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Abstract 
In this work we study two types of Discrete Hill’s equation. The first comes 
from the discretization process of a Continuous-time Hill’s equation, we 
called Discretized Hill’s equation. The Second is a naturally obtained in 
Discrete-Time and will be called Discrete-time Hill’s equation. The objective 
of discretization is preserving the continuous-time behavior and we show this 
property. On the contrary a completely different dynamic property was found 
for the Discrete-Time Hill’s equation. At the end of the paper is shown that 
both types share the nonoscillatory behavior of solutions in the 0-th Arnold 
Tongue. 
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1. Introduction 

Hill equation ( )( ) ( ) 0z p t z tα β+ + =  where ( ) ( )p t T p t+ =  was introduced 
in 1877 by George W. Hill on his work on the part of the motion of the lunar 
perigee [1], this model equation arises in many areas of applied mathematics 
where the stability of periodic motions is an issue. The Floquet theory gives us a 
factorization of the solution of linear systems with periodic coefficients [2] [3] 
even more gives us tools to determine the stability of the system in terms of the 
Monodromy matrix, i.e. the stability of the system is given in terms of the state 
transition matrix evaluated after one period T. 

In 1912 Hamel found that as far as β  is sufficiently small there is an 0α  
such that for 0α α≤  all the solutions of the Hill equation are nonoscillatory 
and oscillatory if 0α α>  [4] [5]. 

In late 1940s until 1960s, two Russian scientists Krein and Yakubovich, 
established the foundation of linear Hamiltonian with periodic coefficients [6] 
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and [7]. Other important contributions were made by Gelfand-Lidskii [8], 
Starzhinskii [9], Bolotin [10], Atkinson [11], Eastham [12] and first of all 
Lyapunov [13], more recent works on Hill’s equation and Arnold Tongues can 
be found on [14] [15] [16], however this results are mostly for continuous time 
case, results on the discrete time case are frequently found in solid-state physics 
topics [17] [18] [19]. 

Through the Arnold tongues, we compare both types of equations: Discretized 
and Discrete Hill’s equations. We will plot for the first time the Arnold tongues 
for the Discrete Hill’s equation and give a formula of where the Arnold tongues 
touches the 0β =  axis. We will also proof the discrete version of the 
nonoscillatory criteria for discrete Hill’s equation. 

This paper is organized as follows: the first section is an introduction and 
historical overview, in Section 2 we give the preliminary necessary for this work 
as well as the characterization of the continuous time Hill’s equation, Section 3 is 
focused on the Discretization of linear Hamiltonian systems and the methods 
that preserve such structure, in Section 4 we discretize the Continuous time 
Hill’s equation and analyze its stability conditions, in Section 5 we present the 
discrete Hill’s equation and develop its properties, finally in Section 6 we present 
some conclusions. 

2. Preliminaries 

In this section we will give a brief introduction to Floquet theory [20]. We define 
the Monodromy matrix and give stability conditions for the Hill’s equation in 
terms of the Monodromy matrix. We will mention the Hamiltonian systems and 
prove that the Hill’s equation is a Hamiltonian system. We will define some 
discretization methods and give the form of the solutions of a linear difference 
equation with constant coefficients. 

Consider the following system  

( ) ( )( ) ( ) 0z t p t z tα β+ + =                   (1) 

known as the Hill’s equation, where α , β  are real parameters, ( ) ( )p t p t T= +  
is a periodic function with period T. The parameter α  represents the square of 
the natural frequency for 0β = ; the parameter β  is the amplitude of the 
parametric excitation, and the periodic function ( )p t  is called the excitation 
function. 

If we define the two-dimensional vector [ ]y z z=  , the Equation (1) can be 
rewritten as  

( ) ( ) ( )y t A t y t=                       (2) 

where ( ) ( )( )
0 1

0
A t

p tα β
 

=  − + 
, ( ) ( )A t T A t+ = . 

