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ABSTRACT 

A homological analogue of curve complex of a closed connected orientable surface is developed and studied. The dis-
tance in this complex is shown to be quite computable and an algorithm given (Theorem 3.5). As an application of this 
complex it is shown that for a closed orientable 3-manifold, and any of its Heegaard splittings, one can give an algo-
rithm to decide whether the manifold contains a 2-sided, non-separating, closed incompressible surface (Theorem 1.1). 
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1. Introduction 

Jaco and Oertel ([1]) gave an algorithm to decide if a 
3-manifold is a Haken manifold. Their algorithm is an 
offshoot of an algorithm given by Haken himself. Haken 
has developed in 1960’s ([2]) an algorithm to decide if a 
fundamental normal surface of a given presentation of a 
compact irreducible 3-manifold is injective. Any normal 
surface can be constructed from these fundamental nor- 
mal surfaces and if the input is a normal surface then by 
successive application of the above algorithm one can 
check if the normal surface is injective. But one does not 
know for how many normal surfaces (finite or infinite) 
this algorithm has to be run. Jaco and Oertel ([1]) pro-
duced a finite collection of constructible normal surfaces 
(test surfaces) only on which this algorithm has to be run. 
Results of similar flavour has been found by Jaco, Let-
scher, and Rubinstein [3] and many others.  

We, on the other hand, give here an algorithm whose 
input is any Heegaard splitting of the given manifold. We 
develop a homological version of curve complex, which 
we call “homology curve complex”.  

The term homology curve complex used in this paper 
is inspired by the term used in the set of open problems 
posed by Joan Birman in the arXiv preprint [4], page no. 
8, line 12, but is different from what she meant there. 
This term has also been used recently by Ingrid Irmer in 
his arXiv preprint [5] with a different meaning.  

We prove that for surfaces of genus greater than one, 
this complex is connected (3.3), hence a notion of dis-
tance between vertices, which we call “H-distance” can 
be defined. We give an algorithm which returns H-dis- 

tance of two given vertices, theorem (3.5). Using this 
complex we define an analogue of the Hempel distance 
of a Heegaard splitting of a 3-manifold. This distance is 
then used to decide if the manifold contains a closed, 
two-sided incompressible surface or not, a homological 
analogue of Johnson and Patel ([6], lemma 4), which also 
extends to genus 2 in our case. Finally an algorithm is 
given which takes as its input a Heegaard splitting of a 
given closed connected orientable 3-manifold and decides 
if this distance is zero or not in polynomial time.  

Every closed connected orientable 3-dimensional mani- 
fold M admits a Heegaard splitting, i.e., a decomposition 
into two orientable handlebodies V and V′ which meet 
along their boundary. This common boundary is called a 
Heegaard surface. Alternately, we may view M as ob- 
tained from the two handlebodies by identifying their 
boundaries under a homeomorphism f : ∂V → ∂V′. Hee- 
gaard splittings are a convenient way to define a 3- 
manifold, but a priori it is difficult to get structural in-
formation about the manifold from them. It is in this light 
the following result assumes importance. 

Theorem  

(Theorem 4.1) Given a closed, connected, orientable 3- 
manifold M and a Heegaard splitting gM V V  



 of 
genus g > 1, there is an algorithm, which runs in poly- 
nomial time, to decide whether M contains a nonsepa- 
rating, 2-sided, closed incompressible surface. 

In Section 2 we give a brief recollection of complex of 
curves and some related concepts. We introduce in Sec-
tion 3 an analogue of curve complex, “homology curve 
complex”, associated with the surface  and a notion 
of distance, “H-distance”, and prove several results de-
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scribing their properties including a result giving an al-
gorithm to compute the H-distance between a pair of ver- 
tices: see lemma (3.2), lemma (3.3), theorem (3.5), pro- 
position (3.6), proposition (3.7). Section 4 starts with the 
introduction of the notion of an analogue of the Hempel 
distance of a Heegaard splitting followed by a recollec-
tion of complete meridian systems and some results re-
lated to these. Finally, we complete the proof of theorem 
(1.1) giving an algorithm which takes as its input a Hee- 
gaard splitting of the given 3-manifold and decide in po- 
lynomial time if the manifold contains a nonseparating, 
2-sided, closed, incompressible surface. 

