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Abstract 

A novel general stability analysis scheme based on a non-Lyapunov frame-
work is explored. Several easy-to-check sufficient conditions for exponential 
p-stability are formulated in terms of -matrices. Stability analysis of applied 
second-order Itô equations with delay is provided as well. The linearization 
technique, in combination with the tests obtained in this paper, can be used 
for local stability analysis of a wide class of nonlinear stochastic differential 
equations. 
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1. Introduction 

Stochastic differential equations (SDE) of the second and higher order with or 
without time-varying delays, naturally appear in multiple applications, where 
deterministic models are perturbed by the white noise or its generalizations. A 
classical example is the Langevin equation (see e.g. [1]). Liénard-type 
second-order stochastic equations were examined in multiple papers (see, for 
example, [2] [3] [4] and [5]). In [4] explicit conditions for asymptotic stability of 
the second-order equation under additive white noise were obtained. In [6] 
boundedness and exponential stability conditions for second-order SDEs with a 
constant delay were examined. Other examples deal with the study of sensibility 
on stochastic perturbations of regenerative vibrations in milling process 
described by the second order linear differential equation with delays [7]; a 
planar inverted pendulum on a cart, operating under modelling uncertainties 
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and stochastic perturbations, modeled by the two-dimensional subsystem in [8]. 
Stochastic high-order models of processes related to abrasive waterjet milling 

or fluid energy milling (batch grinding) are well-known as well (see e.g. [9]). 
Stochastic high-order feedforward nonlinear system with time-varying delay was 
suggested to model many physical devices, such as the ball-beam with a friction 
term and the cart-pendulum system [10]. Large-scale stochastic high-order 
systems with time-varying delay are described by a series of interconnected 
subsystems in [3]. A hyperjerk system is a dynamical system governed by an 
n-th order ordinary differential equation with 3n >  describing the time 
evolution of a single scalar variable (see e.g. [11]), which can also be perturbed 
by a stochastic noise. 

Several definitions of stochastic Lyapunov stability are used in the literature, 
e.g. stability in probability, stability in the mean and almost sure stability, 
stability of the p-th mean (p-stability), and even more. For applications to real 
systems, stability properties that are close to deterministic stability (almost sure 
sample stability) are the most desired, while conditions for p-stability are 
technically easier to obtain. 

In this paper we study the global p-stability of the linear n-th order Itô delay 
equation 
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and its non-autonomous generalization 
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where ( )l t  are independent scalar Brownian motions defined on a 
probability space. 

Stability of stochastic first-order differential equations with delays, as well as 
systems of equations, has been extensively studied (see [2] [4] [5] [6] [12] [13], 
[14] [15] [16] and the references therein). The main tool for studying the global 
stability is the Lyapunov functional method and its stochastic modifications (see 
e.g. [2] and the references therein). While this method has been and remains the 
leading technique, numerous difficulties with the theory and applications to 
specific problems, even in the deterministic case, persist. It is, in particular, the 
case if one examines stability of high-order differential equations. Of course, one 
can always apply the Lyapunov method after reducing a high-order equation to a 
first-order system in the well-known way, and this technique does work in 
specific situations. Yet, this approach may also fail in many cases. That is why, 
very few papers in recent literature have examined stability of high-order 
stochastic differential equations with time-varying delays as such. 
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In the recent paper [17], a new, more flexible algorithm of reducing a 
high-order deterministic differential equation with delay to a first-order system 
was suggested. The approach goes back to the theory of -matrices. This idea is 
not new: absolute stability via -matrices was studied in the monograph [18], 
while in the more recent paper [19] this technique was applied to stability of 
neural networks. The efficiency of this method in connection with high-order 
deterministic equations was demonstrated in [17]. In this paper we claim that 
this approach is applicable to the SDE with delays as well, provided that the 
analysis based on -matrices is combined with the regularization method from 
[14]. The latter method differs from the classical Lyapunov technique, which 
presupposes the existence of suitable Lyapunov functionals. Rather, the method 
from [14] requires the existence of a suitable auxiliary equation which is used to 
regularize the original equation and subsequently to check solvability of a 
regularized equation in a carefully chosen space of stochastic processes. 

In conclusion, we stress that even if this paper studies stochastic linear 
equations, the various linearization criteria for a nonlinear stochastic differential 
equation (see e.g. [20] and the references therein) in combination with the tests 
obtained in this paper, can be used to examine the local stability of a nonlinear 
stochastic differential equations. 

