A Generalized Wallis Formula

Javad Namazi
Fairleigh Dickinson University, Madison, NJ, USA
Email: namazi@fdu.edu

How to cite this paper: Namazi, J. (2018)
A Generalized Wallis Formula. Applied Mathematics, 9, 207-209.
https://doi.org/10.4236/am.2018.93015
Received: February 7, 2018
Accepted: March 19, 2018
Published: March 22, 2018

Copyright © 2018 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

One of Wallis formulas is

$$
\int_{0}^{2 \pi} \sin ^{2 k} \theta \mathrm{~d} \theta=\int_{0}^{2 \pi} \cos ^{2 k} \theta \mathrm{~d} \theta=\frac{(2 k)!2 \pi}{2^{2 k}(k!)^{2}}
$$

for $k \geq 0$. This formula can be proved by various methods [1] [2] [3] [4] including a repeated application of a reduction formula such as
$\int_{0}^{2 \pi} \sin ^{k} \theta \mathrm{~d} \theta=\frac{k-1}{k} \int_{0}^{2 \pi} \sin ^{k-2} \theta \mathrm{~d} \theta$. Note that $\sin \theta$ and $\cos \theta$ are coordinates of a point on the unit sphere in R^{2}. Since the above formula involves an integration over the unit circle in R^{2}, its extension to higher dimensions is of interest.
For each $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in R^{n}$, let $|x|=\left(\sum x_{i}^{2}\right)^{1 / 2}$ be its Euclidean norm. We call $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$, where $\alpha_{i} \geq 0$ are non-negative integers, a multi-index, and $|\alpha|=\sum\left|\alpha_{i}\right|$ its degree. Set $\alpha!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!$ and $x^{\alpha}=x_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$. Let $S^{n-1}=\left\{\xi \in R^{n}:|\xi|=1\right\}$ be the unit sphere in R^{n} and $\mathrm{d} \sigma$ be its surface measure. Let $B_{r}(a)=\left\{x \in R^{n}:|x-a| \leq r\right\}$ stand for the ball of radius r centered at a. The gamma function is defined as $\Gamma(s)=\int_{0}^{\infty} \mathrm{e}^{-t} t^{s-1} \mathrm{~d} t$, for $s>0$. The generalized Wallis's formula is a special case of the following theorem.

Theorem 1 (i) $\int_{S^{n-1}} \xi^{\alpha} \mathrm{d} \sigma=0$, if any α_{i} is odd. In particular, the integral equals zero if $|\alpha|$ is odd.

$$
\text { (ii) } \int_{S^{n-1}} \xi^{2 \alpha} \mathrm{~d} \sigma=\frac{(2 \alpha)!2 \pi^{n / 2}}{2^{2|\alpha|} \alpha!\Gamma(n / 2+|\alpha|)},|\alpha| \geq 0
$$

Setting $\alpha_{i}=k$ and $\alpha_{j}=0$ for $j \neq i$ in the theorem, the generalized Wallis's formula follows

$$
\int_{S^{n-1}} \xi_{i}^{2 k} \mathrm{~d} \sigma=\frac{(2 k)!2 \pi^{n / 2}}{2^{2 k} k!\Gamma(n / 2+k)}, k \geq 0 .
$$

Note that for $|\alpha|=0$, (ii) is equivalent to the well-known formula

$$
\begin{equation*}
\omega_{n-1}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \tag{1}
\end{equation*}
$$

where ω_{n-1} is the surface area of the unit sphere in R^{n}. Theorem 1 is interesting in its own right and has further applications. For example, for a polynomial $p(x)=\sum_{|\alpha| \leq m} b_{\alpha} x^{\alpha}$ of degree m, one may express $\int_{B_{r}(0)} p(x) \mathrm{d} x$ as a simple polynomial of degree $n+m$ in r. In the following we use polar coordinates $x=\rho \xi, \rho=|x|, \xi \in S^{n-1}$.

$$
\begin{aligned}
\int_{B_{r}(0)} p(x) \mathrm{d} x & =\sum_{|\alpha| \leq m} b_{\alpha} \int_{B_{r}(0)} x^{\alpha} \mathrm{d} x=\sum_{|\alpha| \leq m} b_{\alpha} \int_{0}^{r} \rho^{|\alpha|+n-1} \mathrm{~d} \rho \int_{S^{n-1}} \xi^{\alpha} \mathrm{d} \sigma \\
& =\sum_{2|\alpha| \leq m} \frac{b_{2 \alpha} r^{2|\alpha|+n}}{2|\alpha|+n} \int_{S^{n-1}} \xi^{2 \alpha} \mathrm{~d} \sigma=\sum_{|\alpha| \leq[m / 2]} \frac{b_{2 \alpha} d_{\alpha}}{2|\alpha|+n} r^{2 k+n} \\
& =\sum_{k=0}^{[m / 2]}\left(\sum_{|\alpha|=k} \frac{b_{2 \alpha} d_{\alpha}}{2 k+n}\right) r^{2 k+n}=\sum_{k=0}^{[m / 2]} c_{k} r^{2 k+n} .
\end{aligned}
$$

Here $d_{\alpha}=\int_{S^{n-1}} \xi^{2 \alpha} \mathrm{~d} \sigma$ as given by (ii), and [.] is the bracket function.
Proof of Theorem 1. (i) The proof is by induction on $|\alpha|$.
If $|\alpha|=1$ then $\xi=\xi_{i}$ for some i. Therefore, $\int_{S^{n-1}} \xi^{\alpha} \mathrm{d} \sigma=\int_{S^{n-1}} \xi_{i} \mathrm{~d} \sigma=0$ by the symmetry of the sphere.

