ,M b d nb d   and 
   7 7, 2 , 2M b d nb d  . 

3. Prism Manifold Covers of Orbifolds 

In this section we give necessary and sufficient condi- 
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tions for when the orbifold  ,i   , 1 7i  , is cov- 
ered by a prism manifold. The proofs rely on Section 2. 

Proposition 1. For the orbifold  1 ,  , there exists 
a prism manifold cover if and only if either   is odd or 

0   (mod 4). 
Proof. Suppose   is odd. Then there exists a  -ac- 

tion on  1,M   such that  

     11, 1, ,M M       . 

If   is even, write 02l   where 0  is odd. If   
is odd, then there exists a 

0
 -action on  2 ,lM   

such that  

     
0 12 , 2 , ,l lM M       . 

Suppose now that   and   are both even where 0   
(mod 4). Write 02   and 02m   where 0  and 

0  are both odd. Then there exists a 
02 -action on 

 02 ,mM   such that  

     00 0 2 1 0 02 , 2 , 2 , 2m m mM M       . 

For the converse, suppose that   and   are both even 
and there is a covering    , ,iM b d   . Then ei- 
ther  2 1b n    and d  , or  2 1b n    and 
2d  . Since   is even, it follows that 2 divides b. In 
the first case, 2 would also divide d, contradicting the 
fact that b and d are relatively prime. If 0   (mod 4), 
then again 2 divides d giving a contradiction. 

Proposition 2. For the orbifold  2 ,  , there exists 
a prism manifold cover if and only if 0   (mod 2).  

Proof. Suppose that 0   (mod 2). Write 02  . 
Then there exists a 

02 -action on  1,M   such that  

     
02 21, 1, ,M M       .  

For the converse, suppose that    2, ,M b d   . Then 
either 2nb   and d  , or 2nb   and 2d  . 

Proposition 3. For the orbifold  3 ,  , there exists 
a prism manifold cover if and only if    (mod 2). 

Proof. Suppose that    (mod 2) and let 
2

d
 

 .  

Suppose that 0    (mod 4), and thus there exists 
an integer n such that 4n   . There exists a 4n - 
action on  1,M d  such that  

     
 

4 3

3

1, 1, 2 , 2

, .

nM d M d n d n d

 

   



 


 

If 0    (mod 4), then write 2 1
2

n
 

   for some  

n. There exists a  2 2 1n -action on  1,M d  such that  

       
 

32 2 1

3

1, 1, 2 1 ,2 1

, .

nM d M d n d n d

 
     



 


 

For the converse, suppose that    3, ,M b d   . 

Then either  2 1b n d     and  2 1b n d    , or 
2nb d    and 2nb d    for some n. Subtracting 
the two equations in both cases, we obtain 2d    . 

Proposition 4. For the orbifold  4 ,  , there exists 
a prism manifold cover if and only if either   is odd or 
  is odd.  

Proof. Since   1,M b d   always double covers  
  4,M b d  , using a proof similar to that in Proposition 

1 shows that there is a prism manifold covering of 
 4 ,   if and only if   or   is odd by [4]. 

Proposition 5. A prism manifold covering for the orbi- 
fold  5 ,   always exists.  

Proof. Suppose   is an odd number. Then  1,M   
admits a  Dih  -action whose quotient is  5 ,  . 
If β is even, we write 02m   where m ≥ 1, 02n   
where 0n  , and 0  and 0  are both odd numbers. If 
n = 0 or 1n  , then  2 ,mM   and  02 ,mM   admit  

 0
Dih   and  02Dih  -actions respectively, whose  

quotient space is  5 ,  . If n and m are both greater 
than 1, or if 1m   and 2n  , then  1,M   admits a  

 1
04 2

Dih m 

 
 
 
  or a  02Dih  -action respectively,  

whose quotient space is  5 ,  .  
Proposition 6. For the orbifold  6 ,  , there exists 

a prism manifold cover if and only if    (mod 2).  
Proof. Since   3,M b d   double covers   6,M b d   

and   3,M b d   double covers   6,M b d  , the re- 
sult follows by Proposition 3. 

Proposition 7. For the orbifold  7 ,  , there exists 
a prism manifold cover if and only if 0   (mod 2). 

Proof. Since   2,M b d   double covers   7,M b d   
and   2,M b d   double covers   7,M b d  , the re- 
sult follows by Proposition 2. 

4. Poset of Actions on Prism Manifolds 

Recall that two group actions  : DiffG M   and 
 : DiffG M    are equivalent if there is a homeo- 

morphism :h M M   such that   1: G h G h       . 
If  : DiffG M   is an action, let : M M   
be the orbifold covering map. 

Let   be the set of equivalence classes of actions on 
prisim manifolds which leave a Heegaard Klein bottle 
invariant. Now   is partially ordered by setting 
       if there is a covering : M M    such that 

      . Note that the covering : M M    is also 
a regular covering. 

For a pair of positive integers   and   let  1 ,   
denote the equivalence classes of those actions whose 
quotient type is  1 ,  . Note that by Proposition 1 the 
set  1 ,   is nonempty if and only if either   is odd, 
or 0   (mod 4). Unless otherwise stated, we assume 
from now on that   and   are integers where either   
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is odd or 0   (mod 4). 
Let  

     1 , , : . . , 1,

divides , 1 ( 2) and , or 2 .

b d Z Z g c d b d

b mod d d
b

 

  

    


   



 

It follows that  1 ,   is a partially ordered set under 
the ordering    2 2 1 1, ,b d b d  if 2 1b b  and 2 1d d . Let 

 1 ,   be the subset of  1 ,   consisting of all 
ordered pairs    1, ,b d    where d  . Note that  

   1 1, ,       if   is odd. Moreover, if 0
2


   

(mod 2) and β is even, then    1 1, , 2     . 
Proposition 8. Let  1 1,b d  and  2 2,b d  be elements 

of the poset  1 ,  . There exists elements  ,b d  and 
 ,b d   in  1 ,  , such that    1 1, ,b d b d  and 
   2 2, ,b d b d , and    1 1, ,b d b d    and  ,b d   
 2 2,b d .  

Proof. Let  1 2. . ,b g c d b b . Note that since id   
or 2  for 1,2i  , it follows that if  1 2min ,d d d , 
then id d . Thus b divides   and d is   or 2 . If 

b  is even, then it follows that 2 divides both 1b b  
and 2b b, contradicting  1 2. . ,b g c d b b . Thus b  is 
odd showing    1, ,b d   . Moeover    1 1, ,b d b d  
and    2 2, ,b d b d . Let  1 2. . ,b l c m b b   and d     

 1 2max ,d d . It follows that b  is odd, and hence  

   1, ,b d     . Furthermore    1 1, ,b d b d    and 
   2 2, ,b d b d   . 

Corollary 9.  1 ,   is a lattice where for  1 1,b d  
and  2 2,b d  in  1 ,   the join  

        1 1 2 2 1 2 1 2, , . . , , min ,b d b d g c d b b d d  , 

and the meet  

        1 1 2 2 1 2 1 2, , . . , ,max ,b d b d l c m b b d d  . 

Furthermore,  1 ,   is a sublattice of  1 ,  .  
Proposition 10. Let  1 1,b d  and  2 2,b d  be elements 

of  1 ,   such that    2 2 1 1, ,b d b d . Then there 
exists either a standard m -action 1  on  2 2,M b d , 
or a standard 2m -action 1  on  2 2,M b d , which 
we denote by  , and a regular covering  

     2 2 2 2 1 1: , , ,M b d M b d M b d   .  

Proof. If    2 2 1 1, ,b d b d , then 2 1b b  and 2 1d d . 

Furthermore 1d  , or 12d   and 2d  , or 22d  .  

Now 1

2

b
m

b
 ,  1 12 1b n   , and  2 12 1b n    for  

some integers m, n1 and n2. Since    1 1 2 22 1 2 1b n b n   , 
it follows that    2 12 1 2 1n m n   , and therefore m 
must be odd. Since 2 1d d , the only possibilities are 

1 2d d  or 2 12d d . If 1 2d d , then there exists a 

m -action 1  on  2 2,M b d  such that  

     2 2 2 2 1 1 1, , ,M b d M b d M b d  . 

If 2 12d d , then there exists a 2m -action 1  on 
 2 2,M b d  such that  

     2 2 2 2 1 1 1, , ,M b d M b d M b d  . 

Proposition 11. Let  ,b d  be an element of  1 ,  . 
Then there exists either a standard 2 1n -action 1  on 

 ,M b d , or a standard  2 2 1n -action 1  on  ,M b d  
which we denote by  , and a regular covering  

     1: , , ,M b d M b d     . 

Proof. Write 2 1n
b


  . If d  , then there is a  

2 1n -action 1  such that  

     1 1, , ,M b d M b d     .  

