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Abstract 
We consider a real-valued function on a plane of the form  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, , , , cos 2 , sin 2

, cos 4 , sin 4
C S

C S

m x y A x y B x y B x y

C x y C x y

θ θ θ

θ θ

= + +

+ +
 that models ani-

sotropic acoustic slowness (reciprocal velocity) perturbations. This “slowness 
function” depends on Cartesian coordinates ( ),x y  and polar angle θ. The 

five anisotropic “component functions” ( ),A x y , ( ),CB x y , ( ),SB x y , 

( ),CC x y  and ( ),SC x y  are assumed to be real-valued Schwartz functions. 

The “travel time” function ( ),d u θ  models the travel time perturbations on 
an indefinitely long straight-line observation path, where the line is parame-
terized by perpendicular distance u from the origin and polar angle θ; it is the 
Radon transform of ( ), ,m x y θ . We show that: 1) an A can always be found 

with the same ( ),d u θ  as an arbitrary ( ),C SB B  and/or an arbitrary 

( ),C SC C ; 2) a ( ),C SB B  can always be found with the same ( ),d u θ  as an 

arbitrary A, and furthermore, infinite families of them exist; 3) a ( ),C SC C  

can always be found with the same ( ),d u θ  as an arbitrary A, and further-

more, infinite families of them exist; 4) a ( ),C SB B  can always be found with 

the same ( ),d u θ  as an arbitrary ( ),C SC C , and vice versa; and furthermore, 
infinite families of them exist; and 5) given an arbitrary isotropic reference 
slowness function ( )0 ,m x y , “null coefficients” ( ),C SB B  can be constructed 

for which ( ),d u θ  is identically zero (and similarly for ( ),C SC C ). We provide 
explicit methods of constructing each of these “equivalent functions”. 
 
Keywords 
Geotomography, Radon Transform, Acoustic Anisotropy, Non-Uniqueness, 
Null Space 

How to cite this paper: Menke, W. (2019) 
Construction of Equivalent Functions in 
Anisotropic Radon Tomography. Applied 
Mathematics, 10, 1-10. 
https://doi.org/10.4236/am.2019.101001 
 
Received: January 2, 2019 
Accepted: January 22, 2019 
Published: January 25, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2019.101001
http://www.scirp.org
http://www.scirp.org
https://doi.org/10.4236/am.2019.101001
http://creativecommons.org/licenses/by/4.0/


W. Menke 
 

 

DOI: 10.4236/am.2019.101001 2 Applied Mathematics 
 

1. Introduction 

This paper addresses the non-uniqueness of the two-dimensional inverse Radon 
transform, when the real-valued function ( ), ,m x y θ  being transformed is pre-
sumed to be anisotropic; that is, varying with polar angle θ as well as with posi-
tion ( ),x y . This is a common special case in geotomography, where ( ), ,m x y θ  
represents perturbations in anisotropic acoustic slowness (reciprocal velocity) on 
a plane in the Earth with respect to a homogeneous and isotropic background 
and where its Radon transform represents the corresponding travel time pertur-
bations on indefinitely long straight-line observation paths [1] [2] [3] [4] [5]. 

As we will discuss further below, the presence of weak anisotropy results in 
slowness with three modes of angular variation: isotropic, 2θ and 4θ (with polar 
angle θ), which are described by a total of five spatially-varying “component 
functions” [6] [7] [8]. Previously, a modal analysis was used to prove that insuf-
ficient information is contained in travel time measurements to uniquely deter-
mine all five component functions [9]. Also previously, analytic formula were 
derived for the spatially-distributed 2θ components equivalent to (in the sense of 
having the same travel time as) an impulsive isotropic component, and vice ver-
sa [10]. While these results indicate that every isotropic mode has a 2θ equiva-
lent, and vice versa, it does not provide a simple method for constructing equiv-
alent modes, and it leaves unresolved the issues regarding 4θ non-uniqueness. 
We address these issues here. 

