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Abstract 
Systems biology requires the development of algorithms that use omics data 
to infer interaction networks among biomolecules working within an organ-
ism. One major type of evolutionary algorithm, genetic programming (GP), is 
useful for its high heuristic ability as a search method for obtaining suitable 
solutions expressed as tree structures. However, because GP determines the 
values of parameters such as coefficients by random values, it is difficult to 
apply in the inference of state equations that describe oscillatory biochemical 
reaction systems with high nonlinearity. Accordingly, in this study, we pro-
pose a new GP procedure called “k-step GP” intended for inferring the state 
equations of oscillatory biochemical reaction systems. The k-step GP proce-
dure consists of two algorithms: 1) Parameter optimization using the mod-
ified Powell method—after genetic operations such as crossover and muta-
tion, the values of parameters such as coefficients are optimized by applying 
the modified Powell method with secondary convergence. 2) GP using di-
vided learning data—to improve the inference efficiency, imposes perturba-
tions through the addition of learning data at various intervals and adapta-
tions to these changes result in state equations with higher fitness. We are 
confident that k-step GP is an algorithm that is particularly well suited to in-
ferring state equations for oscillatory biochemical reaction systems and con-
tributes to solving inverse problems in systems biology. 
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1. Introduction 

In recent years, the development of experimental technologies has enabled re-
searchers to obtain various types of omics data. Consequently, functional ana-
lyses of complicated, large-scale metabolic pathways have been and will continue 
to be conducted more and more routinely. This trend is based on the conclusion 
that even when all of the individual biochemical reactions are analyzed, it is not 
always possible to predict the function of all the interaction networks among the 
biomolecules working as a complete system. We refer to this system as a “bio-
chemical reaction system”. Henceforth, systems biology [1] [2], which aims to 
understand biochemical reaction systems, will increasingly occupy an important 
position. 

One major aim of systems biology is to comprehensively analyze omics data 
and to elucidate biochemical reaction systems. Biochemical reaction systems can 
be expressed as state equations, most of which are represented by simultaneous 
differential equations of interrelated biomolecules. In conventional research, the 
structure of state equations have been fixed and only inferring of their parameter 
values has been performed [3]-[14]. But in the case where the structure of state 
equations is unknown because of uncertain information on the interaction net-
works among the biomolecules, it is necessary to infer the structure from only 
experimentally observed time-series data. In other words, state equations (i.e., 
both structures and parameter values) of biochemical reaction systems must be 
inferred from empirical results, a process which can be referred to as an inverse 
problem. To overcome this inverse problem encountered in systems biology, re-
searchers predict and scrutinize unknown biochemical reaction systems from 
experimentally observed time-series data under various conditions. Following 
this, they formulate the state equations that are expressed by using simultaneous 
ordinary differential equations based on the general mass action (GMA) law. 
This method requires a great deal of trial and error, empirical guesswork, and 
labor. Thus, it would be invaluable to establish a method to infer state equations 
for biochemical reaction systems using computational science. When inferring 
state equations capable of reproducing experimentally observed time-series data, 
multiple state equations may reproduce similar dynamic behaviors. Thus, these 
potential state equations should be narrowed down by biologically verifying 
their validity. To infer undiscovered biochemical reaction systems, it is therefore 
essential to develop an algorithm with high heuristic ability to obtain multiple 
likely state equations in a short time. Moreover, obtaining various state equa-
tions can also lead to the discovery of new biochemical reaction systems that 
have not yet been considered. 

