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Abstract 
The aim of this paper is to derive a numerical scheme for Troesch’s problem 
and to overcome the difficulty which faces the existing numerical methods 
when considering the Troesch’s problem with large values of λ. A logarithmic 
finite difference method is derived for solving the Troesch’s problem. The 
method is very simple and works well for arbitrarily large values of the 
Troesch’s parameter. To test the proposed method, we have used a wide range 
of the Troesch’s parameter λ. A comparison with some existing methods is 
given. The numerical results show the robustness and the superiority of the 
proposed scheme over most of the existing numerical methods for the 
Troesch’s problem. 
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1. Introduction 

Troesch’s problem arises in the investigation of the confinement of plasma col-
umn by radiation pressure and is defined by 

( )sinhu uλ λ′′ =                         (1) 

subject to the boundary conditions 

( ) ( )0 0 and 1 1u u= =                      (2) 

The main difficulty associated with Troesch’s problem is the boundary layer 
near 1x = . Accordingly, many researchers try to solve this equation numerically, 
some of these methods are: Sinc-Collocation method [1], the modified homoto-
py perturbation technique [2], a smart nonstandard finite difference for second 
order nonlinear boundary value problem [3], the finite element method and 
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discontinuous Galerkin methods [4] [5], and the shifted Jacobi-Gauss colloca-
tion method [6]. A cubic spline collocation method is given in [7]. All of these 
methods provide a numerical solution of Troesch’s problem for moderate values 
of λ. Recently, an accurate asymptotic approximation of Troesch’s problem with 
large values up to 60λ =  is reported in [8]. For more details see [9] [10]. 

This paper is devoted to derive a logarithmic finite difference method as a new 
method to solve the Troesch’s problem for arbitrarily large parameter λ.  

The paper remaining of this paper is organized as follows. In Section 2, we de-
rive the numerical scheme as well as a fourth order finite difference scheme. Sec-
tion 3 is devoted for the numerical results and comparisons with some existing 
methods. Concluding remarks are given in Section 4. 

2. Numerical Method 

In order to derive the numerical method for solving Troesch’s, we present the 
following definition. 

Definition: The inverse sine hyperbolic function is defined by  

( )1 2sinh ln 1 ,x x x x− = + + ∈
                  

(3) 

and its derivative is defined by 

( )1

2

d 1sinh .
d 1

x
x x

− =
+                      

(4) 

By using the previous definition, the Troesch’s problem (1) can be written as 

( ) ( )( )211 1sinh ln 1 ,u u u uλ λ λ
λ λ

− ′′ ′′ ′′= = + +
            

(5) 

which is the main point in this paper. 
Using uniform mesh including ( )1n +  points 0 1 20 1nx x x x= < < < < = , 

such that , 0,1, ,ix ih i n= =  , where 1 21 ,h h
n
α λ−= = . We denote the exact and 

the numerical solutions respectively by ( )iu x  and iU  at the grid point ix . 
Now by using the second order central finite difference approximation for the 
second derivative 

( ) ( )1 12

1 2i i i iu x U U U
h + −′′ − +

                   
(6) 

into the Equation (5), this will lead us to the logarithmic finite difference method 

( ) ( ) 2
1 1 1 1ln 2 2 1 0,

1,2, , 1

i i i i i i iU U U U U U U

i n

α α λ+ − + −
  − + + − + + − =   
= −     

(7) 

subject to the boundary conditions 

0 0 and 1.nU U= =                        (8) 

The resulting system in (7) represents a nonlinear tridiagonal system in the 
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unknown solution { } 1

1

n
i i

U −

=
. The details of the logarithmic can be given displayed 

by the following algorithm. 
Algorithm 1. Logarithmic method  
1) For 1i =  using (7) and the boundary condition 0 0U = , we obtain 

( ) ( ) 2
2 1 2 1ln 2 2 1 0iU U U U Uα α λ  − + − + − =              

(9) 