2. Isotropic Travel Time Tomography with the Radon 
Transform 

Assuming straight line observation paths of indefinite length, the travel time 
perturbation ( ),d u θ  associated with an isotropic slowness perturbation 
( ),m x y  is computed via the Radon transform: 

( )
( )

( )
 

,

, , d
L u

d u m x y m
θ

θ = ≡∫                     (1) 

The line integral is taken over the straight line L with arc length  , paramete-
rized by its perpendicular distance u to the origin and the counter-clockwise an-
gle θ that the perpendicular makes with the x-axis. We limit our discussions here 
to two-dimensional functions drawn from Schwatz space [11] in which the 
Fourier transform is a linear isomorphism [12] [13]. This restriction is usually 
acceptable in geotomography, where slowness functions can be assumed to ra-
pidly decrease towards zero outside of a restricted area of interest. As usual, we 
will refer to the travel time ( )0,d u θ  with 0θ  held constant as a “projection”. 
The Projection Slice Theorem [14] shows that the one-dimensional Fourier 
transform u  of a projection, which takes u into uk , is the two-dimensional 
Fourier Transform of the slowness function, evaluated on a line of angle 0θ  in 
the wavenumber plane: 

( ) ( ) ( ) ( )( ) ( )0 0 0 0, , cos , sin with ,u u u u x y x yd k d u m k k m k k mθ θ θ θ= = ≡   (2) 
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Here the two-dimensional Fourier transform x y   takes ( ),x y  into 
( ),x yk k . Consequently, a Radon transform has no null space; that is, there is no 
non-zero isotopic slowness function ( ),m x y  for which 0m = . (As we shall 
show below, the same is not true for anisotropic slowness functions). 

Multiplying the Radon transform by a smooth real-valued function ( )F θ  of 
polar angle θ to yield ( ) ( ),F d rθ θ  only changes the overall scaling of a projec-
tion and, because of the Fourier Projection Theorem, corresponds to a fan filter 
in the ( ),x yk k  domain: 

( ) ( ) ( )  , with tanx y x ymF k k k kθ θ =               (3) 

A fan filter satisfying ( ) 1F θ ≤  does not increase the overall energy of the 
Fourier transform, so by Plancherel’s theorem [15] the energy in the ( ),x y
-domain function cannot increase. Furthermore, if ( ),x ym k k  is a Schwartz 
function, then so is ( ) ( )  ,x yF km kθ , implying that the fan filtered flowness 
function, say ( ) ( ) ( ){ }1 1, ,y x x ym x y F k kmθ− −≡   , exists. The fan filter must 
also obey the symmetry condition ( ) ( )πF Fθ θ= +  to ensure that ( ),m x y  
is real-valued. 

3. Anisotropic Travel Time Tomography with the Radon 
Transform 

The slowness function associated with weak anisotropy [6] [7] [8] [16]: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , cos 2 , sin 2

, cos 4 , sin 4
C S

C S

m x y A x y B x y B x y

C x y C x y

θ θ θ

θ θ

= + +

+ +
      (4) 

contains three “modes” of angular variation specified by a total of five spatial-
ly-varying “coefficient functions”. The coefficient function A specifies the iso-
tropic mode; the pair of coefficient functions ( ),C SB B  specify the 2θ mode and 
the pair of coefficient functions ( ),C SC C  specify the 4θ mode. The travel time 
is the Radon transform of this slowness function: 

( ) ( ) ( )
( ) ( )

, cos 2 sin 2

               cos 4 sin 4
C S

C S

d u A B B

C C

θ θ θ

θ θ

= + +      
+ +      

  

 
           (5) 

The trigonometric functions can be moved outside the Radon transforms, 
since they do not vary along the transform’s straight line integration path: 

( ) ( ) ( ) ( ) ( ), cos 2 sin 2 cos 4 sin 4C S C Sd u A B B C Cθ θ θ θ θ= + + + +     (6) 

Note that the term ( )cos 2 CBθ   implies fan filtering of ( ),C x yB k k  (and 
similarly for the other terms containing trigonometric functions). Because of 
their 2θ and 4θ dependence, these fan filters obey the symmetry conditions for 
Fourier transforms of real functions. 