2. Preliminaries 

Let ( )( )0, , ,t P
≥

Ω    be a stochastic basis, where Ω is set of elementary 
probability events,  is a σ-algebra of all events on Ω, ( ) 0t≥  is a right 
continuous family of σ-subalgebras of , P is a probability measure on ; all the 
above σ-algebras are assumed to be complete w.r.t. P, i.e. containing all subsets 
of zero measure; the symbol E stands below for the expectation related to the 
probability measure P. The expectation (the integral w.r.t. the measure P) is 
denoted by E. 

We will use the following notations: 
- .  is an arbitrary yet fixed norm in Rn, .  being the associated matrix 

norm. 
- µ  is the Lebesgue measure on [ )0,+∞ . 
- . X

 is the norm in a normed space X. 
- p is an arbitrary real number satisfying 1 p≤ < ∞ . 
- ( )1, , m   is the standard m-dimensional Brownian motion (i.e. the scalar 

Brownian motions l  are all independent). 
Recall that the classic Marcinkiewicz-Zygmund inequality 

( ) ( )1 21 22 2 ,
pp pp

i p iE X E Xρ≤∑ ∑                (3) 

where iX  are independent random variables with the zero mean, can be 
extended to the integral form 
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for any predictable stochastic process ( )f s  ( 0 s t≤ ≤ ), any 0t >  and any 
component ( )l s  (1 l m≤ ≤ ) of the Brownian motion . The inequality (4) is 
often used in this paper. In 1988 D.L. Burkholder proved (see for example [21], 
[22]) that in the Marcinkiewicz-Zygmund inequality (3) the constant 

2 1p pρ = −  is best possible for all for 1p ≥ . 
Equation (2) is assumed to be equipped with the initial conditions 

( ) ( ) ( )0 ,x t t tϕ= <                         (5) 

and 
( ) ( ) 10 , 0, , 1,j

jx b j n+= = −
                   (6) 

where 
1) , 0, , , 0, , 1jla l m j n= = −  , , 0, , , 1, ,jl lc l m j m= =   are Lebesgue 

measurable functions defined on [ )0,∞ ; in addition, we assume that 
( )0 0 0ˆ0 j j ja a t A< ≤ ≤  μ—almost everywhere for some positive constants 

0 0ˆ , , 0, , 1j ja A j n= − , ( )jl jla t A≤
 

μ—almost everywhere for some positive 
constants , 1, , , 0, , 1jlA l m j n= = −  , and ( )jl jlc t c≤  μ—almost everywhere 
for some positive constants , 0, , , 0, ,jl lc l m j m= =  . 

2) , 0, , , 1, ,jl lh l m j m= =   are Lebesgue measurable functions defined on 
[ )0,∞  and satisfying the estimates ( )0 jl jlt h t τ≤ − ≤  μ—almost everywhere 
for some positive constants jlτ , , ,l j m=  , 1, , lj m=  . 

3) φ is an 0 —measurable, scalar stochastic process defined on [ ),0σ− , 
where { }max , 0, , , 1, ,jl ll m j mσ τ= = = 

. 
4) ib  is an 0 —measurable random variable for 1, ,i n=  . 
We define a solution of the initial value problem (2), (5), (6) to be a 

predictable stochastic process ( ) ,x t t σ≥ − , which is ( )1n − —times 
differentiable on ( )0,∞  and which satisfies the initial conditions (5), (6) and 
the integral equation 
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  (7) 

where the integrals are understood in the Lebesgue and the Itô sense, 
respectively, and ( )( ) ( )( )jl jlx h s h sϕ=  if ( ) 0jlh s < . 

The initial value problem (2), (5), (6) has a unique (up to the natural 
P-equivalency) solution ( ), ,x t b ϕ  (see e.g. [14]). In other words, the stochastic 
process ( ), ,x t b ϕ  satisfies Equation (2) and the initial conditions 
( ) ( ), ,x t b tϕ ϕ=  ( 0t < ), ( ) ( ) 10, ,j

jx b bϕ +=  ( 0, , 1j n= − ). 
We will write ( )1: , , n

nb b b k= ∈ , where nk  denotes the linear space of all 
n—dimensional, 0 —measurable random values. In addition, we define the 
following normed space: 