If 2d  , then there is a  2 2 1n -action 1  on  ,M b d  
such that  

     1 1, , ,M b d M b d     . 

Theorem 12. For each pair of positive integers   and 
 , the poset  1 ,   is isomorphic to the poset 

 1 ,  .  
Proof. Define a function    1 1: , ,f       as 

follows: let    1, ,b d   . There exists either a stan-  
dard 

b

 -action if d  , or a standard 
2

b

 
 
 

 -action if  

2d   on  ,M b d , which we denote by  , such that  

     1, , ,M b d M b d     . 

Define      1, ,f b d     . 
Suppose        1 1 1 2 2 2, ,f b d f b d    . Since 1   

and 2  are equivalent, there exists a homeomorphism 
   1 1 2 2: , ,h M b d M b d  such that 

    1
1 2G h G h      . Since  1 1,M b d  and  2 2,M b d  

are homeomorphic, it follows that 1 2b b  and 1 2d d , 
showing f is one-to-one. 

Let    1 ,   . Then there exist a prism manifold 
 ,M b d  such that  

     1: , , ,M b d M b d     .  

We may assume that b and d are both positive. By [4], η 
is equivalent to one of the standard actions 1  or 1 , 
and     1, 2 1 ,M b d b n d    or   1 2 1 ,2b n d  
respectively, for some positive integer n. Therefore  

1
b


  (mod 2) and d   or 2d  . If   is either  

1  or 1 , then      ,f b d    , showing f is onto. 
Suppose now that    2 2 1 1, ,b d b d . Let    1 1 1,f b d    

and    2 2 2,f b d   where 1  and 2  are the standard 
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 1 1b   and  2 2b  -actions respectively on  1 1,M b d  
and  2 2,M b d  and 1i   or 2. We have the coverings  

     
1 1 1 1 1 1 1: , , ,M b d M b d      

and 

     
1 1 1 1 1 1 1: , , ,M b d M b d     .  

By Proposition 10 there is a standard  1 2b b -action    

on  2 2,M b d  where 1   or 2, and a regular covering 
covering  

     2 2 2 2 1 1: , , ,M b d M b d M b d   .  

Since these are standard actions and 2

1 2 1

b

b b b

 
  it fol- 

lows that 
2 1      . This shows that    2 1  . 

Corollary 13.  1 ,   is a lattice. 
We will now consider maximal and minimal elements 

in  1 ,  . Write 02n   where 0  is odd. Then 
the maximal element in  1 ,   is  2 ,n   if   is 
odd, and  2 , 2n   if   is even. Note that if  ,b d    

 1 ,  , then 2n  divides b and 
2n

b
 is odd. In de-  

scribing the minimal elements let 0b  be the largest odd 
divisor of 0  such that  0. . , 1g c d b   . If   is odd 
or if 0n  , then the minimal element in  1 ,   is 
 02 ,n b  , otherwise the minimal element is  02 , 2n b  . 

We say an element  1 1,b d  is directly below  2 2,b d  
or that  2 2,b d  is directly above  1 1,b d  if whenever 
     1 1 2 2, , ,b d b d b d  , then either    1 1, ,b d b d  
or    2 2, ,b d b d . 

Theorem 14. Let  0
0 1 12 ,m b    and  0

0 2 22 ,n c     

be the minimal elements in  1
1 1,   and  1

2 2,    

respectively where 1i   or 2, and let 0 1
i

k m
ii

b p


  
and 0 1

i
s n

ii
c q


  be the prime decompositions. Sup- 

pose one of the following holds: 
1) 1  and 2  are both odd. 
2) 1  and 2  are both even and 0 0 0m n  . 
3) 1  and 2  are both even and 0 0 0m n  . 
4) 1  even with 0 0m   and 2  odd. 
Then  1

1 1,   is isomorphic to  1
2 2,   if 

and only if k s  and after reordering i im n  for 
1, ,i k  . 

If 1  is odd and 2  is even with 0 0n  , then 
 1

1 1,   is isomorphic to  1
2 2,   if and only if 

1k s  , after reordering i im n  for 1, 2, , 1i k  , 
and 1km  .  

Proof. We will first assume that 1  and 2  are both 
odd. Suppose    1 1

1 1 2 2: , ,f       is an iso-  
morphism. Now  0

12 ,m   and  0
22 ,n   are the maxi-  

mal elements of  1
1 1,   and  1

2 2,   respec- 
tively, and    0 0

1 22 , 2 ,m nf   . The elements directly 

below  0
12 ,m   in  1

1 1,   are  0
1 12 , , ,m p     

 0
12 ,m

kp   and the elements directly below  0
22 ,n    

in  1
2 2,   are    0 0

1 2 22 , , , 2 ,n n
sq q  . Since f  

must take the elements directly below  0
12 ,m   to the  

elements directly below  0
22 ,n  , it follows that k s . 

The elements directly above  0 1,b   in  1
1 1,   

are listed as  

   
 

0 01 2

0

1 1
1 1 2 11 2

1
1

2 , , 2 , , ,

2 ,

i i

k i

m m m mm m
i ii i

m m m
k ii k

p p p p

p p

 



 
 




 



 

Similarly the elements directly above  0 2,c   are  

   
 

0 01 2

0

1 1
1 2 2 21 2

1
2

2 , , 2 , , ,

2 , .

i i

k i

n n n nn n
i ii i

n n n
k ii k

q q q q

q q

 



 
 




 



 

By reordering we may assume  

   0 01 1
1 22 , 2 ,j ji im nm m n n

j i j ii j i j
f p p q q  

 
   

for 1 j k  . The number of elements in  1
1 1,   is  

 1
1

k

ii
m


 , and this equals the number of elements in  

 1
2 2,   which is  1

1
k

ii
n


 . Let  

     
   0

1 1
1 1 1 1 1

1
1 1

, , , :

2 , , .j i

j

mm m
j ii j

b

p p b

    

 



 



 
 

Similarly let  

     
   0

1 1
2 2 2 2 2

1
2 2

, , , :

2 , , .j i

j

nn n
j ii j

c

q q c

    

 



 



 
 

It follows that     1 1
1 1 2 2, ,j jf      . Thus the 

number of elements in  1
1 1,j    which is  

 1j ii j
m m


  is equal to  1j ii j

n n


  the num-  

ber of elements in  1
2 2,j   . Using the equations 

   1
1 1

k k

i ii j i
m n

 
     and  

   1 1j i j ii j i j
m m n n

 
    ,  

we obtain 

 

 

1
1

,
1 1

i
j i j j

j i j
i j

n
m m

n m n







 
 




 

and this implies that j jm n  for 1 j k  . 

We now suppose that  0
0 12 ,m b   and  0

0 22 ,n c   are  

the minimal elements in  1
1 1,   and  1

2 2,    
respectively, and 0 1

i
k m

ii
b p


  and 0 1

i
k m

ii
c q


  are  

the prime decompositions. If    1
1 1 1, ,b    , then 
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0

1
2 i

km s
ii

b p


   where 0 i is m  . Define  

   1 1
1 1 2 2: , ,f       by    0

1 21
, 2 ,i

kn s
ii

f b q 


  .  

It is not hard to check that f is an isomorphism. The proof 
in cases (2) - (4) is similar. 

We now assume that 1  is odd and 2  is even with 
n0 = 0. Since the argument is similar to the previous case, 
we will sketch the proof. The elements directly below 
 0

12 ,m   in  1
1 1,   are    0 0

1 1 12 , , , 2 ,m m
kp p    

and the elements directly below  21, 2  in  1
2 2,    

are      1 2 2 2, 2 , , , 2 , 1,sq q   . It follows that k = s + 
1. The elements in  1

1 1,   directly above  0
0 12 ,m b   

are  

   
 

0 01 2

0

1 1
1 1 2 11 2

1
1

2 , , 2 , , ,

2 , ,

i i

k i

m m m mm m
i ii i

m m m
k ii k

p p p p

p p

 



 
 




 



 

and the elements directly above  0 2,c   are  

   
 

1 2

1

1 1
1 2 2 21 2

1
1 21

, , , , ,

, ,

i i

k i

n nn n
i ii i

n n
k ii k

q q q q

q q

 



 
 


  

 



 

 0 2, 2c  . By relabeling we may assume that  

   0 1 1
1 22 , ,j ji im nm m n

j i j ii j i j
f p p q q  

 
   

for 1 1j k    and  

   0 1
1 0 22 , , 2k im m m

k ii k
f p p c 


 .  

Now    1

1 1
1 2 1

k k

i ii i
m n



 
    , and for 1j k   we  

have    1 2 1j i j ii j i j
m m n n

 
    .  