4. Isotropic Mode Equivalent to an Anisotropic Mode 

Consider a case where only the isotropic component function ( ),A x y  is non-
zero, and another case where only the 2θ anisotropic component functions, 
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( ),cB x y  and ( ),sB x y , are nonzero. The two cases can be made to imply the 
same travel times with the choice: 

( ) ( )1 with cos 2 sin 2B B C SA d d B Bθ θ−= ≡ +           (7) 

Since Bd  is just the sum of fan-filtered versions of functions whose Radon 
transforms are presumed to exist, we are assured that its inverse Radon trans-
form exists, too. Hence, an A can always be found that is equivalent to an arbi-
trary ( ),C SB B  (in the sense of the two having the same travel time perturba-
tion). 

Similarly, for a case where only ( ),cC x y  and ( ),sC x y  are nonzero, the 
equivalent A is: 

( ) ( )1 with cos 4 sin 4C C C SA d d C Cθ θ−= ≡ +               (8) 

Hence, an A can always be found that mimics a set of ( ),C SC C . We demon-
strate Equation (7) by proposing a ( ),C SB B , computing the equivalent A, and 
noting that their Radom transforms are identical (Figure 1). 

5. Isotropic Mode Equivalent to an Anisotropic Mode 

First, note the identity: 

( ) ( ) ( ) ( ) ( )2 2, , cos 2 , sin 2A x y A x y A x yθ θ= +            (9) 

Now consider one case where only ( ),A x y  is nonzero: 

( ) ( ) ( ) ( ) ( )2 2, , , cos 2 , sin 2m x y A x y A x yθ θ θ= +          (10) 

and another case where only ( ),c sB B  and are nonzero: 

( ) ( ) ( ) ( ) ( ), , , cos 2 , sin 2C Sm x y B x y B x yθ θ θ= +           (11) 

By matching terms, two cases can be made to have the same travel time: 

( )
( ) ( )

2
1cos 2

or cos 2
cos 2C CB A B A

θ
θ

θ
− 

= =      
 

            (12) 

and 

( )
( ) ( )

2
1sin 2

or sin 2
sin 2S SB A B A

θ
θ

θ
− 

= =      
 

             (13) 

Note that this approach relies upon the zeros in the ( )2cos 2θ  and ( )2sin 2θ  
in the numerators cancelling the zeros ( )cos 2θ  and ( )sin 2θ  in the denomi-
nators, so that the fractions are finite. If we could find a pair of functions ( )2c θ  
and ( )2s θ  with the property ( ) ( )2 2 1c sθ θ+ =  and with zeros in the appro-
priate locations, we could write ( ) ( ) ( ) ( ) ( ), , 2 , 2A x y A x y c A x y sθ θ= + , and: 

( )
( )

( )
( )

1 12 2
and

cos 2 sin 2C S

c s
B A B A

θ θ
θ θ

− −   
= =      

   
            (14) 

would follow. Evidentially, many such pairs of function exist, including: 

( ) ( ) ( ) ( )2 22 cos 2 and 2 1 cos 2n nc sθ θ θ θ= = −           (15) 
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Figure 1. The A equivalent to an exemplary ( ),C SB B . ((a) and (b)) The exemplary 

( ),C SB B ; (c) The A equivalent to this ( ),C SB B , computed by direct application of Equa-

tion (7); (d) The travel times associated with ( ),C SB B ; (e) The travel times associated 

with A; (f) The travel time difference. The Radon transform is computed via quadrature 
along lines and the inverse Radon transform via a Fourier-domain method based on the 
Projection Slice Theorem. 