2. Preliminaries 

For standard 3-manifold terminologies, we refer the reader 
to Jaco [7]. The curve complex C( ) for a compact, con- 
nected, closed, orientable surface  is the abstract sim- 
plicial complex whose vertices are isotopy classes of 
essential, simple closed curves in  and whose sim- 
plices correspond to sets of distinct isotopy classes which 
are represented by pairwise disjoint circles (simple closed 
curves) in . If C( ) is connected we can define an 
integer valued distance d(x, y) between a pair of vertices 
x, y as the number of edges in the shortest edge path be-
tween them. Given a handlebody V and a homeomor-
phism f:  ∂V, the handlebody set (or a disk complex) 

 is the set of (isotopy classes of) circles in 













  that 
bound properly embedded essential discs in V. The genus 
g boundary set g  is the set of non-separating circles 
in  such that each bounds a properly embedded, 
2-sided, incompressible, genus g surface in V and the 
boundary set is the union 



  =∪g  0
g . The Hempel 

distance, denoted by d(V, V′), of the Heegaard splitting 
(V, V′; g ) as defined in Hempel [8] is given by d(V, V′) 
= inf{d(x, y): x is a vertex of , y is a vertex of   }. 

The boundary distance as defined in Johnson and Patel 
[6] is given by 

   ,d d     . 

3. Homology Curve Complex 

Let g  denote a closed, connected and oriented surface 
of genus g > 1. It is well-known that H1( g ; ) has the 
standard bilinear intersection form ,, which is sym-
plectic (i.e., x, x = 0, x  H1( g ; ) and the form 
establishes a self-duality on H1( g ; ) (i.e. an isomor-
phism H1( g ; ) →  H1(Hom g  ; ), )), see for 
example Johnson [9]. For x, y  H1( g ; ), the integer 
x, y is called the algebraic intersection number between 
x and y. A basis of H1( g ; )) (which is a free  - 
module of rank 2g) is called canonical or symplectic if it 
is of the form {a1, ···, ag, b1, ···, bg} with ai, aj = bi,bj 
= 0, and ai, bj = ij  (Kronecker delta), i, j  {1, 2, ···, 
g}. It is well-known that H1( g ; ) has the standard 

canonical basis (see Figure 1). 
A nontrivial element x  H1( g ; ) is said to be 

primitive (relative to the canonical basis) if its coordi-
nates are relatively prime.  

3.1. Definition 

We define the homology curve complex of the surface 

g , denoted by HC( g ), to be an abstract simplicial 
complex whose vertices are the primitive elements of 
H1( g ; ) and a collection {c1, ···, cm} of m distinct 
vertices form an (m − 1)-simplex if the algebraic inter- 
section numbers ci, cj = 0, i, j  {1, ···, m}. In the 
following, we shall represent a vertex of HC( g ) by its 
coordinates relative to the standard canonical (ordered) 
basis B. 

3.2. Lemma 

For g > 1, if x, y are distinct vertices of HC( g ), then 
there is a vertex z of HC(



g ) such that x, z = 0 = y, z. 
Proof. The standard intersection form , on H1( g ; ) 

induces a module homomorphism f: H1(


g  
  



; ) →  × 
 defined by t  (t, x, t, y). Since  is a PID, ker(f) 

and im(f) are free submodules of the free -modules 
H1( g ; ) and  ×  respectively and the sequence 
0 → ker(f) → H1(


g ; ) → im(f) → 0 is split-exact. So, 

H1(


g ; ) = ker(f)  im(f). Since di  (ker(f)) = 

  H1(
 m

dim g ; ) −  (im(f)) ≥ 2g − 2 ≥ 2, we get a 
nontrivial element z  H1(

 dim

g ; ) satisfying x, z = 0 = 
y, z and so by dividing each of the co-ordinates of z by 
their gcd, if necessary, we can always take z to be a 
primitive element.  

3.3. Lemma 

For g > 1, HC( g ) is an infinite dimensional, connected 
abstract simplicial complex and if the integer valued 
distance dH(x, y) between a pair of vertices x, y is the 
number of edges in the shortest edge path between them, 
then dH is explicitly given by  

 
0,  if ;

1,  if  and , 0;

2,  otherwise

=

.

,  H

x y

xd x y yy x


 








 

 

Proof. It is easy to see that m  , the set Am = {(1, 
x, 0, ···, 0)  2g: 1 ≤ x ≤ m, x  } of vertices of 
HC( g ) forms an (m − 1)-simplex in HC( g ). There-  
 

 

Figure 1. A representative of a canonical basis for H1(g; ). 
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HC( g ) is infinite dimensional. To see that HC( g ) is 
connected, let x, y be distinct vertices of HC( g ). 

If x, y = 0, then they can be joined by an edge by 
definition; otherwise by lemma (3.2), there is a vertex z 
such that x can be joined to z by an edge and then z can 
be joined to y by another edge.  