Using these two equations we obtain j jm n  for 
1 1j k   . The number of elements greater than or 
equal to  0 1

12 ,k im m m
k ii k

p p 
  and  0 2, 2c   is  

 1k ii k
m m


  and  1

1
1

k

ii
n




  respectively. Since  

these two numbers must be equal, it follows that 1km  . 
For the converse suppose that 0 1

i
k m

ii
b p


  where 

1km   and 
1

0 1
i

k m
ii

c q



 . If  1,b   is any element in  

 1
1 1,  , then 0

1
2 i

km s
ii

b p


   where 0 i is m  , and 

0ks   or 1. Let    1
1

1 21
, , 2

k s
ii

f b q 


   if 0ks  , 

and  1
1

2=1
,

k s
ii

q   if 1ks  . It follows that f is an 

isomorphism. 
For a pair of positive integers   and  , let  2 ,   

denote the equivalence classes of those actions whose 
quotient type is  2 ,  . Let  

     2 , , : . . , 1,

divides , 0 ( 2), and or 2 .

b d g c d b d

b mod d d
b

 

  

    


   


 
 

It follows that  2 ,   is a partially ordered set under  

the ordering    2 2 1 1, ,b d b d  if 2 1b b , 1

2

1
b

b
  (mod  

2), and 2 1d d . 
The proof of the following theorem is similar to that of 

Theorem 12. 
Theorem 15. For each pair of positive integers   

and  , the poset  2 ,   is isomorphic to the poset 
 2 ,  .  

We will now consider the structure of the partially or-
dered set  2 ,  . Write 0 12m b b   where 0b  and 

1b  are both odd and 0b  is the largest odd divisor of   
which is relatively prime to  . 

Theorem 16. For each pair of positive integers   
and  , the poset  2 ,   is a disjoint union of lat- 
tices given by  

 

 
 

 

2

1
1 0

1
0

1 1 1
1 0 0

,

2 , if 0 ( 2)

, if 0 ( 4)

(2 , 2) , if 0 ( 2)
2

m m j
j

m m j
j

b mod

b mod

b b mod

 

 

 
 




 



 


 

  








 

 

Proof. We first assume that   is odd. Note that for 
1 j m  , we have    2

02 , ,m j b     . It suffices  

to show that if    02 , ,m j b b d  , then  02 ,m j b     

 ,b d  and hence  02 ,m j b   is a minimal element, 
and if    2, ,b d   , then    0, 2 ,m jb d b   for 
some unique j where 1 j m  . Suppose  02 ,m j b    
 ,b d , and thus 02m j b  divides b,   divides d, and  

02m j

b

b  is odd. Now d divides  , which implies d  .  

Since b divides 0 12m b b   and  . . , 1g c d b   , it fol- 
lows that b must divide 02m b . Write 2wb b  where  

b  is odd. Now 
0

2

2

w

m j

b

b


 being odd implies w m j    

and b0 divides b . Note that 2m jb b   divides 02m b . 
Thus b  divides 0b  showing that 0b b  , and there-
fore 02m jb b . Let    2, ,b d   . Since   is odd, 
it follows that d  . As above we have that b divides  

02m b . Furthermore, 02m b

b
 must be even. We may write  

2rb b  where 0 1r m   , b  is odd, and b  di- 
vides 0b . Therefore    0, 2 ,rb d b  . 

We now assume that   is even and we write 2n    
where    is odd. There are two cases to consider: n ≥ 2 
and n = 1. Suppose first that n ≥ 2. Now  0 ,b    

 2 ,  . We will show that  0 ,b   is the minimal 
element in  2 ,  . Suppose that    2, ,b d     

and    0 , ,b b d  . In this case d  . Also since 
0

b

b
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and 0b  are both odd, it follows that b is odd. Since 
 . . , 1g c d b    and b is odd, it follows that b divides 0b . 

Thus 0b b  showing that  0 ,b   is the minimal ele- 
ment. Now let    2, ,b d   . Recall that d   or 
2d  . If d  , then since b and d are relatively 
prime, b must be odd. Furthermore, b must divide 0b ,  

and thus    0, ,b d b  . If 2d  , then 12
2

nd
      

and d is even since n ≥ 2. Now b and 12nd    are 
relatively prime, which implies that b is odd. Again we 
have that b must divide 0b , so that    0, ,b d b  . This 
shows that  0 ,b   is the minimal element and  

   2 1
0, ,b    . We now consider the case when  

n = 1. Note that    2
02 , 2 ,m j b      for 1 ≤ j ≤ m  

– 1 and    2
0 , ,b    . We need to show that these 

are the minimal elements in  2 ,  , and if  ,b d   
 2 ,   then either    0, 2 , 2m jb d b   for some 

unique j or    0, ,b d b  . The proof to this is similar 
to case 1. 

Remark 17. Note that by Theorem 7 each  
 1

1 02 ,m m j
j b 
   and  1 1

1 02 , 2m m j
j b  
   is a dis- 

joint union of isomorphic lattices.  
For a pair of positive integers   and   with >   

and    even, let  3 ,   denote the equivalence 
classes of those actions whose quotient type is  3 ,  . 
Let  

   

 

3 , , : ,
2

. . , 1, divides .
2

b d d

g c d b d b

  

 

     


  


 
 

It follows that  3 ,   is a partially ordered set under  

the ordering    2 1, ,b d b d  if 2 1b b  and 1

2

1
b

b
  (mod 

2). 
Theorem 18. For each pair of positive integers   and 

  with >   and    even, the poset  3 ,   
is isomorphic to the poset  3 ,  .  

Proof. Let    3, ,b d    and let 
2

m
b

 
 . Ob-  

serve that bm d    and bm d   . There exists a 
standard 2m -action   2: Diff ,m M b d   such 
that  

     3 3, , ,M b d bm d bm d        

where 3   if m is odd and 3   if m is even. Define 
   3 3: , ,f       by      3, ,f b d     . 

Suppose that    2 1, ,b d b d . Let 1
12

m
b

 
  and 

2
22

m
b

 
  and let   

11 2 1: Diff ,m M b d   and  

  
22 2 2: Diff ,m M b d   be the standard actions. It 

follows that 1
2 1

2

b
m m

b

 
  

 
, and therefore 

12m  is a sub- 

group of 
22m . Furthermore,     

1

22 11 1
b

b  , which  

implies that    2 1   and thus f is order preserving. 
The proof that f is one-to-one and onto is similar to that 
in Theorem 12. 

We will now consider the structure of the partially or- 

dered set  3 ,  . Write 2
2

m  
  where   is 

odd. Let 0b  be the largest positive odd divisor of   

which is relatively prime to 
2

d
 

 . 

Theorem 19. For each pair of positive integers   

and   with >  ,    even, and 
2

d
 

 , the  

poset  3 ,   is a disjoint union of isomorphic lat-
tices given by 

   
 

1
0 03

1
0

2 , if 0 ( 4)
,

, if 0 ( 4)

m m j
j b d mod

b d mod

 
 

 






   
 





 

Proof. Suppose first that 0    (mod 4) (equiva- 

lently d is odd). Note that 02 j b  divides 
2

 
 for  

0 j m  , and since d is odd we have  0. . 2 , 1jg c d b d  .  

It follows that    3
02 , ,j b d    and  02 ,j b d  is a  

minimal element of  1
02 ,j b d . Let    3, ,b d   . 

Write 2kb b  where b  is odd. Since b divides  

2
2

m  
 , it follows that 0 k m   and b  divides  

 . Furthermore, b  and d are relatively prime. Since 

0b  is the largest positive odd divisor of   which is 
relatively prime to d, it follows that b  divides 0b .  

Hence    1
0, 2 ,kb d b d  for a unique k. Now sup-  

pose    1
0, 2 ,kb d b d  for some k. By assumption  

2
d

 
 . Since b divides 02k b  and 02k b  divides 

2
2

m   
 , it follows that b divides 

2

 
, and hence 

   3, ,b d   . 

The proof for 0    (mod 4) is similar. 
Corollary 20. 

   
 

1
0 03

1
0

2 , if 0 ( 4)
,

, if 0 ( 4)

m m j
j b d mod

b d mod

 
 

 






  


 






 

For each pair of positive integers   and  , let 
 4 ,   denote the set of equivalence classes of actions 
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on prisim manifolds whose quotient space is  4 ,  .  
Theorem 21.    4 1, ,      
Proof. If    4 ,   , then   is equivalent to 

    5 2 1: Dih Diff ,n M b d    for some integers n, 
b, and d where  2 1b n    and d  . Since  ,b d   

 1 ,  , define a function    4 1: , ,f       
by     ,f b d  . It follows easily that f is an order 
preserving surjection. 