( ){ }1
: , .n

p

ppn n
p kk k Eα α α α= ∈ ≡ < ∞                  (8) 
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Definition 1 [14] We say that Equation (2) is exponentially p-stable 
( 1 p≤ < ∞ ) if there are positive numbers ,K λ  such that all solutions 
( ), ,x t b ϕ  of the initial value problem (2), (5), (6) satisfy 

( )( ) { } ( )( ) ( )
1 1

0
, , exp esssup 0 .n
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p pp p

k
t

E x t b K t b E t tϕ λ ϕ
<

 ≤ − + ≥ 
 

   (9) 

The analysis of the exponential p-stability of Equation (2) will be performed 
via an equivalent first order system of Itô equations. The technique of reduction 
of a high-order linear differential equation to a system by the substitution 

( )
1

k
kx x +=  is quite common, and for system (2) it yields 
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and 

( ) ( ) ( )1 0 ,x t t tϕ= <                      (11) 

( )0 , 1, , ,j jx b j n= =                      (12) 

where the first component 1x  of the solution ( )1, , nx x  of initial value 
problem (10), (11), (12) coincides with the solution x of the initial value problem 
(2), (5), (6), so that the exponential p-stability of Equation (2) follows from the 
exponential p-stability of system (10); and the latter can be, at least in the theory, 
studied by the Lyapunov-Razumikhin method of the stability analysis of 
stochastic delay equations. This method is based on finding a suitable Lyapunov 
function satisfying special conditions (see e.g. [2]), which guarantee the stability 
properties in question. However, practical implementation of this technique 
seems to be difficult. 

Below we use the generalized reduction technique based on a set of positive 
parameters, which can be chosen arbitrarily. Adapting this set to the coefficients 
of the given stochastic equation considerably increases, and this will be shown in 
the paper, flexibility of the reduction method. In addition, we will combine this 
technique with the method of stability analysis based on positive invertible 
matrices [19] being, to our opinion, a more efficient alternative to the 
Lyapunov-Razumikhin algorithm, at least in the case of stochastic linear 
equations with delay. 

Let jq  ( 1, , 1j n= − ) be some positive numbers. Consider the following 
generalization of system (10): 
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where ( ) ( )
1

0 , , 0 1, ,1
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              (14) 

for i r i k n+ < + ≤ , and the other entries are obtained from Equation (2). 
System (13) is supposed to be equipped with the initial conditions (11), (12). 

Let us make some comments on this reduction technique. According to the 
paper [17], the solution of the deterministic counterpart of the initial value 
problems (13), (11), (12) (i.e. in the absence of all Brownian motions) gives the 
solution of the (deterministic) problem (2), (5), (6) if one puts ( ) ( )1x t x t= . 
Replacing the chain rule by Itô’s formula leads to the same conclusion for the 
stochastic initial value problem (2), (5), (6). In particular, the exponential 
p-stability of Equation (2) follows from the exponential stability of system (13) 
for any 1 p≤ < ∞ . 

Lemma 1 Let ( )g s  be a scalar function which is square integrable on 

[ )0,∞ , ( )f s  be a predictable stochastic process satisfying  

( )( )1 22

0
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pp
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≥
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Proof. Once we prove the inequality (15), the inequality (16) can be justified 
similarly. 
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3. Main Result 

An n n× -matrix ( ) , 1

n
ij i j
γ

=
Γ =  is called nonnegative if 0ijγ ≥ , , 1, ,i j n=  , 

and positive if 0ijγ > , , 1, ,i j n=  . 
Definition 2 A matrix ( ) , 1

n
ij i j
γ

=
Γ =  is called an -matrix if 0ijγ ≤  for 

, 1, ,i j n=  , i j≠  and one of the following conditions is satisfied: 
- Γ has a positive inverse matrix Γ−1; 
- the principal minors of the matrix Γ are positive. 

Now we define an n n× -matrix Γ which plays a crucial role in the theorem 
below. Let 
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0, ,l m=  . These numbers can be expressed via the constants 0ˆ ja , jlA  and 

jq  from assumption 1 in Section 2. Thus, the matrix Γ becomes 
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1 2 3 , 1

11 0 0 0

10 1 0 0

10 0 1 0 .

