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Abstract 

This article generalizes the famous Wallis’s formula  
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θ θ θ θ= =∫ ∫  for 0k ≥ , to an integral over the 

unit sphere 1nS − . An application to the integral of polynomials over 1nS −  is 
discussed. 
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One of Wallis formulas is 
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for 0k ≥ . This formula can be proved by various methods [1] [2] [3] [4] 
including a repeated application of a reduction formula such as  
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1sin d sin dk kk
k

θ θ θ θ−−
=∫ ∫ . Note that sinθ  and cosθ  are coordinates  

of a point on the unit sphere in R2. Since the above formula involves an 
integration over the unit circle in R2, its extension to higher dimensions is of 
interest. 

For each ( )1 2, , , n
nx x x x R= ∈ , let ( )1 22

ix x= ∑  be its Euclidean norm. 
We call ( )1 2, , , nα α α α=  , where 0iα ≥  are non-negative integers, a 
multi-index, and iα α= ∑  its degree. Set 1 2! ! ! !nα α α α=   and 

1 2
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n
nx x x xαα αα =  . Let { }1 : 1n nS Rξ ξ− = ∈ =  be the unit sphere in Rn and dσ  

be its surface measure. Let ( ) { }:n
rB a x R x a r= ∈ − ≤  stand for the ball of 

radius r centered at a. The gamma function is defined as ( ) 1
0

e dt ss t t
∞ − −Γ = ∫ , for 

0s > . The generalized Wallis’s formula is a special case of the following 
theorem.  
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Theorem 1 (i) 1 d 0nS
αξ σ− =∫ , if any iα  is odd. In particular, the integral 

equals zero if α  is odd. 
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Setting i kα =  and 0jα =  for j i≠  in the theorem, the generalized 
Wallis’s formula follows 
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Note that for 0α = , (ii) is equivalent to the well-known formula 
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where 1nω −  is the surface area of the unit sphere in Rn. Theorem 1 is interesting 
in its own right and has further applications. For example, for a polynomial  
( ) mp x b xααα ≤

= ∑  of degree m, one may express 
( ) ( )
0

d
rB

p x x∫  as a simple  

polynomial of degree n m+  in r. In the following we use polar coordinates 
1, , nx x Sρξ ρ ξ −= = ∈ . 
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Here 1
2 dnS

d α
α ξ σ−= ∫  as given by (ii), and [.] is the bracket function. 

Proof of Theorem 1. (i) The proof is by induction on α . 
If 1α =  then iξ ξ=  for some i. Therefore, 1 1d d 0n n iS S

αξ σ ξ σ− −= =∫ ∫  by 
the symmetry of the sphere. 

Assume now the assertion is true for mα ≤  for some 1m ≥ . Let 
1mα = +  and assume, without loss of generality, that 1α  is odd. Applying the 

divergence theorem results in 
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If 1 1α = , the last integral in (2) is zero. Otherwise, a conversion to polar 
coordinates in (2), yields, 
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where ( )1 22, , , nβ α α α= −  . The last integral is now zero, by the induction 
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hypothesis. 
ii) The proof is by induction on α . 
For 0α = , we must establish (1). Let 

2πe dn
x

n R
e x−= ∫ . Writing ne  as a 

product of integrals and using polar coordinates in R2 followed by a change of 
variables, one obtains 
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We used a change of variable 2πu r=  in the previous integral. Converting to 
polar coordinates for Rn results in 
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Identity (1) follows immediately from the last equation. 
Now suppose the claim is true for mα = . Let 1mα = + . We may assume, 

without loss of generality, that 1 1α ≥ . Applying the divergence theorem 
followed by a conversion to polar coordinates leads to 
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where ( )1 21, , , nβ α α α= −  . Since mβ = , and using the fact that 
( ) ( )1s s sΓ + = Γ  along with the induction hypothesis, we get 
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