For each pair of positive integers   and  , let 
 5 ,   denote the set of equivalence classes of actions 

on prisim manifolds whose quotient space is  5 ,  . 
We now consider the structure of the partially ordered set 

 5 ,  . Write 0 12m b b   where 1b  is odd and 0b  
is the largest odd divisor of   that is relatively prime to 
 . 

Theorem 22.  

 
 

 

   

 

5

1
0 0

1
0

1 1
0

1
0

,

2 , if 0 ( 2) and 1

, if 0 ( 4) and 1

2 , 2 , if 0 ( 2) and 1
2

, if 1

m j
j

m

b mod m

b mod m

b mod m

b m

 

 

 
  









  

  


  

 









 



 

Proof. Suppose that 0   (mod 2). Let    5 ,   . 
We have a covering      5, , ,M b d M b d     
for some positive integers b and d. Now   is equivalent 
to either of the standard actions 5 , 5  or 5 . The 
action 5  is impossible since   is odd. We will de- 
fine a function    5 1

0 0: , 2 ,m j
jf b     as fol- 

lows: if   is equivalent to 5 , then   0 12 1 2mb n b b   
for some n and d  . Since b and d are relatively prime 
and 0b  is the largest odd divisor of   that is relatively 
prime to  , it follows that b divides 02m b . Thus 
   1

0, 2 ,mb d b   and we let  

      1
0, 2 ,mf b d b   . 

If   is equivalent to 5 , then   0 14 2 2mb n b b  , and 
this implies that b must divide 1

02m b . Thus  ,b d   
 1 1

02 ,m b   and we define  

      1 1
0, 2 ,mf b d b   .  

If   is equivalent to 5 , then 0 14 2mnb b b  for some 
n. Write 02kn n  where 0n  is odd. This implies that b 
divides 2

02m k b   where 0 2k m   . This shows that 
   1 2

0, 2 ,m kb d b    and we define  

      1 2
0, 2 ,m kf b d b    . 

We now show that f is an order preserving bijection. 
Note that there do not exist integers n, n , b, and b, 
such that    2 1 2 2 1b n b n     , or  2 1 4b n nb    , 
or  2 2 1 4b n nb    , if either b divides b or b di- 
vides b with odd quotient. This implies that f is one-to- 

one. Furthermore if    2 1  , then 2  and 1  are 
both equivalent to either 5 , 5  or 5 . From this it 
can be shown that      2 1f f  . To show f is onto,  

suppose    1
0, 2 ,jb d b   for 0 j m  . Let  

02
2 1

j b
n

b
   for some positive integer n . If m j ,  

then  0 1 12 2 1m b b b n b    , and since 1b  is odd we 
may write  2 1b n   . Hence there is an action  

    5 2 1: Dih Diff ,n M b d    

such that    5 5, ,M b d    , and thus   5f    
 ,b d . Similarly, if 1j m   or if 1j m  , we ob- 
tain actions 5  and 5 -actions respectively. This shows 
that f is onto. 

If 0   (mod 4), then if m = 1 there exist only 5 - 
actions, and if m > 1 there exist only 5 -actions. For  

0
2


  (mod 2), if m = 1 there exist only 5  and 5 -  

actions, and if m > 1 there exist only 5  and 5 -actions. 
If   is odd and   is even, then there exist only 5  
and 5 -actions. The proof in all these cases is similar to 
the above. 

For each pair of positive integers   and   with 
>   and    even, let  6 ,   denote the set 

of equivalence classes of actions on prisim manifolds 
whose quotient space is  6 ,  .  

Theorem 23. For each pair of positive integers   
and  , the poset  6 ,   is isomorphic to the poset 

 3 ,  .  
Proof. Let    6 , 1    . Now   is a  Dih n - 

action on a prisim manifold  ,M b d  and is equivalent 
to 6  if n is even or 6  if n is odd. Furthermore,  

   6, ,M b d bn d bn d    , 

and therefore bn d    and bn d   . It follows 

that    3, ,b d   . Define a function  6: ,f     

 3 ,   by     ,f b d  . 

Let    3, ,b d   . Therefore 
2

bn
 

  and 

2
d

 
  for some n . This implies bn d     

and bn d   . If n is even there exists an 6 -action, 
and if n is odd there exists an 6 -action. Therefore f is 
onto. 

Let     1 1 1,f b d   and     2 2 2,f b d   and  

suppose      1 2f f  . Then    1 1 2 2, ,b d b d  and  

hence 1 2b b  and 1 2d d . We also have 1 1 1b n d    
and 2 2 2b n d    so that 1 2n n . Recall that 1  and 

2  are equivalent to either an 6  or 6 -action. If 

1 2n n  is even, then both of them are equivalent to an 

6 -action, otherwise they are both equivalent to a 6 - 
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action. Hence 1  and 2  are equivalent showing f is 
one-to-one.  

If    1 2  , then there is a covering map  

   2 2 1 1: , ,M b d M b d   

where 1 2d d . Hence,   2 12 1n b b   for some n  
which shows 2 1b b  is an odd number. Therefore, we 
conclude    1 1 2 2, ,b d b d  showing f is order preserv- 
ing. 

For each pair of positive integers   and  , let  
 7 ,   denote the set of equivalence classes of ac- 

tions on prisim manifolds whose quotient space is  
 7 ,  . The proof of the following theorem is similar 

to that of Theorem 23. 
Theorem 24. For each pair of positive integers   

and  , the poset  7 ,   is isomorphic to the poset 
 2 ,  .  

5. Primitive Actions on Prism Manifolds 

Let   : Diff ,G M b d   be a G-action on a prism 
manifold  ,M b d  with orbifold covering map  

   : , ,M b d M b d  .  

We say that   is primitive if G does not contain a non- 
trivial normal subgroup which acts freely on  ,M b d . 
Therefore for any nontrivial normal subgroup H of G, if  

  0 : Diff ,
H

H M b d   ,  

then   0,M b d   is not a manifold. In this section we 
determine when an action is primitive. 

Theorem 25. Let   : Diff ,m M b d   be a m - 
action on the prism manifold  ,M b d . 

1) If   is equivalent to 1 , then   is primitive if 
and only if for every prime divisor p of m, 0d   (mod 
p). 

2) If   is equivalent to 1 , then   is primitive if 
and only if b is even and for every odd prime divisor p of 
m, 0d   (mod p). 

3) If   is equivalent to 2  or 3 , then   is primi- 
tive if and only if either 2nm  , or if p is any odd prime 
divisor of m, then 0d   (mod p). 

4) If   is equivalent to 3 , then   is primitive if 
and only if either 2m  , or if p is any odd prime divisor 
of m, then 0d   (mod p). 

Proof. We may suppose 1  . Then 2 1m n   
and if l  is a subgroup of m  and 0 :

l
l      

  Diff ,M b d , then      1 0, , ,M b d bl d M b d   .  

Furthermore  1 ,bl d  is a manifold if and only if 
 . . , 1g c d bl d  . Assume that   is primitive and let p 

be a prime divisor of m. Consider the subgroup p . 
Since  . . , 1g c d b d   and   is primitive, it follows that 

   . . , . . ,g c d bp d g c d p d p  . Thus p divides d. Now 
suppose that every prime divisor of m also divides d and 

let l  be a subgroup of m . Let p be a prime divisor 
of l. Since l divides m, it follows that p divides m. Hence 
by assumption  . . , 1g c d bl d  , showing that   is 
primitive. 

For part 2), suppose that 1  . Then  2 2 1m n   
and if l  is a subgroup of m  and 0 :

l
l     

  Diff ,M b d , then either 2 1l s   and  

     1 0, , ,M b d bl d M b d   , 

or  2 2 1l s   and  

      1 0, 2 1 , 2 ,M b d b s d M b d    . 

Furthermore  1 ,bl d  is a manifold if and only if 
 . . , 1g c d bl d  ; and   1 2 1 , 2b s d  is a manifold if 

and only if   . . 2 1 , 2 1g c d b s d  . 
Assume first that   is primitive. If p is an odd prime 

divisor of m, then the same argument used in the 1  
case shows p divides d. Now 2  is a subgroup of m  
and we have a covering  

     1 2, , 2 ,M b d b d M b d   .  

Since   is primitive,  1 , 2b d  is not a manifold, and 
since  . . , 1g c d b d   it follows that 2 divides b. For the 
converse suppose that b is even, and if p is any odd prime 
divisor of m, then 0d   (mod p). Let l  be any sub- 
group of m . If l is odd, the proof that   is primitive is 
identical to the 1  case. If l is even, then  

  . . 2 1 , 2 1g c d b s d  , showing that   is primitive. 
To prove part 3), suppose that   is equivalent to 2 . 