2) For 2,3, , 2i n= −  we use  

( ) ( ) 2
1 1 1 1ln 2 2 1 0,

2, , 2

i i i i i i iU U U U U U U

i n

α α λ+ − + −
  − + + − + + − =   
= −    

(10) 

3) For 1i n= −  using (7) and the boundary condition 1nU =  to obtain  

( ) ( ) 2
1 2 1 2 1ln 1 2 1 2 1 0n n n n nU U U U Uα α λ− − − − −

  − + + − + + − =       
(11) 

Newton’s method is used to solve the nonlinear system which can be de-
scribed in the following way. 

Algorithm 2. Newton’s method  
1) For 0,1,2,s =  . 
2) Solve the tridiagonal linear system 

( )( )sJ =Z F U  

for the unknown vector Z using Crout’s method. The elements of the function 
( )i iF U  and the Jacobian matrix J are defined as follows 

( ) ( ) ( ) 2
1 1 1 1ln 2 2 1 0,

1, , 1

i i i i i i i i iF U U U U U U U U

i n

α α λ+ − + −
  = − + + − + + − =   

= −  

(12) 

and the Jacobian matrix has the tridiagonal structure 

1 1

2 2 2

2 2 2

1 1

i i i

n n n

n n

b c
a b c

J
a b c

a b c
a b

− − −

− −

 
 
 
 

=  
 
 
 
  

 

with elements defined by 

( ) 2
1 1

, 2,3, , 1
2 1

i

i i i

a i n
U U U

α

α + −

= = −
 − + + 

  

( ) 2
1 1

2 , 1, 2,3, , 1
2 1

i

i i i

b i n
U U U

α
λ

α + −

= − − = −
 − + + 

  

( ) 2
1 1

, 1, 2,3, , 2
2 1

i

i i i

c i n
U U U

α

α + −

= = −
 − + + 

  

https://doi.org/10.4236/am.2018.95039


M. S. Ismail, K. S. Al-Basyoni 
 

 

DOI: 10.4236/am.2018.95039 553 Applied Mathematics 
 

3) Update your solution by using  
( ) ( )1s s+ = −U U Z  

4) Repeat steps (1)-(3) till the following condition 
( ) ( )1s s+

∞
− ≤U U   

is satisfied. The constant   is assumed to be small.  
The initial guess vector is taken as the linear interpolation between the given 

boundary conditions, and has the following form 
( )0 , 1, 2, , 1i iU x ih i n= = = −  

The previous method is of second order accuracy and it works for wide range 
values of λ. 

A fourth order finite difference method can be used for solving the Troche’s 
method for limited values of λ. This method can be given as follows. 

By using the forth order approximation of the second derivative 

( )
2

2
,11

12

i iu x Uδ

δ
′′

+


                     

(13) 

where 2
1 12i i i iU U U Uδ − += − +  

Using this approximation and after some manipulation we will end with the 
following scheme 

( ) ( ) ( )1 1 1 12 sinh 10sinh sinh ,i i i i i iU U U U U Uω λ λ λ− + − + − + = + +      
(14) 

21for 1,2, , 1, where ,
12

i n w hλ= − =

              
(15) 

0 0 and 1nU U= =                       (16) 

The resulting method (14) is of fourth order accuracy. The numerical solution 
{ } 1

1

n
i i

U −

=
 in this case can be also obtained by solving the nonlinear tridiagonal 

system. Newton’s method is used to solve this system as we did before. 

3. Numerical Results 

To test the efficiency of the proposed method, we choose 0.0005h =  and 
1210−= , for the moderate values of 0.5,1,5,10λ = . Comparison with some ex-

isting methods is given in Tables 1-5. In Figure 1 we display the numerical so-
lution for 3,5,8,10λ = . The numerical results indicate that the proposed me-
thod is highly accurate comparing to the published works. 