Notice that a circle α on g  is separating if and only 
if its homology class is zero. There is a characterization 
of the vertex set of HC( g ). 

3.4. Lemma 

(Meyerson [10]) A nontrivial element of H1( g ; ) can 
be represented by a non-separating circle on g  if and 
only if it is primitive relative to the standard canonical 
(ordered) basis of H1( g ; ). 

3.5. Theorem 

For g > 1, there is an explicit algorithm which takes as 
input g , a canonical ordered basis B = {a1, ···, ag, 
b1, ···, bg} for the homology H1( g ; ), a pair of verti-
ces α, β of HC( g ) and returns the distance between 
them. 

Proof. By part (f) of Theorem 1 in [11], there is an al-
gorithm to compute the algebraic intersection number  
α, β and also the co-ordinates of α and β relative to the 
basis B in polynomial time. If α = β then by lemma 3.3 
dH(α, β) = 0. If α  β by lemma 3.3 again, dH(α, β) = 1 if 
and only if the algebraic intersection number between α 
and β = 0. If neither of these hold, then by lemma 3.3 
again dH(α, β) = 2. 

3.6. Proposition 

With the same notations as above, every simplicial auto- 
morphism : HC( g ) → HC( g ) induces an isometry 
on the metric space (HC0( g ), dH), where HC0( g ) de- 
notes the set of vertices of HC( g ). 

Proof. Let x, y be vertices of HC( g ) with dH(x, y) = 
k, where k = 0, 1, or 2. For k = 0, 1, the result follows 
from the fact that a simplicial automorphism maps m- 
simplices to m-simplices and in particular if x  y and  
x, y = 0, thereby dH(x, y) = 1, then x, y form an edge. So, 
λ(x)  λ(y) will also form an edge, so λ(x), λ(y) = 0 
thereby dH(λ(x), λ(y)) = 1. If k = 2, i.e. if x, y  0, by 
lemma (3.2) there is a vertex z of HC( g ) such that   
x, z = 0 = y, z. So, λ(x), λ(z) = 0 = λ(y), λ(z). This 
gives, by triangle inequality, dH(λ(x), λ(y)) ≤ 2. However, 
dH(λ(x), λ(y)) < 2 implies that dH(λ(x), λ(y)) = 0 or 1. This 
implies that λ(x), λ(y) = 0 and so x, y = 0, which is a 
contradiction. So, dH(λ(x), λ(y)) = 2.  

3.7. Proposition 

Let k  {0, 1, 2}. For g > 1, the set {(x, y)  HC0( g ) × 

HC0( g )|dH(x, y) = k} is infinite. 
Proof. For k = 0, 1, the result follows from lemma 

(3.3). For k = 2, there are vertices a, b in the vertex set of 
HC( g ) with algebraic intersection number 1, which 
also have respective representative circles with geometric 
intersection number 1. Consider the positive Dehn twist 
Ta. Now, n  ,  a (b), b = b + na, ba, b =  
na, ba, b + b, b = n and so by definition,  

 nT

n
adH(T  (b), b) = 2, whenever n  0. This proves the result. 

4. Applications 

As an application of the concepts developed in the pre-
vious sections we shall present a complexity measure for 
Heegaard splitting using the homology curve complex 
and prove. 

4.1. Theorem 

(Theorem 1.1) Given a closed, connected, orientable 3- 
manifold M and a Heegaard splitting gM V V    of 
genus g > 1, there is an algorithm, which runs in polyno- 
mial time, to decide whether M contains a non-sepa-
rating, 2-sided, closed incompressible surface. 

Before giving the proof we need to introduce some 
more notations and definitions: 

4.2. Definition 

For a Heegaard splitting (V, V′; g ), let D (resp. D′) 
denote the set of vertices in HC( g ), each represented 
by a circle whose homology class is nontrivial in g , 
but trivial in V (resp. V′). Then, we define the H-distance, 
denoted by dH(V, V′), for the splitting (V, V′; g ) to be 
the inf{dH(x, y): x  D, y  D′}.  

As immediate consequence of lemma (3.3), we have 
the following. 

4.3. Lemma 

For (g > 1), the H-distance of the Heegaard splitting 

gM V V   takes only the finite values 0, 1 or 2. 

4.4. Remark 

For any Heegaard splitting gM V V    of genus 3 or 
greater, Johnson and Patel [6] showed, using complex of 
curves (different from homology curve complex), an 
analogous result that distance d( g ) is equal to 0, 1 or 
2. 