2.1. Floquet Theory 

The solution of any linear system ( ) ( ) ( )y t A t y t=  can be given in terms of its 
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state transition matrix as ( ) ( ) ( )0 0,y t t t y t= Φ . For linear systems with periodic 
coefficients as (2), Floquet asserts that the state transition matrix1 may be 
factorized as: 

Theorem 1. Floquet [20] Consider a linear periodic system ( ) ( ) ( )y t A t y t=  
as in (2), if ( )0,t tΦ  is the state transition matrix solution of (2) then 
( )0,t T tΦ +  is also a solution of (2). Even more, exists an invertible matrix 
( ) ( )Q t Q t T= +  of the same period as the system (2) with initial value 
( )0Q I=  such that its state transition matrix satisfies:  

( ) ( ) ( ) ( )01
0 0, B t tt t Q t e Q t−−Φ =                (3) 

where B  is a constant matrix, not necessarily real2.  
If we make 0 0t =  in (3), we get the most well-known version: 
Corollary 1. Floquet theorem Consider a linear periodic system ( ) ( ) ( )y t A t y t=  

as in (2), exists an invertible matrix ( ) ( )Q t Q t T= +  of the same period as the 
system (2) with initial value ( )0Q I=  such that its state transition matrix 
satisfies:  

( ) ( )1,0 Btt Q t e−Φ =                          (4) 

B  is a constant matrix, again not necessarily real.  
Now if we evaluate (4) at t T= , we get the following definition. 
Definition 1. The matrix  

( ),0 BTM T e= Φ =                         (5) 

is a matrix particularly important and is known as the Monodromy Matrix. 
Remark 1. The Monodromy matrix defined by (5) is dependent of the initial 

time 0t ; but not its spectrum. Let us designate ( )
0 0 0,tM T t t= Φ +  then using 

(3) for 0t T t= + ,  

( ) ( ) ( )
( ) ( ) ( ) ( )

1
0 0 0 0

1 1
0 0 0 0

, BT

BT

T t t Q T t e Q t

Q t e Q t Q t MQ t

−

− −

Φ + = +

= =
 

This shows that 
0t

M  and M  are similar. Therefore as long as our use of the 
Monodromy matrix is reduced to its spectrum, we can use either M  or 

0t
M .  

Stability 
Recall the stability definition in the sense of Lyapunov [13]: 

Definition 2. The zero solution of ( )y A t y=  is  
1) Stable, if 0∀ > , 0δ∃ >  such that ( ) ( )0 0y t y tδ< ⇒ <  , 0t t∀ ≥   
2) Unstable if it is not stable.  
3) Asymptotically stable if the zero solution is stable and ( )lim 0t y t→∞ = .  
In our system (2) ( )y A t y= , for 0t ≥ , t  may be expressed as: t kT τ= + , 

where k  is a non-negative integer and [ )0,Tτ ∈ ; then the solution satisfies (2) 
for 0 0t =  and ( ) 00y y= :  

 

 

1To review the properties of the state transition matrix you can see [20] or [21]. 
2See Adrianova pp.17 [2], The necessary and sufficient condition for which the matrix S, has a real 
logarithm. Even more S2 always has a real logarithm. 
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( ) ( ) ( )0 0,0 ,0 ky t kT y M yτ τ= Φ + = Φ  

from which, we can conclude that, system (2) is: 
1) Stable: ( )y t  remains bounded 0t∀ ≥  if and only if  
( ) { }1 : 1M D z zσ ⊂ ∈ ≤   and if ( )Mλ σ∈  and 1λ = , λ  is a simple 

root of the minimal polynomial of M .  
2) Unstable if ( ) : 1Mµ σ µ∃ ∈ >  or if ( ) 1M Dσ ⊂ , : 1µ µ∃ = , µ  is not 

a simple root of the minimal polynomial of M .  

2.2. Hamiltonian Systems  

Hamiltonian systems consist in a pair of 2n  ordinary differential equations of 
the form:  

( )

( )

T

T

, ,

, ,

t q p
q

p

t q p
p

q

∂ 
=  

∂ 

∂ 
= − 

∂ 








                      (6) 

where ( ), ,t q p  is called a Hamiltonian function which represents the energy 
of the system, when the Hamiltonian function is being preserved constant along 
the solutions of (6) then the Hamiltonian system (6) is called a Conservative 
system, and this happens if ( ), ,t q p  is independent of time t. 

In this work we will deal only with linear Hamiltonian systems, so the 
Hamiltonian function can be rewritten as a quadratic homogeneous form, i.e.  