For large values of λ, we choose 0.0001h = . In Table 6 and Table 7, we dis-
play the numerical solution for 100,150,200,300,1000λ = . To the knowledge of 
the authors no published work discussed these values of λ before. Again we test 
our method severely for 4 510 ,10λ =  and 106, the method won in this case as 
well and the results are given in Table 8, these results are given for the first time 
for such values of λ up to my knowledge. We display the numerical solution for 
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= 100,200,1000,10000λ  in Figures 2-5. 
Finally, we tested the fourth order method and make some comparison with 

the logarithmic method, we have noticed that, the results produced by this me-
thod are quite good for the small values of λ only, see Table 9, and the method is 
handicapped and fail for larger values of λ. 

 
Table 1. Troesch’s problem with λ = 0.5 and h = 0.0005. 

x Logarithmic method FDM [3] Homotopy [2] Doha [6] Exact 

0.1 0.0959443493 0.0959443492 0.0959395656 0.0959443493 0.0959443493 

0.2 0.1921287477 0.1921287476 0.1921193244 0.1921287477 0.1921287477 

0.3 0.2887944010 0.2887944007 0.2887806940 0.2887944009 0.2887944009 

0.4 0.3861848465 0.3861848462 0.3861675428 0.3861848464 0.3861848464 

0.5 0.4845471649 0.4845471645 0.4845274183 0.4845471647 0.4845471647 

0.6 0.5841332486 0.5841332482 0.5841127822 0.5841332484 0.5841332484 

0.7 0.6852011485 0.6852011481 0.6851822495 0.6852011483 0.6852011483 

0.8 0.7880165228 0.7880165225 0.7880018367 0.7880165227 0.7880165227 

0.9 0.8928542162 0.8928542161 0.8928462193 0.8928542161 0.8928542161 

 
Table 2. Troesch’s problem with λ = 1.0 and h = 0.0005. 

x Logarithmic method FDM [3] Homotopy [2] Doha [6] Exact 

0.1 0.0846612572 0.0846612556 0.0843817004 0.0846612566 0.0846612565 

0.2 0.1701713594 0.1701713565 0.1696207644 0.1701713585 0.1701713582 

0.3 0.2573939098 0.2573939059 0.2565929224 0.2573939084 0.2573939080 

0.4 0.3472228573 0.3472228528 0.3462107378 0.3472228556 0.3472228551 

0.5 0.4405998376 0.4405998333 0.4394422743 0.4405998361 0.4405998351 

0.6 0.5385344007 0.5385343971 0.5373300622 0.5385343987 0.5385343980 

0.7 0.6421286118 0.6421286094 0.6410104651 0.6421286100 0.6421286091 

0.8 0.7526080962 0.7526080954 0.7517335467 0.7526080957 0.7526080939 

0.9 0.8713625212 0.8713625215 0.8708835371 0.8713625206 0.8713625196 

 
Table 3. Troesch’s problem with λ = 5.0 and h = 0.0005. 

x Logarithmic method B-spline [7] Collocation[1] Doha [6] Fortran code [7] 

0.2 0.01075346 0.01002027 0.00762552 0.01078872 0.01075342 

0.4 0.03320065 0.03099793 0.03817903 0.03338672 0.03320051 

0.8 0.25821762 0.24170496 0.23252435 0.25956596 0.25821664 

0.9 0.45506203 0.42461830 0.44624551 0.45706638 0.45506034 
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Table 4. Troesch’s problem with λ = 10 and h = 0.0005. 

x Logarithmic method Temimi [8] Scott [10] 

0.1 0.0000421216 0.0000421119 0.0000421118 

0.2 0.0001299941 0.0001299641 0.0001299639 

0.3 0.0003592878 0.0003589784 0.0003589779 

0.4 0.0009781262 0.0009779027 0.0009779014 

0.5 0.0026596252 0.0026590204 0.0026590172 

0.6 0.0072305680 0.0072289310 0.0072289247 

0.7 0.0196685008 0.0196640631 0.0196640603 

0.8 0.0537425197 0.0537303294 0.0537303296 

0.9 0.1521512477 0.1521140764 0.1521140787 

 
Table 5. Troesch’s problem with λ = 60 and h = 0.0001. 