 
and 

( ) ( ) ( ) ( )2 22 1 sin 2 and 2 sin 2n nc sθ θ θ θ= − =          (16) 

with 1n ≥ . The ( )2s θ  function in Equation (15) has ( )2sin 2θ  as a factor, as 
can be demonstrated by writing the unity term as ( ) ( )2 2cos 2 sin 2

n
θ θ +  , ex-

panding it with the Binomial Theorem [17] and subtracting off the second term: 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2

2 2 2

0

2 2

1

2 2 12

1

2 cos 2 sin 2 cos 2

cos 2 sin 2 cos 2

cos 2 sin 2

sin 2 cos 2 sin 2

n n

n
n k k n

k

n
n k k

k

n
n k k

k

s

k
n

k
n

k
n

θ θ θ θ

θ θ θ

θ θ

θ θ θ

−

=

−

=

− −

=

= + −

 
= − 

 
 

=  
 

 
=  

 

∑

∑

∑

        (17) 

Similarly, the ( )2c θ  in Equation (16) has ( )2cos 2θ  as a factor. We con-
clude that a ( ),C SB B  can always be found that is equivalent to an arbitrary A, 
and furthermore, that infinite families of such pairs exist. By replacing 2θ with 
4θ in the above argument, we conclude that a ( ),C SC C  can always be found 
that is equivalent to an arbitrary A, and furthermore, that infinite families of 
such pairs exist. We demonstrate Equations (14) and (16) by proposing a 
( ),C SB B , computing the equivalent A, and showing that their Radon transforms 
are identical (Figure 2). 
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Figure 2. Two ( ),C SB B  pairs equivalent to the same exemplary A. (a) An exemplary A; 

((b) and (c)) One possible ( ),C SB B  with a travel time equivalent to A, computed ac-

cording to Equation (15) with 1n = ; (d) The same exemplary A as in (a); ((e) and (f)) 
Another possible ( ),C SB B  pair with a travel time equivalent to A, computed according 

to Equation (14) and (16) with n = 2. The equivalence of the travel times has been verified 
by numerical calculation (not shown). 

6. Two-Theta Mode Equivalent to a Four-Theta Mode, and 
Vice Versa 

We can find the ( ),C SC C  equivalent to a ( ),C SB B  by using the method of 
Section 4 to find the A equivalent to ( ),C SB B  and then using the method of 
Section 5 to find the ( ),C SC C  equivalent to that A. Similarly, we can find the 
( ),C SB B  equivalent to an ( ),C SC C  by using the method of Section 4 to find 
the A equivalent to ( ),C SC C  and then using the method of Section 5 to find the 
( ),C SB B  equivalent to that A. Recalling that the method of Section 5 is 
non-unique, we conclude that a ( ),C SB B  can always be found that mimics a 
( ),C SC C , and vice versa; and furthermore, infinite families of them exist. 

As an example, we find a ( ),C SC C  equivalent to an exemplary ( ),C SB B  
and a ( ),C SB B  equivalent to an exemplary ( ),C SC C  (Figure 3). 

7. Anisotropic Null Slowness Functions 

We have demonstrated in Section 5 that two slowness functions, say ( )1 , ,m x y θ  
and ( )2 , ,m x y θ , each with only a 2θ mode, can have the same travel time; that 
is 1 2m m=  . Because the Radom transform is a linear operator, the “null 
slowness function” 1 2

nullm m m= −  must have zero Radon transform; that is, 
0nullm =  [18]. (This finding does not violate the principle that no non-zero 

isotropic slowness function can have an identically zero Radon transform,  
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Figure 3. A ( ),C SB B  equivalent to a ( ),C SC C , and vice versa. ((a) and (b)) An exem-

plary ( ),C SB B ; ((c) and (d)) An exemplary ( ),C SC C ; ((e) (f)) A ( ),C SC C  equivalent 

to the exemplary ( ),C SB B ; ((g) (h)) A ( ),C SB B  equivalent to the exemplary ( ),C SC C . 