Various solution methods of inverse problems in systems biology have been 
reported [3]-[22]. Notably, genetic programming (GP) [23] is an evolutionary 
algorithm that has high heuristic ability as a search method for obtaining suita-
ble solutions expressed as tree structures. GP is widely used in systems biology; 
for example, Miyahara and Kuboyama [24] reported the determination of glycan 
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motifs by using GP. GP can also be adapted to the inference of state equations 
expressed as tree structures. Importantly, it is unnecessary to fix the structure of 
the state equations in advance. In other words, GP requires information about 
neither the biomolecules that constitute various system components nor their 
reaction mechanisms. Consequently, GP can obtain various state equations that 
are able to reproduce experimentally observed time-series data [25]. In GP, since 
the values of parameters such as coefficients are set to random values, they do 
not necessarily take optimal values. On the other hand, biochemical reaction 
systems are highly nonlinear, and the values of these parameters exert strong in-
fluences on the dynamic behavior of these systems (i.e., the predicted time-series 
data). Thus, it is essential to develop an algorithm that can optimize the values of 
these parameters after inferring the structure of state equations using GP. Ando 
et al. [26], Sugimoto et al. [27] and Iba [28] reported a method for inferring the 
structures of state equations by using GP and optimizing the values of the para-
meters with the least squares method. However, the authors showed only exam-
ples in which monotonically increasing or monotonically decreasing biochemi-
cal reaction systems were inferred. Since highly stable biochemical reaction sys-
tems often show oscillatory dynamic behaviors, it is essential the development of 
an algorithm that can infer the state equations of oscillatory biochemical reac-
tion systems. 

Accordingly, in this study, we propose a new GP methodology, called “k-step 
GP”, for inferring state equations of oscillatory biochemical reaction systems. 
The k-step GP procedure consists of two algorithms: 1) Parameter optimization 
using the modified Powell method—after genetic operations such as crossover 
and mutation, the values of parameters such as coefficients are optimized by ap-
plying the modified Powell method with secondary convergence. 2) GP using 
divided learning data—to improve the inference efficiency, imposes perturba-
tions through the addition of learning data at various intervals and adaptations 
to these changes result in state equations with higher fitness. 

2. Proposed k-Step Genetic Programming Method 
2.1. Data Structure for Genetic Programming 

State equations describing biochemical reaction systems often use simultaneous 
ordinary differential equations based on GMA. State equations based on GMA 
can be written as 

1 1 1 1

d
,

d
ijk ijk

p qn n
g hi

ik j ik j
k j k j

X
X X

t
α β

= = = =

= −∑ ∏ ∑ ∏                 (1) 

where n is the number of the system components (i.e., biomolecules), iX  is the 
state variable for the system components, ikα  and ikβ  are reaction rate con-
stants, p and q are the numbers of generation and decomposition terms, respec-
tively, and ijkg  and ijkh  are the interaction coefficients. The state equations 
based on GMA can describe the biochemical reaction systems in detail, and 
these state equations can also be obtained by intuitive understanding. 
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Based on Equation (1), it is possible to infer state equations that can repro-
duce experimentally observed time-series data. Each individual in the GP algo-
rithm is a set of simultaneous ordinary differential equations that is equal in 
number to the number of state variables. The genotype of each individual is the 
set of simultaneous ordinary differential equations represented by the tree structure, 
and the phenotype of each individual is the time-series data calculated using 
these equations. We have defined the terminal and nonterminal symbols, re-
spectively, in the tree structure data for expressing Equation (1) as follows: 

{ }
{ }

1 2, , ,

, .
nT aX aX aX

F

=

= + ×



                      (2) 

Thus, all terminal symbols contain the coefficient a for expressing tree struc-
ture data based on Equation (1). Furthermore, nonterminal symbols need not 
contain a minus symbol because the coefficient a is contained in all terminal 
symbols and the optimum value of each coefficient a (including a negative value) 
is calculated using the modified Powell method [29]. 

After generating new individuals (i.e., offspring) by genetic operations such as 
crossover and mutation, the tree structure data are optimized by the following 
rules. 
 If a term naX  is added to the same term naX  (where both terms have the 

same n), then merge the two terms into one term (i.e., n n naX aX aX+ → ). 
 If a term naX  is multiplied by a term maX , then the value of coefficient a 

of the multiplied term is replaced with 1 (i.e., n m n maX aX aX X× → × ). 
For example, the tree structure data of the state equations shown in Equation 

(3) below are rendered in Figure 1. 