Therefore 2m s  and   2 2: Diff ,s M b d   is  

defined by     
π

2 1
i

sru rue
 

  
 

 where  ru  is any  

point in the Heegaard Klein bottle K and 1 denotes a 
generator of 2s . If l  is any subgroup of 2s  and 

  2 : Diff ,
l

l M b d    , then  

    
2π

1
i

lru rue
 

  
 

 where 1 denotes a generator of l . 

We now suppose that 2  is primitive and p be an odd 
prime divisor of 2m s . Letting l p , we obtain a  
covering      1, , ,M b d M b d bp d  . Since 2   

is primitive  . . , 1g c d bp d  , and since  
   . . , . . ,g c d bp d g c d p d , it follows that p divides d. 

Suppose 2nm  . Then 2tl   and  

    
2π π

12 21
i i

t t
ru rue rue 

   
    
      

. Now K   is a mir-  

rored annulus, showing that  ,M b d   is not a mani- 
fold, and thus 2  is primitive. Suppose now that 2nm  , 
and if p is an odd prime divisor of m, then 0d   (mod 
p). Assume there is a covering  

     1, , ,M b d M b d bl d   (Note that the quo- 
tient space cannot be  1 , 2bl d  by definition of 2  
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and 1 ). It follows that l is odd. Let p be any odd prime 
divisor of l. It follows that p divides m, and hence by 
assumption p divides d. Thus  . . , 1g c d bl d  , showing 

2  is primitive. 
We now suppose that 3  . In this case 4m s  

and   3 4: Diff ,s M b d   where  

    
π

2
3

1
1

i

sru ue
r


 

  
 

. If l  is a subgroup of m , let  

  3 : Diff ,
l

l M b d    . Assume first that   is  

primitive. Suppose p is an odd prime divisor of m and 
consider the primitive subgroup p  of m . Here l p ,  

and since 
m

p
 is even we have     

2π

1
i

pru rue
 

  
  

.  

Since   is a primitive 1 -action on  ,M b d , it fol- 
lows by the above that 0d   (mod p). Now suppose 

2nm   and let l  be a subgroup of m . Then 2tl    

and     
π

121
i

t
ru rue 

 
 
  

. In this case   is an 2 -  

action and  ,M b d   is not a manifold. 
Now suppose that every odd prime divisor of m also 

divides d. Let l  be a subgroup of m . If l is odd, then  

4s

l
 is even and     

2π

1
i

lru rue
 

  
 

 which is an 1 -  

action. The result follows by the above that   is primi- 
tive, and thus   is primitive. Now suppose l is even. If  

m

l
 is even then     

2π π

1
i i

l lru rue rue 
   

    
   

, which  

is an 2 -action; and if 
m

l
 is odd then  

    
2π π1 1

1
i i

l lru ue ue
r r

 
   

    
   

, which is a 3 -action.  

In either case the quotient is not a manifold. Hence   is 
primitive. 

We now prove part 4) and suppose 3  . Therefore 
 2 2 1m n   and     3 2 2 1: Diff ,n M b d    where  

    
2π

2 1
3

1
1

i

nru ue
r

 
 

  
 

. If 2m  , then 3K   is a  

mirrored Möbius band and the action is primitive. So 
suppose that 2m  . Assume first that 3  is primitive 
and let p be an odd divisor of m, and hence p divides 
2 1n  . Consider the subgroup p  and let  

  3 : Diff ,
p

p M b d    . 

Then     
4π

1
i

pru rue
 

  
  

, and we have a covering  

     1, , ,M b d M b d bp d  . Again as above since 

3  is primitive, p must divide d. 

We now suppose that for each odd prime divisor p of 
m, 0d   (mod p). Let l  be a subgroup of m . If l 
is odd we obtain a covering  

     1, , ,lM b d M b d bl d   , and as above if p is 
a prime divisor of l we obtain  . . , 1g c d bl d  . Thus the 
action is primitive. If l is even then  2 2 1l s  , and  

if 3
l

 


 then     
2π

2 11
1

i

sru ue
r

 
 

  
 

. In this case  

   3, ,lM b d bl d  , which is not a manifold show- 
ing that the action is primitive. 

Proposition 26. Let   2 2: Diff ,m M b d     
be an action on the prism manifold  ,M b d  where 

2m  . Then   is primitive if and only if either 2nm  , 
or if p is any odd prime divisor of m, then 0d   (mod 
p).  

Proof. We may assume that 2  , and therefore  

2
2 2

m
  . Suppose that 2  is primitive. This implies  

that 2  is primitive and the result follows from Theo-
rem 25. Now suppose that either 2nm  , or if p is an 
odd prime divisor of m, then 0d   (mod p). Note that 
this implies by Theorem 25 that 2  is primitive. Let H 
be a subgroup of 2 2m   and 2 H

  . If  
  2 1 1H Z   , then  ,M b d   is not a manifold. 

So we may assume that   2 1 1H Z   , and hence H 
is a subgroup of 2m . Since 2  is primitive,  ,M b d   
is not a manifold showing that 2  is primitive. 

Proposition 27. Let   2 2: Diff ,M b d     be 
an action on the prism manifold  ,M b d . Then   is 
primitive if   is equivalent to either 5 , 6  or 7 . If 
  is equivalent to 2  or 5 , then   is primitive if 
and only if 0b   (mod 2). 

Proof. If   is either 5 , 6 , 7 , 2  or 5 , then 
any subgroup of 2 2   restricted to a Heegaard Klein 
bottle K is a product of the following homeomorphisms 
where  ru K :   πiru rue    ,    ru ru , and  

  1
ru u

r
    

. The only fixed-point free action on K is  

the homeomorphism   π1 iru ue
r
    

. By definition of  

5 , 6  or 7 , they do not contain this homeomor- 
phism, and hence they are primitive. But the actions 2  
and 5  do contain this 2Z  subgroup and we obtain a 
covering      2 1, , , 2 .M b d M b d b d    Since 

 1 , 2b d  is a manifold if and only if 2 does not divides 
b, the result follows. 

Proposition 28. Let     : Dih Diff ,m M b d   
be an action on the prism manifold  ,M b d  for m > 2. 

1) If   is equivalent to either 4  or 5 , then   is 
primitive if and only if for every prime divisor p of m, 

0b   (mod p). 
2) If   is equivalent to 5 , then   is primitive if 

and only if b is even and for every odd prime divisor p of 
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m, 0d   (mod p). 
3) If   is equivalent to either 5 , 5 , 6  or 7 , 

then   is primitive if and only if either 2nm  , or if p 
is an odd prime divisor of m, then 0d   (mod p). 

4) If   is equivalent to 6 , then   is primitive if 
and only if either 2m   or, if for each odd prime divi- 
sor p of m, 0d   (mod p).  

Proof. We may assume   is either 4  or 5 , and  

thus 2 1m n   and 1|
m

  . If   is primitive, then 

1|
m

   is primitive, and the result follows by Theo-  

rem 25. For the converse, suppose that H is a subgroup of 
  1 2Dih m m     . If 2 1H   , then  ,M b d H  

is not a manifold. So we may assume 2 1H   , and 
thus H is a subgroup of m . Hence lH    for some l 
with l dividing m. By Theorem 25, 1  is primitive, and 
so  ,M b d H  is not a manifold. Thus 4  and 5  
are primitive. The proof for the other cases is similar to 
Theorem 25. 

Proposition 29. Let  

    2 2: Dih Diff ,m M b d     

be an action on the prism manifold  ,M b d . 
1) If 2m  , then   is primitive if and only if either 

2nm  , or if p is any odd prime divisor of m, then 
0d   (mod p). 

2) If 1m  , then   is primitive if and only if 0b   
(mod 2).  

Proof. We may assume that 7  . Since  

2 2
7 2

m
 




 
, using Propositions 26 and 27, a proof  

similar to that used in Proposition 28 proves the result. 

6. Lattice Structure 

In this section we compute the maximum length of a 
chain in the partially ordered sets  ,i   . In addition, 
we give necessary and sufficient conditions for  1 ,   
to be a Boolean algebra. 

Theorem 30. Let  1 1,b d  and  2 2,b d  be elements 
of  1 ,  , and so i id   , where i  is 1 or 2 for 

1,2i  . Suppose    2 2 1 1, ,b d b d . Then 2b  divides 

1b  and 2 1  . 
1) If 2 1  , then there exists  ,b d  in  1 ,   

such that      2 2 1 1, , ,b d b d b d  . 

2) If 1 2  , then 1

2

b

b
 is prime if and only if there  

does not exist  ,b d  in  1 ,   such that  2 2,b d   
   1 1, ,b d b d .  

Proof. Since  1 1,b d  and  2 2,b d  are elements of 
 1 ,   for 1, 2i  , it follows that  . . , 1i ig c d b d  ,  

ib  divides  , 1
ib


  (mod 2), and i id    where 

1i   or 2. By the definition of    2 2 1 1, ,b d b d , we 

have 2 1b b  and 2 1d d . Now 1 2

2 1

d

d




 , which implies 

2 1  . 