Assume now the assertion is true for $|\alpha| \leq m$ for some $m \geq 1$. Let $|\alpha|=m+1$ and assume, without loss of generality, that α_{1} is odd. Applying the divergence theorem results in

$$
\begin{align*}
\int_{S^{n-1}} \xi^{\alpha} \mathrm{d} \sigma & =\int_{S^{n-1}} \xi_{1}\left(\xi_{1}^{\alpha_{1}-1} \xi_{2}^{\alpha_{2}} \cdots \xi_{n}^{\alpha_{n}}\right) \mathrm{d} \sigma \\
& =\int_{B_{1}(0)} \frac{\partial}{\partial x_{1}}\left(x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}\right) \mathrm{d} x . \tag{2}
\end{align*}
$$

If $\alpha_{1}=1$, the last integral in (2) is zero. Otherwise, a conversion to polar coordinates in (2), yields,

$$
\begin{aligned}
\int_{S^{n-1}} \xi^{\alpha} \mathrm{d} \sigma & =\left(\alpha_{1}-1\right) \int_{B_{1}(0)} x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \mathrm{~d} x \\
& =\left(\alpha_{1}-1\right) \int_{0}^{1} \rho^{m+n-2} \mathrm{~d} \rho \int_{S^{n-1}} \xi^{\beta} \mathrm{d} \sigma=\frac{\alpha_{1}-1}{m+n-1} \int_{S^{n-1}} \xi^{\beta} \mathrm{d} \sigma,
\end{aligned}
$$

where $\beta=\left(\alpha_{1}-2, \alpha_{2}, \cdots, \alpha_{n}\right)$. The last integral is now zero, by the induction
hypothesis.
ii) The proof is by induction on $|\alpha|$.

For $|\alpha|=0$, we must establish (1). Let $e_{n}=\int_{R^{n}} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x$. Writing e_{n} as a product of integrals and using polar coordinates in R^{2} followed by a change of variables, one obtains

$$
\begin{aligned}
e_{n} & =\prod_{i=1}^{n} \int_{R} \mathrm{e}^{-\pi x_{i}^{2}} \mathrm{~d} x_{i}=\left(e_{1}\right)^{n}=\left(e_{2}\right)^{n / 2} \\
& =\left(\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{\infty} r \mathrm{e}^{-\pi r^{2}} \mathrm{~d} r\right)^{n / 2}=\left(\int_{0}^{\infty} \mathrm{e}^{-u} \mathrm{~d} u\right)^{n / 2}=1
\end{aligned}
$$

We used a change of variable $u=\pi r^{2}$ in the previous integral. Converting to polar coordinates for R^{n} results in

$$
\begin{aligned}
1 & =e_{n}=\int_{R^{n}} \mathrm{e}^{-\pi|x|^{2}} \mathrm{~d} x=\omega_{n-1} \int_{0}^{\infty} r^{n-1} \mathrm{e}^{-\pi r^{2}} \mathrm{~d} r \\
& =\frac{\omega_{n-1}}{2 \pi^{n / 2}} \int_{0}^{\infty} u^{n / 2-1} \mathrm{e}^{-u} \mathrm{~d} u=\frac{\Gamma(n / 2)}{2 \pi^{n / 2}} \omega_{n-1} .
\end{aligned}
$$

Identity (1) follows immediately from the last equation.
Now suppose the claim is true for $|\alpha|=m$. Let $|\alpha|=m+1$. We may assume, without loss of generality, that $\alpha_{1} \geq 1$. Applying the divergence theorem followed by a conversion to polar coordinates leads to

$$
\begin{aligned}
\int_{S^{n-1}} \xi^{2 \alpha} \mathrm{~d} \sigma & =\int_{S^{n-1}} \xi_{1}\left(\xi_{1}^{2 \alpha_{1}-1} \xi_{2}^{2 \alpha_{2}} \cdots \xi_{n}^{2 \alpha_{n}}\right) \mathrm{d} \sigma=\int_{B_{1}(0)} \frac{\partial}{\partial x_{1}}\left(x_{1}^{2 \alpha_{1}-1} x_{2}^{2 \alpha_{2}} \cdots x_{n}^{2 \alpha_{n}}\right) \mathrm{d} x \\
& =\left(2 \alpha_{1}-1\right) \int_{B_{1}(0)} x_{1}^{2 \alpha_{1}-2} x_{2}^{2 \alpha_{2}} \cdots x_{n}^{2 \alpha_{n}} \mathrm{~d} x=\frac{2 \alpha_{1}-1}{n+2 m} \int_{S^{n-1}} \xi^{2 \beta} \mathrm{~d} \sigma
\end{aligned}
$$

where $\beta=\left(\alpha_{1}-1, \alpha_{2}, \cdots, \alpha_{n}\right)$. Since $|\beta|=m$, and using the fact that $\Gamma(s+1)=s \Gamma(s)$ along with the induction hypothesis, we get

$$
\int_{S^{n-1}} \xi^{2 \alpha} \mathrm{~d} \sigma=\frac{2 \alpha_{1}-1}{n+2 m} \cdot \frac{(2 \beta)!2 \pi^{n / 2}}{2^{2|\beta|} \beta!\Gamma(n / 2+m)}=\frac{(2 \alpha)!2 \pi^{n / 2}}{2^{2|\alpha|} \alpha!\Gamma(n / 2+|\alpha|)} .
$$

References

[1] Muller, C. (1966) Spherical Harmonics. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/BFb0094775
[2] Macrobert, T.M. (1948) Spherical Harmonics: An Elementary Treatise on Harmonic Functions with Applications. Dover Publications, New York.
[3] Stein, E. and Weiss, G. (1971) Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton.
[4] Jeffrey, H. and Jeffrey, B. (1999) Methods of Mathematical Physics. 3rd Edition, Cambridge University Press, Cambridge.