x Logarithmic method Temimi [8] 

0.1 0.0000000000 0.0000000000 

0.6 0.0000000000 0.0000000000 

0.8 0.0000004122 0.0000004096 

0.9 0.0001663062 0.0001652505 

0.95 0.0033431273 0.0033218844 

0.97 0.0111942916 0.0111219726 

0.98 0.0208631539 0.0207221628 

0.99 0.0414467260 0.0411119440 

1.0 1.0 1.0 

 

 
Figure 1. Numerical solution for λ = 3, 5, 8, 10. 
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Table 6. Numerical solution using the logarithmic method and h = 0.0001. 

λ = 100 λ = 150 λ = 200 

x Logarithmic method x Logarithmic method x Logarithmic method 

0.0 0.0000000000 0.0 0.0000000000 0.0 0.0000000000 

0.8 0.0000000000 0.8 0.0000000000 0.8 0.0000000000 

0.9 0.0000018373 0.9 0.0000000083 0.9 0.0000000000 

0.95 0.0002726798 0.95 0.0000150234 0.95 0.0000009314 

0.97 0.0020165050 0.98 0.0013534673 0.98 0.0003757441 

0.98 0.0055113791 0.995 0.0139850466 0.995 0.0079377249 

0.99 0.0156381379 0.998 0.0206481079 0.998 0.0168600022 

0.999 0.0623708204 0.999 0.0362793031 0.999 0.0243867532 

1.0 1.0 1.0 1.0 1.0 1.0 

 
Table 7. Numerical solution using the logarithmic method and h = 0.0001. 

λ = 300 λ = 1000 

x Logarithmic method x Logarithmic method 

0.0 0.0000000000 0.0 0.0000000000 

0.8 0.0000000000 0.98 0.0000000000 

0.9 0.0000000000 0.99 0.0000002099 

0.95 0.0000000042 0.995 0.0000310894 

0.97 0.0000017119 0.996 0.0000844853 

0.98 0.0000343798 0.997 0.0002297760 

0.99 0.0006910751 0.998 0.0006287443 

0.995 0.0031516136 0.995 0.0018073693 

1.0 1.0 1.0 1.0 

 
Table 8. Numerical solution using Logarithmic method for large values of λ and h = 
0.0001. 

λ x Logarithmic method 

104 0.9999 0.0009901753 

105 0.9999 0.0000760075 

106 0.9999 0.0000052983 

 
Table 9. Comparison of the proposed methods at λ = 0.9 with h = 0.0005. 

λ Fourth order method Logarithmic method 

0.5 0.8928542161 0.8928542162 

1.0 0.8713625198 0.8713625212 

5.0 0.4550600270 0.4550601074 

10.0 0.1521129902 0.1521512477 
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Figure 2. Numerical solution with λ = 100. 
 

 
Figure 3. Numerical solution with λ = 200. 
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Figure 4. Numerical solution with λ = 1000. 

 

 

Figure 5. Numerical solution with λ = 10,000. 
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4. Conclusion 

In this work, we have derived a logarithmic finite difference method to over-
come the difficulty in solving the Troesch’s problem for large values of λ. This 
progress is very important, since all existing methods were trying to obtain the 
numerical solution for Troesch’s problem for large values of λ. The logarithmic 
method which we have derived is able and succeeds to get the numerical solu-
tion of Troesch’s problem for 60.5,5,10, ,10λ =  . To recap things, a new loga-
rithmic finite difference method is derived and can provide the numerical solu-
tions for large values of λ. I think that, to the best of our knowledge, the method 
and some of the given results are published for the first time. 
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