1
1 2 1

22
2 1 2

d
d

d
d

X aX X aX
t

X aX aX aX
t

 = +

 = + +


                     (3) 

2.2. Modified Powell Method 

After optimizing the tree structure data described in the previous section, the 
modified Powell method is applied to optimize (decide) the value of the coeffi-
cient of the term naX . The modified Powell method is well known to have an 
ultimate fast convergence among various direct search methods without the cal-
culation of the derivative of the objective function. 
 

 
Figure 1. Tree structure data for Equation (3). 

×

aX1

+

X2

aX1 ×

aX2

+

X2

+

aX1 aX2

https://doi.org/10.4236/am.2019.108045


T. Sekiguchi et al. 
 

 

DOI: 10.4236/am.2019.108045 631 Applied Mathematics 
 

2.3. Fitness 

For the purpose of evaluating each individual, we have calculated the average 
value of the relative error between the time-series data obtained by calculating 
state equations expressed for each individual and the experimentally observed 
time-series data using the equation 

( )
2

 , , exp , ,

1 1 1  , ,

,
L M N

cal i j t i j t

i j t exp i j t

X X
S LMN

X= = =

 −
=   

 
∑∑∑               (4) 

where L is the number of experimentally observed time-series data sets, M is the 
number of state variables describing system components, and N is the number of 
observation points for each experimentally observed time-series dataset. 

The fitness f of each individual is calculated using the equation 

1
1

f
S mδ

=
+ +

                           (5) 

where δ  is the penalty coefficient and m is the number of terms contained in 
each individual. The introduction of the penalty coefficient is based on the 
minimum description length (MDL) principle [30] [31], which is commonly 
used in GP. The MDL principle can also be used to evaluate the length of the 
description of the model itself. By including the penalty coefficient in the calcu-
lation of the fitness, the simpler state equations have higher fitness. The value of 
δ  needs to be determined according the number of state variables. In this study, 
we have empirically determined the value of δ . 

2.4. Genetic Programming Using Divided Learning Data 

GP is a type of algorithm that mimics the evolutionary process of biological sys-
tems. Environmental changes (i.e., perturbations) exert strong influences on the 
evolution of such biological systems. When a stable biological species A is per-
turbed, it adapts to the perturbation and becomes biological species A’, which 
has newly acquired functions. In this way, biological systems evolve through re-
peated adaptations to perturbations. In inferring state equations by GP, the 
learning data can be considered the environment to which adaptation occurs. In 
standard GP, all learning data are only given at the beginning, and subsequent 
changes in the data environment are not taken into consideration. In k-step GP, 
the learning data are divided and gradually change in accordance with the progress 
of the inference process. Accordingly, these changing data become the perturba-
tions to GP individuals, which then collectively adapt to the perturbations and 
evolve, thus leading to the inference of state equations that can reproduce the 
learning data. In k-step GP, individuals evolve into better individuals by repeat-
ing the changing learning data as perturbations and by adapting to them. Con-
sequently, k-step GP is expected to achieve improved inference efficiency. 

2.5. The k-Step GP Procedure 

The k-step GP procedure is shown below, and a flowchart of this procedure is 
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illustrated in Figure 2. 
1) Before processing, the learning data are divided. Length of learning dataset  

 

 
Figure 2. Flowchart of k-step GP. 
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1 starts from the initial values to the first dividing point; length of learning data-
set 2 is starts from the initial value to the second dividing point; that is, length of 
learning dataset k starts from the initial value to the k-th dividing point. Learn-
ing dataset k ultimately comprises all sections of the learning data. 

2) The state equations that reproduce learning dataset 1 are inferred using the 
genetic operations and modified Powell method, yielding a population of these 
state equations as population 1 (Step 1). The completion conditions for Step 1 
are as follows. 
 An individual with sufficiently high fitness (over 95%) is obtained (Success). 
 The average fitness of the whole population (all individuals) becomes 80% or 

more (Success). 
 The maximum number of generations is reached (Failure). 