Suppose 2 1  . Thus 2 2   and 1 1  , hence 

2 12d d . Now    1
1 2, ,b d    and  

     2 2 1 2 1 1, > , > ,b d b d b d  showing (1). 
We now suppose that 1 2  , and thus 1 2d d . Sup- 

pose there exists  ,b d  in  1 ,   such that  
     2 2 1 1, , ,b d b d b d  . It follows that 1 2d d d  ,  

2b b  and 1b b . Therefore 1 1

2 2

b bb

b b b
  . Note that 1

2

b

b
  

is prime if and only if either  ,b d  equals  2 2,b d  or 
 1 1,b d . 

Corollary 31. Let  1  and  2  be elements of  

 1 ,  , such that   
1 11 : Diff ,m M b d   and 

  
2 22 2 2: Diff ,m M b d   where mi is odd and i   

is either 1 or 2. Suppose    2 1  . Then 2b  divides 

1b  and 2 1  . 
1) If 2 2   and 1 1  , then there exists  

   1 ,    such that      2 1    . 

2) If 1 2   and 1

2

b

b
 is prime, there exists no  

   1 ,    such that      2 1    .  
Recall that the maximal element in  1 ,   is 

 2 ,n   if   is odd, and  2 , 2n   if   is even. To 
obtain the minimal element let 0b  be the largest odd 
divisor of   such that  0. . , 1g c d b   . The minimal 
element is  02 ,n b   if either   is odd or if 0n  , 
otherwise the minimal element is  02 , 2n b  . 

Theorem 32. For the partially ordered sets  ,i    
where 1 7i   and 3,6i  , let 1 2

1 22 knn nn
kp p p    

and 1 2
1 22 kmm mm

kp p p    be the prime decompositions. 
Let 0b  be the largest odd divisor of   relatively prime 
to  . Thus, 1 2

0 1 2
kll l

kb p p p   where 0jl   if and 
only if  , 0j jmin n m   and j jl n  if and only if 

 , 0j jmin n m  . Then the following chart gives the 
length of a maximum chain in each  ,i   .  
 

The maximum length of a chain 

Ordered set Conditions Max. length

 1 ,  ,  2 ,  , 

 7 ,   
0   (mod 2)  1

1
k

ii
l




 1 ,  ,  2 ,  , 

 7 ,   
0   (mod 2)  1

2
k

ii
l




 4 ,   none  1
1

k

ii
l




 5 ,   0   (mod 2) and n = 0  
or n ≥ 1 

 1
1

k

ii
l




 5 ,   0   (mod 2) and n = 0  1
2

k

ii
l
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Proof. We will consider first  1 ,  . Since  1 ,   
is isomorphic to  1 ,   we will prove the result for 

 1 ,  . Suppose that β and   are both even, and thus  

 0 , 2b   and  2 , 2n   are the minimal and maximal  

elements of  1 ,   respectively. We may construct a 
chain in  1 ,    

     
     

1 2
0 0 1 0 1

1
0 1

, 2 < , 2 < , 2 <

< , 2 < < 2 , 2 < 2 , 2l n n
k

b b p b p

b p p

  

  

 






 

such that dividing any two consecutive first coordinates 
yields a single prime in the prime decomposition of 0b . 
Now the length of this chain is  1

1
k

ii
l


 . Since any 

maximal chain must contain both the minimal and 
maximal elements, it follows by the above theorem that 
this is a maximal chain. The other cases for  1 ,   
are similar.  

For the case  2 ,   note that  2 ,   is iso- 
morphic to  2 ,  , which by Theorem 16 is equal to 

 1
1 02 ,m m j

j b 
   if 0   (mod 2);  1

0 ,b   if 0    

(mod 4); or    1 1 1
1 0 02 , 2 ,m m j

j b b  
    if 0

2


   

(mod 2). By Remark 17 each  1
1 02 ,m m j

j b 
   and 

 1 1
1 02 , 2m m j

j b  
   is a disjoint union of isomorphic 

lattices. The result now follows by applying the above 
 1 ,   case. 

By Theorem 21,    4 1, ,     . If   is odd then 
   1 1, ,      , and the result follows by the above. 

If   is even, then a chain in  1 ,   can be con- 
structed as the above where the second coordinate is re- 
placed by   proving this case also. 

By Theorem 22,  5 ,   is isomorphic to  
 1

0 02 ,m j
j b    if 0   (mod 2) and m ≥ 1;  1

0 ,b   
if 0   (mod 4) and m ≥ 1;    1 1

02 , 2 ,m b       

if 0
2


  (mod 2) and m ≥ 1; or  1

0 ,b   if 0m  .  

Using the above results, the first three cases give the  

maximum length of  1
1

k

ii
l


 . When 0m  , then  

there is no restriction on  . Thus the maximum length  

is  1
1

k

ii
l


  if   is odd and  1

2
k

ii
l


  if   is  

even. 
For the remaining case, it follows by Theorem 24 that 
   7 2, ,     , which in turn is isomorphic to 
 2 ,  . The result now follows by the above. 

Theorem 33. For a pair of positive integers   and 

  with >  ,    even, let 2
2

m  
  where 

  is odd. Let 0b  be the largest odd divisor of   rela- 

tively prime to 
2

d
 

  and let 1 2
1 22 kss ss

kp p p     

and 1 2
1 22 ktt tt

kp p p    be their prime decompositions. 

Thus, 1 2
0 1 2

kll l
kb p p p   where 0jl   if and only if 

 , 0j jmin s t   and j jl s  if and only if  , 0j jmin s t  .  

For the partially ordered sets  3 ,   and  6 ,    

the maximum length of a chain is  1
1

k

ii
l


 .  

Proof. By Theorems 18 and 23 it follows that  3 ,   
and  6 ,   are both isomorphic to  3 ,  , which  

is equal to  1
1 02 ,m m j

j b d
   if 0    (mod 4) or  

 1 ,   if 0    (mod 4). In both cases the maxi-  

mum length is  1
1

k

ii
l


 . 

A lattice L is a distributive lattice if for any a, b, c in L,  

     a b c a b a c      . 

Proposition 34.  1 ,   is a distributive lattice 
where for  1 1,b d  and  2 2,b d  in  1 ,   the join  

        1 1 2 2 1 2 1 2, , . . , , min ,b d b d g c d b b d d   

and the meet  

        1 1 2 2 1 2 1 2, , . . , ,max ,b d b d l c m b b d d  . 

Proof. By Corollary 9,  1 ,   is a lattice. A com- 
putation using the following equation  

       max ,min , min max , ,max ,l m n l m l n  

for any positive integers l, m and n, shows that  1 ,   
is a distributive lattice. 

Remark 35. If we represent the minimal element by 
 02 ,n b    and the maximal element by  2 ,n    where 
  is either 1 or 2, then for any element  
   12 , ,n b d    we have  

     02 , 2 , 2 ,n n nb d b b d     

and  

     2 , 2 , 2 ,n n nb d b d   . 

A lattice  , ,B    is said to be a Boolean algebra if 
the following hold: 

1) B is a distributive lattice having a minimal element 
0 and a maximal element 1. 

2) For every a B , 0a a   and 1a a  . 
3) For every a B  there exists a B  such that 

1a a   and 0a a  . 
Proposition 36. For the partially ordered set  1 ,   

let 0b  be the largest odd divisor of   such that  

 0. . , 1g c d b    and let 0 1
i

k l
ii

b p


  be the prime  

decomposition. Then   1 , , ,     is a Boolean 
algebra if and only if 1il   for all 1 i k  .  

Proof. Suppose that 1il   for all 1 i k  . By Remark 
35 above and Proposition 34, it remains to show (3) of 
the definition. Let    1

1 12 , ,n b d   . Now 1 02 2n nb b   
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and so let 0
2

1

b
b

b
 . Observe that  1 2. . , 1g c d b b   and  

 1 2 1 2 0. . ,l c m b b b b b  . If either 0n   and   is even, 
or if   is odd, then all the elements in  1 ,   have 
the same second coordinate—either 2  in the first 
case or   in the second case. In this case  

     1 1 2 1 0 12 , 2 , 2 ,n n nb d b d b d   

and      1 1 2 1 12 , 2 , 2 ,n n nb d b d d  . The remaining case 
is 0n   and   even. If 1d   then let 2 2d  , 
and if 1 2d   we let 2d  . It follows that  

   1 1 2 22 , 2 ,n nb d b d  gives the minimal element and 

   1 1 2 22 , 2 ,n nb d b d  gives the maximal element. 

