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Abstract 
 
This paper deals with the study of the composite Humbert matrix function with matrix arguments  ,A BJ z . 

The convergence and integral form this function is established. An operational relation between a Humbert 
matrix function and Kummer matrix function is studied. Also, integral expressions of this relation are de-
duced. Finally, we define and study of the composite Humbert Kummer matrix functions. 
 
Keywords: Hypergeometric Matrix function, Humbert Matrix Function, Kummer Matrix Function, Integral 

Representations 

1. Introduction 
 
Special matrix functions appear in the literature related 
to statistics [1-4] and more recently in connection with 
matrix analogues of Laguerre, Hermite and Legendre 
differential equations and the corresponding poly- 
nomial families [5-7]. The connection between the 
Humbert matrix function and modified Bessel matrix 
function has been established in [8,9]. In recent papers 
[10,11], we defined and studied the Humbert matrix 
functions. The Kummer’s confluent hypergeometric 
function belongs to an important class of special func- 
tions of the mathematical physics with a large number of 
applications in different branches of the quantum mecha- 
nics atomic physics, quantum theory, nuclear physics, 
quantum electronics, elasticity theory, acoustics, theory 
of oscillating strings, hydrodynamics, random walk theory, 
optics, wave theory, fiber optics, electromagnetic field 
theory, plasma physics, the theory of probability and the 
mathematical statistics, the pure and applied mathematics 
in [3,4,12-14]. Recently, an extension to the Kummer 
matrix function of complex variable is appeared in [15]. 
The first author has earlier studied the certain Kummer 
matrix function of two complex variables under certain 
differential and integral operators [16]. The primary goal 
of this paper is to consider a new system of matrix 
functions, namely the composite Humbert matrix func- 
tion, Humbert Kummer matrix function and composite 

Humbert Kummer matrix function. 
The paper is organized as follows: Section 2 is define 

and study of the composite Humbert matrix function. 
The convergence and integral form is established. In 
Section 3 an operational relation between a Humbert 
matrix function and Kummer matrix function is given. 
Integral expressions of Humbert Kummer matrix func- 
tions are deduced. In Section 4 we defined and studied of 
the composite Humbert Kummer matrix functions. 

Throughout this paper 0  will denote the complex 
plane. A matrix  is a positive stable matrix in 

D
P N NC   

if   > 0Re   for all  where  P   P  is the 
set of all eigenvalues of  and its two-norm denoted 
by  

P

2

0
2

= ,sup
x

Px
P

x
 

where for a vector  in y NC ,  
1

2
2

= Ty y y  is the 
Euclidean norm of . y

Let  P  and  P  be the real numbers which 
were defined in [17] by  

      
      

= max : ,

= min : .

P Re z z P

P Re z z P

 

 




         (1.1) 

If  f z  and  g z
z
 are holomorphic functions of 

the complex variable  which are defined in an open 
set   of the complex plane and  is a matrix in P
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N NC   such that , then from the properties of 
the matrix functional calculus [18], it follows that  

 P  

       = .f P g P g P f P           (1.2) 

Hence, if  in Q N NC 

=PQ QP

  

 is a matrix for which  
 and if , then   Q  

    = .f P g Q g Q f P            (1.3) 

The reciprocal Gamma function denoted by  

   
1 z

   

1
=

z
z

 is an entire function of the complex va-  

riable . Then the image of  acting on  
denoted by  is a well-defined matrix. Further- 
more, if  

 1 z P
 P

invertible fo

 
  1

P I P

P nI P

 

 



 = 1lim

1

is r all integer 0.P nI n      (1.4) 

 The Pochhammer symbol or shifted factorial defined 
[17] by  

    
  0

= 1

     ; 1; =

n
P P n I

n P I



  
    (1.5) 

Jódar and Cortés have proved in [17] that  

    1
! .P

n
P


  

n
P n


 

Q

n         (1.6) 

 Let  and  be two positive stable matrices in P
N NC  . The gamma matrix function  and the beta 

matrix function  have been defined in [19] as 
follows  

 P
 ,B P Q

 
0

= e

= exp

t PP t

t P

  





  1

0
, = P IQ t 

  
d ;

ln

I

P I

t

I



t

.

             (1.7) 

and  

 1 d
Q I

B P t t
           (1.8) 

The Schur decomposition of , was given by [18] in 
the form:  

P

1

2

; 0,
!

s

tP

P r t

t
s

 
  
  

1
( )

=0

e e
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2. Composite Humbert Matrix Function 
 
Let us introduce the following notation (see [20])  
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 (2.1) 

and  

 , , , ,1 1 2 2
= , , ,A B A B A B A Bs s

J J J J .  