3) Based on population 1, state equations are inferred that reproduce learning 
dataset 2 by using the genetic operations and modified Powell method, yielding a 
population of these state equations as population 2 (Step 2). The completion 
conditions for Step 2 are the same as those above in 2. 

4) In the same way, based on population k-1, state equations are inferred that 
reproduce learning dataset k by using the genetic operations and modified Pow-
ell method, yielding populations of these state equations as population k (Step 
k). The individual with the highest fitness in population k represents the inferred 
state equations. 

3. Experiments and Results 

We have examined the inference efficiency of k-step GP compared with standard 
GP. The comparison was conducted based on the inference of state equations 
expressing two- and three-variable oscillatory biochemical reaction systems. 
When there only one time-series dataset used as the learning data, there may be 
cases where a monotonically increase or a monotonically decrease has a high 
fitness against the oscillation with small amplitude. By initializing the GP with 
multiple time-series datasets with different initial values, such circumstances can 
be avoided, thus improving the inference efficiency. In contrast, when the num-
ber of time-series datasets is increased, the constraint conditions increase, ulti-
mately making it impossible to obtain a variety of state equations. Thus, we 
adopt the use of two time-series datasets in these experiments. Moreover, to in-
vestigate the influence of the number of partitions in k-step GP on inference ef-
ficiency, we examined k values of 1, 2, and 5 divisions. For 1k = , the learning 
data is undivided (i.e., parameter values are optimized by the modified Powell 
method only). We refer to this case as “GP + MP”. We conducted 100 trials with 
the standard GP and k-step GP procedures and scrutinized the state equations of 
the obtained oscillatory biochemical reaction systems and their associated 
time-series data. 

3.1. Two-Variable Oscillatory Biochemical Reaction System 

We used time-series data in which state variables 1X  and 2X  were obtained 
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by using Equation (6) to generate pseudo-experimentally observed time-series 
data for a two-variable oscillatory biochemical reaction system. This equation is 
known as the Lotka-Volterra model [32]. 

1
1 1 2

2
1 2 2

d
1.2 3.5

d
d

3.5 1.8
d

X X X X
t

X X X X
t

 = −

 = −


                     (6) 

Figure 3 shows the time-series data generated using Equation (6). In Figure 3, 
the initial values of the state variables 1X  and 2X  are given as follows: 1) 

( )1 0 0.3X = , ( )2 0 0.5X = ; 2) ( )1 0 0.5X = , ( )2 0 0.1X = . We inferred the state 
equations that can reproduce Figure 3 by using standard GP and k-step GP. The 
parameters related to GP are shown in Table 1. The learning data for standard 
GP and GP + MP are shown in Figure 3. For 2k = , the learning dataset is di-
vided into two sections at time 5t = , and from the initial value to time 5t =  is 
learning dataset 1, while that from the initial value to time 10t =  is learning 
dataset 2 (i.e., all learning data). Learning dataset 1 is shown in Figure 4, while 
learning dataset 2 is the same as the data shown in Figure 3. For 5k = , the 
learning dataset is divided into five sections according to times 2,4,6,8,10t = ; 
from the initial value to time 2t =  is learning dataset 1, from the initial value 
to time 4t =  is learning dataset 2, and so on, from the initial value to time 

10t =  is learning dataset 5 (i.e., all learning data). Learning datasets 1, 2, 3, and 
4 are shown in Figures 5-8, respectively, while learning dataset 5 is the same as 
the data shown in Figure 3. 
 

 
Figure 3. Time-series data for a two-variable oscillatory biochemical reaction system as 
calculated by Equation (6). 
 

 
Figure 4. Learning dataset 1 for 2k =  in k-step GP for a two-variable oscillatory bio-
chemical reaction system. 

(a) (b)

(a) (b)
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Table 1. Genetic operation parameters. 