10 0 0 1
n

n n n n n nn

q

q

q

q

γ γ γ γ γ
−

−

 − 
 
 

− 
 
 
 −Γ =  
 
 
 
 − 
 
 
 







     





           (18) 

Theorem 1 Assume that 1 p≤ < ∞  and there exist positive numbers 
( ), 1, , 1jq j n= −  such that 0nq >  and 

11

1

1 0.
nn

nn nj
j r j rq

γ γ
−−

= =

+ >∑ ∏                        (19) 

Then system (13), and hence Equation (2), is exponentially 2p-stable. 
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Proof. First of all, we observe that the determinant of the matrix Γ is equal to 
the left-hand side of the equality (19), while the other principal minors are all 
equal to 1. Hence Γ is an -matrix. 

Now, system (13) with the conditions (11) can be rewritten as follows: 

( ) ( ) ( ) ( )
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       (20) 

where ( )ix t  is an unknown scalar predictable stochastic process on ( ),−∞ ∞  
such that ( ) 0ix t =  for 0t < , and ( )tϕ  a known scalar predictable stochastic 
process on ( ),−∞ ∞  such that ( ) ( )t tϕ ϕ=  for [ ),0t σ∈ −  and ( ) 0tϕ =  
outside the interval [ ),0σ− . 

Let ( ) ( ) ( )( )1 , , nx t x t x t= 
 be the solution of (20) satisfying the initial 

conditions (12). A straightforward calculation shows that ( )x t  coincides with 
the solution of the initial value problem (11), (12), (13) for 0t ≥  (but not 
necessarily for 0t < , of course). 

We choose a positive number { }1min , , nq qλ <   for all 1, ,i n=   and 
make the following substitution into system (20): ( ) { } ( )expx t t y tλ= − , where 

( ) ( ) ( )( )1 , , ny t y t y t= 
 is an unknown predictable stochastic process defined 

on ( ),−∞ ∞ . By the definition, ( ) 0iy t =  for 0t <  and 1 i n≤ ≤ , thus 
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( ) ( ) ( ) ( ) ( )

( ) { } ( ){ } ( )( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) { } ( ){ } ( )( ) ( )( )( )

0

1

0
10 0

0 0 1 0 0
1

1

1
1 10

1
1

exp d exp d

exp exp d

exp d

exp exp d
l

t t t n

n n j j
js

m

j j j j
j

t t m n

n jl jn l
l js

m

jl jl jl jl l
j

y t s s b g s y s

c s s h s y h s h s s

a t y s g s y s

c s s h s y h s h s

µ µ ζ ζ

λ λ ϕ

µ ζ ζ

λ λ ϕ

−

=

=

−

−
= =

=

    
= − + −   

   


+ − + 


  
+ − − +  

  


+ − + 


∑∫ ∫ ∫

∑

∑ ∑∫ ∫

∑  ( ) ( )0 .s t ≥

(22) 

Denote ( )( )1 22

0
ˆ sup

pp
i i

t
y E y t

≥
= , and ( )( )1 22

0
ˆ esssup

pp

t
E tϕ ϕ

≥
=  

From the first ( )1n −  equations in (22) we obtain 

1
2 1

1ˆ ˆ , 1, , 1.
pi i ik

i

y b y i n
q λ +≤ + = −
−

                (23) 

The estimate (4) and the last equation in (22) yield 

{ }( ) ( )

( ) ( ) ( ) { }( )

( )

0

1
2

1

0 0 0 1
0=1 =1 0

1

11
=1 =1 =1

1 2

0 0

ˆˆ ˆ ˆexp sup exp d d

ˆˆ ˆ ˆexp

sup exp 2 d d .

p

l

t tmn

n n j j j jk
tj j s

mm n

p n jl j jl jln l
l j j

t t

t s

y b G y c y s

A y G s y s c y

s

λτ ϕ µ ζ ζ

ρ λτ ϕ

µ ζ ζ

−

≥

−

−

≥

   
≤ + + + −  

   
 

+ + + + 
 

  
× −     

∑ ∑ ∫ ∫

∑ ∑ ∑

∫ ∫

(24) 

Since 

( )

( ) ( ) ( )

0 0

0 0

1

( 1)0
1

sup exp d d

sup exp d d

1

ˆ

t t

t s

t t

t s

n

n j
j

s

s s s

a q

µ ζ ζ

µ ζ ζ µ µ

λ

≥

≥

−

−
=

 
− 
 

  
= −  

   

≤
− −

∫ ∫

∫ ∫

∑

             (25) 

and 

( )