The equivalence of the travel times has been verified by numerical calculation (not 
shown). 

 
because the travel time perturbations of a 2θ image is the sum of two fan-filtered 
Radon transforms). The ( ),C SB B  of an exclusively 2θ null slowness function 
can be constructed from an isotropic reference slowness function ( )0 ,m x y  in 
the following way: 

( )( ) ( )( )1 1
0 0 0 0sin 2 and cos 2 withC SB d B d d mθ θ− −= = − =    (18) 

The travel time Bd  associated with this ( ),C SB B  is identically zero: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0 0

cos 2 sin 2 cos 2 sin 2

cos 2 sin 2 sin 2 cos 2 0
B C s C sd B B B B

d d

θ θ θ θ

θ θ θ θ

= + = +  
= − =

  
   (19) 

This argument can be extended to the 4θ mode simply by replacing 2θ with 4θ. 
Hence, given an isotropic reference slowness function ( )0 ,m x y , a 2θ null slow-
ness function, with coefficients ( ),C SB B , can be constructed for which the tra-
vel time perturbation is identically zero (and similarly for 4θ null slowness func-
tion). We demonstrate Equation (18) by building ( ),C SB B  and ( ),C SC C  that 
correspond to null slowness functions from an exemplary isotropic reference 
slowness function (Figure 4). 

8. Conclusions 

A weakly-anisotropic acoustic slowness function on a plane has three modes of 
angular variability: isotropic, 2θ with 4θ (where θ is polar angle) that are de-
scribed by a total of five spatially-varying coefficients. The Radon transform of 
the slowness determines travel time perturbations with respect to a homogene-
ous and isotropic background, observed in an idealized experiment with indefi-
nitely long straight line observation paths. In this paper, we show that an arbi-
trary travel time perturbation can be matched by a slowness function with  
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Figure 4. ( ),C SB B  and ( ),C SC C  corresponding to null slowness functions. (a) An 

exemplary isotropic reference function ( )0 ,m x y ; ((b) and (c)) A ( ),C SB B  built from 

the reference function with zero travel time using Equation (18); (d) Another exemplary 
isotropic reference slowness function ( )0 ,m x y ; ((e) and (f)) A ( ),C SC C  built from the 

reference function with zero travel time. The zero travel times have been verified by nu-
merical calculation (not shown). 

 
only one of any of the three mode of angular variability. Consequently, aniso-
tropic slowness functions cannot be uniquely determined from these travel times. 
Many slowness functions, equivalent in the sense of having the same travel times, 
exist and can be computed from one another by applying straightforward pro-
cedures. Furthermore, slowness functions with exclusively two-theta variability 
are non-unique; infinite families of equivalent coefficients exist. The same is true 
of exclusively four-theta slowness functions. Consequently, some exclusively 2θ 
and 4θ slowness functions have identically zero travel time and, consequentially, 
are inherently undetectable. 

In geotomography, non-uniqueness is usually handled through the addition of 
prior information that regularizes the problem by singling out one “best” slow-
ness function from among all slowness functions consistent with the travel time 
data [18] [19] [20]. The choice of regularizing constraint is informed both by 
knowledge of the physical system that is being imaged and nature of the 
non-uniqueness. Our results are relevant to the second issue. When the true 
slowness function is believed on prior grounds to contain compact equidimen-
sional heterogeneities, the equivalent slowness functions (now considered arti-
facts) tend to be more spatially-distributed and oscillatory, owing to the effect of 
the fan filtering. Smoothness regularization will tend to suppress these artifacts, 
as long as the smoothing response is not, itself, oscillatory. Thus, first-derivative 
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regularization is preferred over second-derivative regularization, because the 
latter has an oscillatory response [21]. Smallness regularization [22] of slowness 
functions believed to contain strong two-theta and four-theta modes should be 
avoided, because it will tend to roughen them by suppressing the contribution of 
null components that while not observable, contribute to the smoothness of the 
slowness function that is being imaged. 
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