Number of individuals 20 

Maximum generation 50 

Crossover rate 0.6 

Mutation rate 0.3 

δ  0.001 

 

 
Figure 5. Learning dataset 1 for 5k =  in k-step GP for a two-variable oscillatory bio-
chemical reaction system. 
 

 
Figure 6. Learning dataset 2 for 5k =  in k-step GP for a two-variable oscillatory bio-
chemical reaction system. 
 

 
Figure 7. Learning dataset 3 for 5k =  in k-step GP for a two-variable oscillatory bio-
chemical reaction system. 
 

We have been able to infer many oscillatory biochemical reaction systems by 
using k-step GP. The numbers of successfully obtained equations (out of 100 tri-
als) for the proposed oscillatory biochemical reaction systems are shown in Ta-
ble 2. The examples of state equations obtained as two-variable oscillatory bio-
chemical reaction systems are shown in Table 3; these equations differ from 
Equation (6).  

(a) (b)

(a) (b)

(a) (b)
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Figure 8. Learning dataset 4 for 5k =  in k-step GP for a two-variable oscillatory bio-
chemical reaction system. 
 
Table 2. Numbers of successfully obtained state equations for two-variable oscillatory 
biochemical reaction systems (out of 100 trials). 

Standard GP 0 

GP + MP ( 1k = ) 73 

k-step GP ( 2k = ) 69 

k-step GP ( 5k = ) 69 

 
Table 3. Examples of state equations for obtained two-variable oscillatory biochemical 
reaction systems. 

State equations Fitness 

2
1

1
1 2

22
1 1 2 2

d 2.41 3.23
d

d 1.49 5.76 3.00
d

X X X X
t

X X X X X
t

 = −

 = + −


 (7) 95.3% 

21
1 1 2 2

22
1 2 1 2

d 2.06 8.22 1.91
d

d 9.80 5.32
d

X X X X X
t

X X X X X
t

 = − +

 = −


 (8) 95.0% 

 
Figure 9 and Figure 10 show the time-series data for Equation (7) and Equa-

tion (8), respectively. As shown in Figure 9 and Figure 10, it was possible to 
obtain biochemical reaction systems that express steady-state oscillation. These 
results demonstrate that this approach may lead to the discovery of new bio-
chemical reaction systems that have not yet been considered. 

As shown in Table 2, while the standard GP had no success, the GP + MP ap-
proach had 73 successful results out of 100 trials. This demonstrates that the op-
timization of parameter values plays an important role in the inference of bio-
chemical reaction systems involving high nonlinearity.  

The average values of the elapsed time for the inference (i.e., computation 
time using a Xeon E5-1620V4 3.5 GHz CPU with 16 GB of memory) are shown 
in Table 4. The standard GP utilized less computation time, but failed to obtain 
solutions. To obtain solutions with standard GP, it is expected that many indi-
viduals must be prepared, which will require substantial computation time. In 
k-step GP, because the values of parameters such as coefficients are optimized by  

(a) (b)
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Figure 9. Time-series data for Equation (7). 

 

 
Figure 10. Time-series data for Equation (8). 

 
Table 4. Average values of elapsed computation time for inference (in sec per 100 trials 
using a Xeon E5-1620V4 3.5 GHz CPU with 16 GB of memory). 

Standard GP 131 

GP + MP ( 1k = ) 1764 

k-step GP ( 2k = ) 1823 

k-step GP ( 5k = ) 1833 

(a)

(b)

(a)

(b)
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the modified Powell method, there is no need to prepare a great number of indi-
viduals, which contributes to a reduction in the computation time. Although 
there was no obvious influence of increasing the number of learning datasets on 
the inference success rate, this is likely because the target biochemical reaction 
systems were considered on a relatively small scale. In the following section, we 
examine cases in which the scale of biochemical reaction systems to be inferred 
was increased. 

3.2. Three-Variable Oscillatory Biochemical Reaction System 

We used time-series data in which state variables 1X , 2X , and 3X  were obtained 
by using Equation (9) to generate pseudo-experimentally observed time-series da-
ta for a three-variable oscillatory biochemical reaction system. 