( ) ( ) ( )( )

( )

1 2

0 0

1 2

0 0

1

1 0
=1

sup exp 2 d d

sup exp 2 d 2 2 d

1 ,

ˆ2

t t

t s

t t

t s

n

jn
j

s

s s s

a q

µ ζ ζ

µ ζ ζ µ µ

λ

≥

≥

−

−

  
−     

   
= −        

≤
 

− − 
 

∫ ∫

∫ ∫

∑

         (26) 

the inequality (24) yields 
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{ }

( )

( ) ( ) ( ) { }

( )

( )

0

1
2

1

0 0 0 1
1 1

1

1 0
1

1

11
1 1 1

1

1 0
1

ˆ ˆexp
ˆ

ˆ

ˆ ˆ ˆexp
ˆ,

ˆ2

p

l

mn

j j j j
j j

n n nk

jn
j

mm n

p n jl j jl jln l
l j j

n

jn
j

G y c y
y b

a q

A y G s y s c y
M

a q

λτ

λ

ρ λτ
λ ϕ

λ

−

= =
−

−
=

−

−
= = =

−

−
=

+
≤ +

− −

 
+ + 

 + +
 

− − 
 

∑ ∑

∑

∑ ∑ ∑

∑

 (27) 

where 

( )
{ }

( )

{ }

( )

0

0 0
1 1 1

1
1

1 0
1 01

1

exp exp
: .

ˆ ˆ2

lm mm

j j p jl jl
j l j

n
n

jn jnj
j

c c
M

a q a q

λτ ρ λτ
λ

λ λ

= = =
−

−
−

−=
=

= +
 − − − − 
 

∑ ∑∑

∑ ∑
         (28) 

Denote ( )1ˆ ˆ ˆ, , ny y y=   and define the n n× --matrix ( ) ( )( ) , 1

n
ij i j

λ γ λ
=

Γ =  by 
putting  

- ( ) ( ) ( ) ( )1
11, 1, , 1ii i i

i

i n
q

γ λ γ λ
λ+= = = −
−

 , 

- ( ) ( )0 1, , 1, 1, , , 1ij i n j n i j j iγ λ = = − = ≠ − ≠  , 

- ( )
{ } { }0

110 0 0
1 11

1

expexp

2

lmm m

p l jl jlj j
l jj

n
n n

G cG c

q q

ρ λτλτ
γ λ

λ λ
= ==

 
++  

 = − −
− −

∑ ∑∑
, 

- ( ) ( )0 1 2, , 1
2

m

p jl
j l

nj
n n

GG
j n

q q

ρ
γ λ

λ λ
== − − = −

− −

∑
 , 

- ( )
( )1

11 .
2

m

p n l
l

nn
n

A

q

ρ
γ λ

λ

−
== −

−

∑
 

Then from (27) we obtain the componentwise vector inequality  

( ) ( )( )2
ˆˆ ,n

pn ky b M vλ λ ϕΓ ≤ +                  (29) 

where ( )T1, ,1v = 
 is an n-dimentional column vector. 

Since ( )0Γ = Γ  is an -matrix, ( )λΓ  is also an -matrix for small λ. 
Therefore there exists a number 0λ λ=  such that the matrix ( )0λΓ  is positive 
invertible. The inequality (29) justifies  

( )2
ˆˆ ,n

pn ky K b ϕ≤ +                     (30) 

where ( ) ( ){ }1
0 0max 1,K v Mλ λ−= Γ . 

Recall 

( ) { } ( ) ( )( ) ( )( )1 2 1 22 2

0 0
ˆˆexp , sup , esssup .

p pp p

t t
x t t y t E y t y E tλ ϕ ϕ

≥ ≥
= − ≤ = (31) 
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Based on the inequality (30), we conclude that the solution ( )x t  of the 
initial value problem (13), (11), (12) satisfies 

( )( ) { } ( )( ) ( )
2

1 2 1 22 2

0
exp esssup 0 ,n

p

p pp p

k
t

E x t K t b E t tλ ϕ
≥

 ≤ − + ≥ 
 

  (32) 

where 0λ λ= , ( ) ( ){ }1
0 0max 1,K v Mλ λ−= Γ . Therefore system (13) is 

exponentially 2p-stable. Theorem 1 is proven. 