4.5. Definition 

A complete meridian system (or simply cms) for a han-
dlebody V is a set L = {D1, ···, Dg} of pairwise disjoint 
properly embedded discs on V such that the manifold 
obtained by cutting V open along L is a 3-ball. The 
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boundaries of the discs of a cms for V form a meridian 
system for the surface ∂V.  

Given a cms L = {D1, ···, Dg} for a handlebody V, let α 
be a simple arc on the boundary ∂V connecting ∂Di and 
∂Dj (i  j) with int (α) disjoint from L. Let N denote a 
regular neighbourhood of ∂Di ∪ ∂Dj ∪ α in g . Then, 
∂N has three components, one is a copy of ∂Di, one is a 
copy of ∂Dj and the other one is called a band sum of ∂Di 
and ∂Dj along α on ∂V which gives arise to a compress-
ing disc Dij in V (after slight pushing the interior of the 
disc inside V) with boundary ∂Dij being the band sum. 
Denote L′ = {D1, ···, Di−1, Dij, Di+1, ···, Dg}. We say that 
L′ is obtained from L by an elementary slide (and Dij is 
also called a disc slide). If a cms L′ on V is obtained from 
a cms L on V via a finite number of elementary slides and 
isotopies, we say that L and L′ are equivalent and denoted 
by L  L′. We also say that L slides to L′. The following 
fact about cmss of discs on a handlebody V is well- 
known (see for example [12]), which tells us how two 
cmss of discs for a handlebdy are related. 

4.6. Proposition 

Assume that L is a cms of discs for a handlebody V and L 
slides to L′, then L′ is also a cms of discs for V. Con-
versely, any two cmss of discs for V are equivalent. 

4.7. Remark 

It is well-known that if D is a non-separating properly 
embedded compressing disc for a genus g handlebody V, 
then {D} can be extended algorithmically to a cms of 
discs for V in g many steps. 

Proof of the theorem (4.1). We will begin with the 
following characterization of a closed connected orien- 
table 3-manifold which is an extension of Johnson-Patel 
([6], lemma 4) to the setting of homology curve complex. 

4.8. Theorem 

Let M be a closed connected orientable 3-manifold with 
a Heegaard splitting (V, V′; g ) of genus g > 1. Then 
for any pair of cmss L = {D1, ···, Dg}, L′ = { 1D , ···, gD } 
for the respective handlebodies V and V′, the following 
statements are equivalent: 

1) M contains a non-separating, two-sided, closed in-
compressible surface; 

2) H1(M) is infinite; 
3) The matrix A = (aij), where aij is the algebraic in-

tersection number of Di and jD , is singular; 
4) d( g



 

) = 0; 
5) dH(V, V′) = 0. 
Proof. 1  2 is a classical result (see Jaco [7], or 

Johnson-Patel [6]). 2   3   4 is due to Johnson- 
Patel ([6], lemma 4). By definition D is a quotient of 

, consisting of homology classes of elements of , 
so d( g ) = 0 implies dH(V, V′) = 0, or 4  5. Now 
we prove that 5  1. If dH(V, V′) = 0 then there exists x 
 D ∩ D′  HC(




g ). Pick two disjoint simple closed 
curves  and ′ on g , each of which represents x. Then, 
 and ′ bound two-sided, non-separating properly em-
bedded compact surfaces F  V and F′  V′ respectively. 
Since  and ′ are homologous in g , they cobound a 
compact subsurface S of g . The union F ∪ S ∪ F′ is 
a two-sided, non-separating closed surface embedded in 
M. By compressing repeatedly, if necessary, we eventu-
ally find a closed, non-separating, two-sided incompre- 
ssible surface in M. 

We are ready to complete the proof of theorem (4.1). 
Proof. (Completion of proof of theorem (4.1)) 
By theorem (4.8), existence of a non-separating, two- 

sided, closed incompressible surface in M is reduced to 
examining if dH(V, V′) = dH(D, D′) = d( g ) = 0, which 
in turn reduced to examining if the matrix A = (aij) is 
singular, where aij is the algebraic intersection number of 
Di and ∂Dj. One can compute the entries aij of the matrix 
A in polynomial time (see for example [11] theorem 1 (f)) 
and the non-singularity of a matrix can be determined in 
polynomial time (see for example section 2.3 of [13]). 
This completes the proof of the theorem (4.1).  

4.9. Problem 

It will be interesting to characterize those closed ori-
entable 3-manifolds which possess Heegaard splittings 
having H-distance 1 and/or 2. 
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