1
1 1 2 1 3

2
1 2 2 2 3

3
1 3 2 3 3

2.5 5.0 1.0

5.0 1.0 0.2

1.0 0.2 1.1

dX X X X X X
dt

dX X X X X X
dt

dX
X X X X X

dt

 = − −

 = − −



= + −


                (9) 

Figure 11 shows the time-series data based on calculations with Equation (9); 
the initial values of state variables 1X , 2X , and 3X  are as follows: 1) 

( )1 0 0.1X = , ( )2 0 0.2X = , ( )3 0 0.3X = ; 2) ( )1 0 0.5X = , ( )2 0 0.3X = , 
( )3 0 0.2X = . We have inferred state equations that can reproduce Figure 11 

using standard GP and k-step GP. The parameters related to GP are shown in 
Table 5. The learning data for standard GP and GP + MP are shown in Figure 11. 
For 2k = , the learning dataset is divided in the same way as the two-variable os-
cillatory biochemical reaction system. Figure 12 shows learning dataset 1, while 
Figure 11 shows all the data, which is equivalent to learning dataset 2. For 5k = , 
the learning dataset is divided in the same way as the dataset for the two-variable 
oscillatory biochemical reaction system. Figures 13-16 show learning datasets 1, 
2, 3, and 4, respectively, while Figure 11 shows all the data, which is the same as 
learning dataset 5. 

We have been able to obtain many oscillatory biochemical reaction systems 
using k-step GP. The numbers of successfully obtained equations (out of 100  
 

 
Figure 11. Time-series data based on the three-variable oscillatory biochemical reaction 
system calculated by Equation (9). 

(a) (b)
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Table 5. Genetic operations parameters. 

Number of individuals 30 

Maximum generation 100 

Crossover rate 0.6 

Mutation rate 0.3 

δ  0.0005 

 

 
Figure 12. Learning dataset 1 for 2k =  in k-step GP for a three-variable oscillatory bi-
ochemical reaction system. 
 

 
Figure 13. Learning dataset 1 for 5k =  in k-step GP for a three-variable oscillatory bi-
ochemical reaction system. 
 

 
Figure 14. Learning dataset 2 for 5k =  in k-step GP for a three-variable oscillatory bi-
ochemical reaction system. 
 
trials) for the proposed oscillatory biochemical reaction systems are shown in 
Table 6. The examples of state equations obtained as three-variable oscillatory 
biochemical reaction systems are shown in Table 7; these equations differ from 
Equation (9).  

Figure 17 and Figure 18 show the time-series data for Equation (10) and Eq-
uation (11), respectively. As shown in Figure 17 and Figure 18, it was possible  

(a) (b)

(a) (b)

(a) (b)
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Figure 15. Learning dataset 3 for 5k =  in k-step GP for a three-variable oscillatory bi-
ochemical reaction system. 
 

 
Figure 16. Learning dataset 4 for 5k =  in k-step GP for a three-variable oscillatory bi-
ochemical reaction system. 
 

 
Figure 17. Time-series data based on Equation (10). 

 
Table 6. Numbers of successfully obtained state equations for three-variable oscillatory 
biochemical reaction systems (out of 100 trials). 

Standard GP 0 

GP + MP ( 1k = ) 37 

k-step GP ( 2k = ) 54 

k-step GP ( 5k = ) 64 

(a) (b)

(a) (b)

(a)

(b)
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Table 7. Example state equations for obtained three-variable oscillatory biochemical 
reaction systems. 