We now suppose that   1 , , ,     is a Boolean 
algebra. Suppose there exists an > 1jl . The minimal 
element in  1 ,   is  02 ,n b    where   is either  

1 or 2. Now  1
02 ,n

jb p    is an element of  1 ,   

and    1
0 02 , > 2 ,n n

jb p b    . There exists a com-  

plement  2 ,n b d  such that  

     1
0 02 , 2 , 2 ,n n n

jb d b p b     , 

and so  1
0 0. . ,jl c m b p b b  . It follows that pj divides b.  

We also have    1
02 , 2n n

jb d b p  equal to the maximal  

element  2 ,n   , and so  1
0. . 2 , 2 2n n n

jg c d b b p  . But  

since > 1jl , it follows that pj divides 1
0 jb p , giving a 

contradiction. 
Proposition 37. Let  0 0,I b d   be an ideal of a 

lattice  1 ,   such that  0 0,b d  is directly below 
 2 ,n d  which denotes the maximum element in the lattice. 
If    1 1 2 2, ,b d b d I  , then  1 1,b d I  or  2 2,b d I  
and I is a maximal ideal.  

Proof. Let      1 1 2 2 0 0, , ,b d b d I b d    . Suppose 
both  ,i ib d I  for 1,2i  . Since there is no element 
between  0 0,b d  and  2 ,n d , we have  

     0 0, , 2 ,n
i ib d b d d  , where  0, 2n

ig.c.d b b   for  

1,2i  . This says that ib  and 0b  do not have a com- 
mon odd prime divisor for 1,2i  . 

On the other hand,      1 1 2 2 0 0, , ,b d b d b d   so that 
 0 1 2. . ,b l c m b b . Since 0b  and ib  do not have any 

common odd prime divisors, this forces 0 2nb  . As 
   0 0 0, 2 ,nb d d  is not the maximum element, 0 2d d . 
This result is possible only when the second coordinate is 
allowed to have an even number, otherwise it would be 
contradiction. Note that the second coordinate is an even 
number so that we must have 0n  , and hence 
   0 0, 1,2b d d . In addition, both 1b  and 2b  must be 
odd numbers. Now,      1 1 2 2 0 0, , ,b d b d b d   implies 

0 2d d  should divide  1 2max ,d d . It follows that at 
least one of id  must be equal to 2d . We may assume 

1 2d d  and thus    1 1 1, , 2b d b d . Since 1b  is an 
odd number and 0 1b  , this shows    1 1 0 0, ,b d b d  
telling us  1 1,b d I , which is a contradiction. 

Remark 38. The converse of Proposition 37 is false. 
For example, consider  1 45,11 .  9,11   is a prime 
ideal but not maximal.  

Corollary 39. Let  0 0,I b d  be an ideal of a lattice 
 1 ,   such that  0 0,b d  is directly below  2 ,n d  

which denotes the maximum element in the lattice. Let 
 0,1L   be a lattice where the partial ordering on L is 

defined by 0 1 . Then the following are true and 
equivalent.  

1)  I is a prime ideal. 
2)  1 , I    is a prime filter. 
3) There is a homomorphism  1: ,D I     with 

 0II  . 
Proof. Condition (1) follows by Proposition 37, and 

conditions (2) and (3) follow by lattice theory (see for 
example [5]). 

Proposition 40. Let  0 0,I b d   be an ideal of a 
lattice  1 ,   and  2 ,n d  denotes the maximum ele- 
ment in the lattice. Suppose that if    1 1 2 2, ,b d b d I  , 
then  1 1,b d I  or  2 2,b d I . If  1 ,   is a Boo- 
lean algebra, then I is maximal and  0 0,b d  is directly 
below  2 ,n d . 

Proof. Since  1 ,   is a Boolean algebra, I is 
maximal. If      0 0, , < 2 ,nb d b d d  , then  

   0 0, ,b d b d   . This shows    0 0, ,b d b d  . 

7. Group Lattice Structure 

Let m and n be relatively prime integers with > 1n . De- 

fine the group  π ,m n  to be  

  1 1 2π , , , 1m nm n x y yxy x y x    . 

Let V and W denote a solid torus and a twisted I-bundle 
over the Klein bottle K respectively. Recall that the prism 
manifold  ,M m n V W  , where V  is identified 
to W  by a homeomorphism : V W     defined 
by    , ,s m t nu v u v u v  , where s and t are integers 
satisfying 1sn tm   . The fundamental group of 

 ,M m n  is  π ,m n . 
Theorem 41. Let H be a normal subgroup of  π ,m n . 

Then, either H is cyclic or H is isomorphic to  π ,b d  

for some relatively prime integers b and d satisfying the  

following conditions: b divides m, 1
m

b
  (mod 2), d = n  

and  π , m bm n H   , or 2d = n and   2π , m bm n H   . 
Furthermore, there exists a realizable isomorphism    

of  π ,m n  such that if d n  then   ,
m

bH x y  , 
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and if 2d n  then   2 ,
m

bH x y  .  

Proof. Let H be a normal subgroup of  π ,m n . Let 
 : ,M M m n   be the regular covering correspond- 

ing to H. Choose a component W  of  1 W   and let 

0 :
W

W W  
 . Since W is a twisted I-bundle over a 

Klein bottle K and 0 :W W   is a covering space, it 
follows that W  is either T I  where T is a torus or a 
twisted I-bundle over a Klein bottle. Note that each 
component of  1 V   is a solid torus. If W  is T I , 
then there are two components of  1 V   whose 
boundaries are being identified with  T I  , and thus 
M is a lens space. In this case  1π M H  is cyclic. If 
W  is a twisted I-bundle over the Klein bottle, then there 
is only one component of  1 V   whose boundary is 
being identified with W  , and hence M is a prism 
manifold. In this case  ,M M b d  for some relatively 
prime integers b and d. Furthermore there is a group ac- 
tion G on  ,M b d  such that    , ,M b d G M m n . 
Now  1 K   is a G-invariant Klein bottle. Hence by 
[4], the G-action is equivalent, via a homeomorphism h 
of  ,M b d , to either a standard 2 1r -action with 

 2 1m r b   and n d , or a standard  2 2 1r -action 
with  2 1m r b   and 2n d . These standard actions 
arise from the coverings of  ,M m n  corresponding to  

the subgroups ,
m

bx y  and 2 ,
m

bx y  respecttively.  

Now h projects to a homeomorphism of  ,M m n  real- 
izing  . 

Theorem 42. Let   1 1
1 1π , ,

m

bb d x y  and  

  2 2
2 2π , ,

m

bb d x y  be subgroups of  π ,m n  where 

1i   or 2. Then  

       1 2max ,
1 1 2 2π , π , π , ,

m

bb d b d b d x y     

where  1 2,b gcd b b  and  1 2min ,d d d . The group 
generated by  1 1π ,b d  and  2 2π ,b d  is  

   1 2min ,π , ,
m

bb d x y      where  1 2. . ,b l c m b b   and  

 1 2max ,d d d  .  
Proof. Let  1 2,b gcd b b . Note that we have  

bi
m b m
bi by y

 
  
 
 

 for 1, 2i  . This shows that  

   1 2max ,π , ,
m

bb d x y   

is a subgroup of    1 1 2 2π , π ,b d b d H  . Since H 
contains  π ,b d , it follows that H is not cyclic. By 
Theorem 41, H is isomorphic to  π ,l n  or  π , 2l n . 
Furthermore, b divides l and l divides ib , and since 

 1 2,b g.c.d b b , it follows that b l . If 1d  or 2d  is 
2n , then since H is a subgroup of  π ,i ib d , it follows 

by the above Theorem 41 that  π , 2H l n . Since 
 π ,b d  is a subgroup of H, we must have 2d n  

showing  π ,b d H . We now suppose 1 2d d n  , 
and thus d n  and  π ,H l n . It follows that  
 π ,b d H . 
Let J be the group generated by  1 1π ,b d  and  2 2π ,b d . 

Now  1 2min ,x    is clearly a generator of J and  π ,b d  .  

Since 

b
mm bi bb iy y




 

  
 

, we have J contained in  π ,b d  .  

To show  π ,b d   is contained in J, we use the easily  

verifiable equation  1 2
1 2

. . , . . ,
m m

g c d l c m b b m
b b

 
 

 
, and 

by using  1 2. . ,b l c m b b   we have 
1 2

. . ,
m m m

g c d
b b b

 
   

. 

Since there exist integers s and t such that 
1 2

m m m
s t

b b b
 


, 

we obtain 1 2

s tm m m
b b by y y 

   
    
   
   

 proving the result. 

Let  ,m n  be the collection of subgroups  

π , ,
m

bn
b x y


   
 

 of  π ,m n  where 1   or 2. 