Suppose that  

     1 1
,

3

0 2

=
3

                , ; , ; ; = 1, 2, ,
27

A Bi i
i

A B i i ii i

i i
i i

z
J z A I B I

z
F A I B I i s


       

 
 

      
 


 

(2.2) 
are s  Humbert matrix function with square complex 
matrices 1 2, , , sA A  A  and 1 2, , , sB B B  of the same 
order N. Construct the function  

     1 1
,

3

0 2

3
3

=0

3

                , ; , ;
27

             ,

A B
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A B kI
A B kI

k

z
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      (2.3) 

where  

       1 1

3 3

1 1
= .

3 !

k

A B kI A B kI

1A k I B k I
U

k

 

   

      
 

1.        (1.9) 

This function, will be called the composite Humbert 
matrix function of several complex variables  

1 2, , , sz z z . Now we prove that the matrix power series 
(2.3) convergence for all 3 0z  . Using the ratio test, we 
obtain  
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Note that if is large enough so that 1k   1 >k A , 
then by pertur ma, [13], we can write  bation lem

  
1

1 1
1 =

1 1

A
A k I I

k k


       

1
1 1

=
1 1 1

A
I

k k k A


       

     (2.4) 

hence  
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    (2.5) 

For positive numbers 

1

R

i  and positive integer , we 
can write  

k

= , = 1,2, 2 .i ik k si           (2.6) 

Substitute from

 

 (2.6) into (2.5) one gets  
3( 1)

3( 1)1
= limsup

A B k
A B k IU z   
  

3
( ) 3

I

A B kI
k A B kI

R U z  
  

 

Thus, the power series (2.3) is absolutely convergent 
for all 

= 0.

3 <z  .  
 

l Form he Composite Humbert Matrix  
unction 

ert 
ction, we use the following formulas (see [10, 

Integra  of t
F
To get an integral form for the composite Humb
matrix fun
12, p. 115, No. (5.10.5)]).  
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(2.8) 

From (2.7) and (2.8) into the series expression of the 
composite Humbert matrix function given in (2.3), it 
follows that  
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 (2.9) 
interchanging the order of the integral and summation,  
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thus,  
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where  

 1 2= , , , ,sr r r r  

 1 2= , , , st t t t  ,

  1 2= ,sr r r r    

  1 2= ,st t t t    

  1= ,sA I A I A I    

  1= sB I B I B I    

and  
33 33

1 2

1 1 2 2

= ...
27 27 27 27

s .
s s

zz zz

r t r t r t r t

 
   

 
 

Therefore, the following result has been established.  
Theorem 2.1 Let  be matrices in N NC  . 

on for several 
 and BA

Then the composit Humbert matrix functi
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complex variables 1 2, , , sz z z  

3. Humbert Kummer Matrix Fun

we will dedu
mbert ma

satisfies integral in (2.11).  
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Provided that 0.



 

( ) >B C   Where A , B  and 
are matrices in 
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simplicity, we can write the Humber Kummer matri
function in the form HKMF. 

We define the radius of regularity of the function 
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This means MF is an entire function.  
 
Integral Expressions of Humbert Kummer Matrix  
Function 
In this section, we provide integral expressions of HKMF. 
Suppose that )
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From relation (3.7) and (3.8), we get  
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Hence, for <z  , we can write  
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Summarizing, the following result has been esta- 
blished:  
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Another integral representation of HKMF can be 
established starting from the formula in (2.7), we find 
that  
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interchanging the order of the integral and summation,  
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Therefore, we obtain the following theorem:  

Theorem 3.2 Let   and  be matrices in B C

N NC   such that 1( ) <B C  . Then for < ,z   expre- 
.11) hold ssion (3 true.  A ,



A. SHEHATA  ET  AL. 320
 

 

mposite HKMF 
 
Let  

4. Co

 

     

 

1 1

3
1

1 3

, , ;

3

   ; , , ;
27

i i i i i

Ai
i

i i i i

i i
i i i i i i

M A B C z

z
I B C A I I B

z
I C F I B C A I I B I C

 



         
 

 
         ,

 

ar rt m

 

e composite Humbe Ku mer matrix functions with 
square complex matrices iA , iB  and C e same i  

< 1
of th

order N , provided that ( )i iB C  . 
ert KumConstruct the composite Humb mer matrix 

s of these functions for any mode of arrangement, 
  

function
we put

 

        

 

 

1 1 1

3

1 3

, , ;

 
3

 ; , , ;
27

27

A

M A B C z

z

3

1 3 ; , , ;

I B C A I I B I C

z
F I B C A I I B I C

I B

             
 

 
        

 



 

z
F I B C A I I C
 

        


where  

 
 

     
       
       

1 2

1 2

1 1
1

1 2
1 2

1 2
1 2

= , , , ,

= , , , ,

= ,

= ,

= ,

s

s

s sk k ks

sk k k ks

sk k k ks

B B B B

C C C C

I B C I B C I B C

I B I B I B I B

I C I C I C I C

     

   

   











 

and  

 1 2= , , , sM M M M  .

Then M  is the composite Humbert Kummer matrix 
Now we calculate the radius of convergence of 
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Then the composite Humbert Kummer matrix func- 
tions is an entire function. 
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