State equations Fitness 

1
1 1 3

2
1 2

3
1 3 3

d 2.16 9.36
d

d 1.13 0.948
d

d 5.41 1.15
d

X X X X
t

X X X
t

X X X X
t

 = −

 = −



= −

 (10) 95.3% 

1
1 1 2

2
2 1 2

23
3 2

d 2.45 8.99
d

d 1.09 5.06
d

d 0.747 1.11
d

X X X X
t

X X X X
t

X X X
t

 = −

 = − +



= − +

 (11) 95.0% 

 

 
Figure 18. Time-series data based on Equation (11). 

 
to obtain biochemical reaction systems that express steady-state oscillation. 
These results demonstrate that this approach may lead to the discovery of new 
biochemical reaction systems that have not yet been considered. Table 6 shows 
that increasing the number of divisions of the learning data improves the infe-
rence success rate. The numbers of successfully obtained state equations in GP + 
MP is reduced compared with Table 2 (the two-variable oscillatory biochemical 
reaction system). This is considered the number of parameters to be optimized 
has increased. In k-step GP, individuals that have high fitness are gathered dur-
ing the early stage (Step 1), where the quantity of the learning data is relatively 
small, and that the individuals evolve while inheriting the characteristics. The  

(a)

(b)
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Table 8. Average values of elapsed computation time for inference (in sec per 100 trials 
using a Xeon E5-1620V4 3.5 GHz CPU with 16 GB of memory). 

Standard GP 385 

GP + MP ( 1k = ) 6407 

k-step GP ( 2k = ) 6886 

k-step GP ( 5k = ) 6720 

 

larger scale of the biochemical reaction system to be inferred, the division of 
learning data will have considered the more effective. 

The average values of elapsed time for inference are shown in Table 8 (i.e., 
computation time using a Xeon E5-1620V4 3.5 GHz CPU with 16 GB of memo-
ry). The two- and three-variable oscillatory biochemical reaction systems exhibit 
similar patterns in computation time. 

4. Conclusions 

In progress of systems biology, it is essential to develop an algorithm with high 
heuristic ability for efficiently inferring multiple likely state equations of oscilla-
tory biochemical reaction systems. In conventional research, fixed the structure 
of state equations, only the inference of included parameter values has been per-
formed. In this study, we obtained various structures of the state equations for 
two- and three-variable oscillatory biochemical reaction systems with high non-
linearity from only the experimentally observed time-series data by using k-step 
GP. In particular, we showed that parameter optimization is indispensable for 
inferring the state equations of oscillatory biochemical reaction systems with 
high nonlinearity. Moreover, in k-step GP, the learning data are divided and are 
gradually changed in accordance with the progress of the inference process. This 
change essentially becomes a series of perturbations to the individuals in the GP 
procedure. As evolution occurs, the tree structure data of individuals reproduce 
the learning data by adapting to the perturbations. Through repetition of these 
perturbations and adaptations, individuals are expected to yield offspring with 
progressively higher fitness, thus improving inference efficiency. 

In the inverse problem, since the correct solution is unknown, it is important 
to propose a variety of solutions, verify and scrutinize from there and narrow 
down the solution. Consequently, it is thought that this approach will ultimately 
lead to the discovery of new biochemical reaction systems that may not yet have 
been considered. The dynamic behavior of stable biochemical reaction systems can 
be described as monotonically increasing, monotonically decreasing, steady-state 
oscillation, or damped oscillation. We have shown that k-step GP can infer state 
equations for oscillatory biochemical reaction systems. Thus, k-step GP can be 
applied and contributed to solving the inverse problem of inferring state equa-
tions (i.e., both structures and parameter values) of biochemical reaction systems 
from systems biology data. We are confident that k-step GP is an algorithm that 
is particularly well suited to inferring state equations for oscillatory biochemical 
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reaction systems. 

5. Future Works 

One problem that remains to be overcome in k-step GP methodology is its high 
computation time requirements. In particular, the inference of the three-variable 
oscillatory biochemical reaction system required an average value of computa-
tion time of 6720 seconds when the division number was 5 (using a Xeon 
E5-1620V4 3.5 GHz CPU with 16 GB of memory). We are planning to parallelize 
k-step GP using GPGPU (General Purpose computing on Graphics Processing 
Units) which has been attracting attention in recent years and to improve its 
computation time. 
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