4. Some Corollaries 

In this section we consider a second order equation (a particular case of 
Equation (10) if n = 2) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )

0

10 0 0
1

0
1 1

d d

d 0 ,
l

m

j j
j

mm

l jl jl l
l j

x t a t x t c t x h t t

a t x t c t x h t t t

=

= =

 
′ ′= − + 

 
 

′+ − + ≥ 
 

∑

∑ ∑ 

     (33) 

that we transform into 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

0

1 1 1 2

2 10 1 2 10 1 0 1 0
1

1 2 1 1 1
1 1

0 ,

d d

d 0 ,
l

m

j j
j

mm

l l jl jl l
l j

x t q x t x t t

x t a t q x t g t x t c t x h t t

a t x t g t x t c t x h t t t

=

= =

′ = − + ≥

 
= − − + + 
 

 
+ − + + ≥ 

 

∑

∑ ∑ 

(34) 

where q1 is some positive number and ( ) ( )( )10 1 1 10g t q q a t= − , 
( ) ( ) ( )1 1 1 0l l lg t q a t a t= − −  for 1, ,l m=  . 

The matrix Γ is now defined as 

1

21 22

11
,q

γ γ

 − Γ =  
 
 

                          (35) 

where 

- 11 12
1

11,
q

γ γ= = − , 

- 
( )

0

110 0
1 11

21
22

lmm m

p l jlj
l jj

n

G s cG c

q q

ρ
γ = ==

 
++  

 = − −
∑ ∑∑

, 

- 
1

1
22

2

1
2

m

p l
l

A

q

ρ
γ == −

∑
 

and ( )10 10 0a t a≥ > , 2 10 1q a q= − , ( )1 1
0

= supl l
t

G g t
≥

 for all 0, ,l m=  . 
Corollary 1 Assume that 1 p≤ < ∞  and there exists a positive number 

1 10q a<  such that 1 22 21 0q γ γ− > . Then system (33) is exponentially 2p-stable. 
Proof. The statement follows from Theorem 1 and the observation that the 
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determinant of the matrix Γ is equal to 1
22 1 21 0qγ γ−− > . 

To demonstrate the efficiency of Corollary 1, let us consider the following 
particular case of Equation (33): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d 0 ,x t ax t bx t cx t t x t ex t t tτ δ′ ′ ′= − − + − + − − ≥         (36) 

where  is the standard scalar Brownian motion, , , , , ,a b c eδ τ  are positive real 
numbers. Then a straightforward application of Corollory 1 yields. 

Corollary 2 Assume that 1 p≤ < ∞  and there exists a positive number 

1q a<  such that 

( )
( )

( ) ( )
( )

1 1

1 11 1

11 0.
2 2
p pe eq a q b c

q a qa q a q

ρ δ ρ δ + +− + +
 − − + >

− − − 
       (37) 

Then Equation (36) is exponentially 2p-stable. 

5. Conclusions and Outlook 

We studied Lyapunov stability of high-order linear stochastic Itô equations with 
delay using a non-Lyapunov approach, which combines the method described in 
the review paper [14] with the reduction technique based on the so-called 
-matrices (see e.g. [17]). This gave us an opportunity to find several efficient 
stability conditions in terms of the coefficients of the equations. 

Solution of the following problems will complement the results of the present 
paper: 

-Find explicit stability conditions for the 3rd and higher order stochastic delay 
equations in terms of their coefficients. 

-Find sufficient conditions for the stability of the linear hybrid SDE with delay 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )

01
1

0 0 0
0 1

1

1 0 1

d d

d 0 ,
l

mn
n j

j j j
j j

mm n
j

jl jl jl l
l j j

x t a r t x t c r t x h t t

a r t x t c r t x h t t t

−
−

= =

−

= = =

 
= − + 
 

 
+ − + ≥ 

 

∑ ∑

∑ ∑ ∑ 

(38) 

where ( )r t  is a Markov chain with its state space S, which is independent of 
the Brownian motions ( )lB t  and which represents random switchings between 
different delay equations. 

-Generalize the suggested framework to the case of high-order SDEs driven by 
an arbitrary semimartingale, rather than by the Brownian motion. 

-For the van der Pol-type SDE delayed equation under perturbations of white 
noise 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1d d d d   ,n nx t ax t x t b x t cx t t n Nτ +′ + + − = ∈       (39) 

examine stability by using the linearization criteria introduced in [23] [24] in 
combination with the tests obtained in this paper. 
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