Theorem 43.  ,m n  is a lattice of subgroups, and 
there exists a lattice isomorphism    1, ,m n m n   
which sends an element  π ,b d  in  ,m n  to the 
element  ,b d  in  1 ,m n .  

Proof. If  1 1π ,b d  and  2 2π ,b d  are elements in 
 ,m n , define    1 1 2 2π , π ,b d b d  if  2 2π ,b d  is a 

subgroup of  1 1π ,b d . For  1 1π ,b d  and  2 2π ,b d  in 
 ,m n , define  

       1 1 2 2 1 1 2 2π , π , π , π ,b d b d b d b d    

and    1 1 2 2π , π ,b d b d  to be the group generated by 
 1 1π ,b d  and  2 2π ,b d . By the above Theorem 42, 
 ,m n  is a lattice. Furthermore, the map which sends 

an element  π ,b d  in  ,m n  to the element  ,b d  
in  1 ,m n  is a lattice isomorphism. 

Corollary 44.  ,m n  is a distributive lattice, which 
is a Boolean algebra if and only if the prime decomposi-  

tion of m is 
1

2
kj

ii
p

 .  

Proof. This follows by Propositions 34 and 36 and 
Theorem 43.  
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For the following propositions write 0
km p m  where 

p is an odd prime relatively prime to 0m . 

Proposition 45. Let π ,l n
p b


 
 
 

 and π ,
n

pb


 
 
 

 be 

subgroups of  π ,m n  where 1l  . There exists a sur- 

jection : π , π ,l
l

n n
p b pb

 
      
   

.  

Proof. Since π , ,
l

m

l p bn
p b x y


   
 

 and  

π , ,
m

pbn
pb x y


   
 

, define a function  

: π , π ,l
l

n n
p b pb

 
      
   

 

by  l x x    and 
l

m m

p b pb
l y y
 
  
 
 

. Clearly l  

preserves the first relation in π ,l n
p b


 
 
 

. To show that 

l  preserves the second relation, it suffices to show that 
12 1

lp m ny x


 . Write 1 2 1lp s   , and note that  

       1 2 1 22 2 2 2 4 2 2l s s sp m m m m m m my y y y y y y
 

    , 

since 4 1my  . Thus 
12 2 1

lp m n m ny x y x


  , showing that 

l  is a homomorphism. Since l  takes generators to 
generators, it is also a surjection. 

Proposition 46. Let 2 1
2 1

2 1

π , π ,l ln n
p b p b

 
   

   
   

 be 

subgroups of  π ,m n  where 1 2 1l l  . There exist sur- 

jections : π , π ,i

i

l
l i i

i i

n n
p b pb

 
   

   
   

 for 1,2i   and 

a homomorphism 1 1
1 1

: π , π ,
n n

pb pb
 

   
   

   
, such  

that the following diagram commutes where   and   
are inclusions: 
 

 
2

2
2

π ,l n
p b


 
 
 

2l


2
2

π ,
n

pb


 
 
 

  

1
1

1

π ,l n
p b


 
 
 

 1
1

π ,
n

pb


 
 
 

1
1

π ,
n

pb


 
 
 


1l

 

 
 
Proof. Let  

2 1
2 2 1 12 1

2 1
2 1

π , , , π ,
l l

m m

l p b p b ln n
p b x y x y p b 

 
   

    
   

. 

Note that 2b  divides 1b , 2 1   and 2 1l l . By 

Proposition 45, there exist surjections  

: π , π ,i

i

l
l i i

i i

n n
p b pb

 
   

   
   

 

defined by  i i

il
x x   , =

li
i i

i

m m

p b pb
l y y
 
 
 
 

. Define a 

function 1 1
1 1

: π , π ,
n n

pb pb
 

   
   

   
 by  1 1x x    

and 1 1

lpm m

pb pby y
   
   
   
   

 where 1 2l l l  . Let 1
0x c   

and 1
1

m

pby c , and note that the relations in this group 

are 1 1
1 0 1 0c c c c   and 1 12

1 0 1
n

pbc c  . Write 2 1lp s   

and observe that  

       1 1 1 1 1
2 12 2 4 2 2

1 1 1 1 1

lp s spb pb pb pb pbc c c c c


   , 

since 14
1 1pbc  . Therefore  

 1 1 1 1 1 12 2 2
1 0 1 0 1 0 1

ln n n
ppb pb pbc c c c c c  

 
    
 
 

. 

Clearly   preserves the other relation, showing that   
is a homomorphism. 

Since 2
2

lp b  divides 1
1

lp b  and 2  divides 1 , it fol- 
lows that the inclusion homomorphisms   and   are  

defined as follows:    
2

2 1 1x x


     and  

1
1

2
2

2 1
2 1

l

l
l l

p b
m m p b

p b p by y
   
   
   
   
 , 

   
2

2 1 1x x


     and  

1

2
2 1

b
m m b

pb pby y
   
   
   
   

. 

One can easily check that  

     
2

2 1 21
1 2l lx x x


           

and 
 1

2 2
2 2 2

1 2
( )

l

l l

m mp m

p b b p b
l ly y y    

  
  
 
 

   ,  

which verifies that our diagram commutes. 
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Proposition 47.  0 ,pm n  is a sublattice of  
 0 ,kp m n , and there exists a lattice surjection  

   0 0: , ,kp m n pm n    induced by the the family  

of group homomorphisms  l  such that   restricted 
to  0 ,pm n  is the identity.  

Proof. It is clear that  0 ,pm n  is a sublattice of 
 0 ,kp m n . If    0π , ,kb d p m n , then lb p b  

for some l k . By Proposition 45, there exists a surjec-  

tion : π , π ,l
l

n n
p b pb

 
       
   

. Define  

π , π ,l n n
p b pb

 
          

    
. By the commutative dia-  

gram in Proposition 46, it follows that   is order pre- 
serving. 

Theorem 48. Let 
1

2 i
k mj

ii
m p


   be the prime de- 

composition. Then  1
2 ,

kj
ii

p n
  is a sublattice of 

 1
2 ,i

k mj
ii

p n
 , and there exists a lattice surjection  

   1 1
: 2 , 2 ,i

k kmj j
i ii i

p n p n
 

     

induced by a family of group homomorphisms such that 

  restricted to  1
2 ,

kj
ii

p n
  is the identity.  

Proof. Apply  

   1 1
: 2 , 2 ,i

i r i rmm mj jir
r r i r ii k i k

p p n p p n
 

   
     

repeatedly defined in Proposition 47 for 1 r k   to 
obtain the result where   is the compositions of those 

r ’s. 

8. Some Examples 

In this section we present several examples which illus- 
trate the main theorems. 

Example 49.  1 315,14 . This example illustrates 
Theorem 12 that  1 315,14  is isomorphic to  

 1 315,14 . 
 

 

Example 50.  1 1155,11 . This is a Boolean lattice/ 
algebra by Proposition 36 since 1155 3 5 7 11    . 
 

 
 

Prime ideals are:  3,11  ,  5,11   and  7,11   
Their complements are lters which are:  35,11  , 
 21,11   and  15,11   respectively. 

Example 51.  2 126,20 . Since 20 0    (mod 4), 
this example illustrates Theorems 15 and 16 that  

     2 2 1126, 20 126,20 63, 20    . 
 

 
 
Example 52.  2 5040,20 . This example again illus- 

trates Theorem 16 and also that  2 5040, 20  is iso- 
morphic to  2 126, 20 . 
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Example 53.  2 5040,5 . This illustrates Theorem 16  

that  2 5040,5  is isomorphic to a disjoint union of  

isomorphic lattices  

       1 1 1 163,5 126,5 252,5 504,5 .       

 

 
 

Example 54.  2 5040,10 . This example illustrates Theorem 16 that    3 1 1
1 2 63,5 63,10j

j   . 

 

 
 
Example 55.  3 5030,10 . This example illustrates 

Theorems 18 and 19 that  

     3 3 15030,10 5030,10 63, 2510    . 

 

 
 
Example 56.  4 126,5 . This example illustrates 

Theorem 21 that  

   4 1126,10 126,5  . 
 

 
 

Example 57.  5 630,5 . This example illustrates 

Theorem 22 that  

     5 1 1630,5 63,5 126,5 .    
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Example 58.  5 5040,10 . This example illustrates Theorem 22 that      5 1 15040,10 1008,5 5040,10 .    

 

 
 
Example 59.  6 63,5 . This example illustrates Theo- 

rems 19 and 23 that  

     6 1 163,5 17, 29 34,29   . 

 

 
 
Example 60.  7 126,20 . This illustrates Theorems 

16 and 24 that  

     7 2 1126,20 126, 20 63, 20    .  
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Example 61. This is an example of “crush” to illustrate 
Theorem 42. 

 

 
 

  Apply 3  
 

 
 

  Apply 5  
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