( ) ( )
T

, ,
q q

t q p H t
p p

   
=    
   

                     (7) 

where ( )H t  is a 2 2n n×  symmetric matrix, in this case the Hamiltonian 
System (7) may be expressed as: 

( )d
d

q q
JH t

p pt
   

=   
   

                       (8) 

where 
0

0
n

n

I
J

I
 

=  − 
. 

Notice that J  is orthogonal and skew-symmetric; i.e., 1 TJ J J− = = −  and 
that 2

2nJ I= − . 
Definition 3. Hamiltonian matrix [22] 
An even-order matrix 2 2n nA ×∈  is called Hamiltonian Matrix, if  

T 0A J JA+ =                            (9) 

From T 0A J JA+ = , we get ( )1 TA J A J−= − , i.e., A  is similar to TA−  
therefore they have the same spectrum:  

( ) ( ) ( )TA A Aσ σ σ= − = −  

In other words, if ( )Aλ σ∈ , then ( )Aλ σ− ∈ . 
Theorem 2. Let 2 2n nA ×∈  be a Hamiltonian matrix, then if  
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( ) ( )A Aλ σ λ σ∈ ⇒ − ∈ . Equivalently, the characteristic polynomial of a 
Hamiltonian matrix has only even powers or it is an even polynomial. 

Definition 4. Symplectic Matrix [6] 
An even order real matrix 2 2n nS ×∈  is called a Symplectic Matrix, if  

TS JS J=                            (10) 

The key property of constant symplectic matrices is that its spectrum is 
symmetric with respect to the unit circle, this can be proven from the definition 
and the fact that a symplectic matrix is always invertible, then T 1 1S JS J− −= , i.e. 
( ) ( ) ( )T 1S S Sσ σ σ−= =  ⇒  if ( )Sλ σ∈  then ( )1 Sλ σ− ∈ . 
Theorem 3. Let 2 2n nS ×∈  be a symplectic matrix, then if  

( ) ( )1A Sλ σ λ σ−∈ ⇒ ∈ . Equivalently, the characteristic polynomial of a 
Symplectic matrix is self-reciprocal, i.e. ( ) ( )2 1n

S Sp pλ λ λ−=  
The Figure 1 shows graphically the properties of Theorems 2 and 3. 
Definition 5. A continuous Linear time invariant system ( ) ( )x t Ax t=  is 

said to be a Hamiltonian system if and only if A  is a Hamiltonian matrix [22].  
Definition 6. Similarly 1k kx Bx+ =  is a discrete Hamiltonian system if and 

only if B  is a Symplectic matrix [23].  
Theorem 4. [22] The state transition matrix ( )0,t tΦ  is symplectic, for linear 

Hamiltonian system ( ) ( ) ( )x t A t x t= . 

2.3. Hill’s Equation: Continuous Time Case 

Here we will see that the Hill’s equation is a Hamiltonian system, we will talk 
about the discriminant of the Monodromy matrix ( ),φ α β  and its relation to 
the roots of the Monodromy matrix, we will enunciate the Hochstadt theorem, 
that gives intervals of stability and unstability, this can be easily seen on the 
Arnold tongues. We give a formula of where the Arnold tongues begin. 

Lemma 5. The Hill’s equation  

( ) ( ) ( )y t A t y t=  

 

  
(a)                                         (b) 

Figure 1. Eigenvalues of a Hamiltonian and simplectic matrices. (a) If Aλ ∈  then 
Aλ− ∈ ; (b) If Sλ ∈  then 1 Sλ− ∈ . 
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where ( ) ( )( )
0 1

0
A t

p tα β
 

=  − + 
, ( ) ( )A t T A t+ =  is a Hamiltonian system. 

Proof. according with the definition 5 we only need to prove that the matrix 
( )A t  is a Hamiltonian matrix 

( ) ( )( )
( )( )T

T 0 1 00 1
0 1 0 0 1

p t
A t J

p t
α β

α β
 +   

= =     − + − −     
 

( ) ( )( )
( )( )0 1 00 1

01 0 0 1

p t
JA t

p t
α β

α β
 − +  

= =     − +−       
 

( ) ( )T 0A t J JA t+ =  

Corollary 2. The Monodromy Matrix of the Hill’s equation  

( )( ) ( ) 0z p t z tα β+ + =  

is a symplectic matrix. 
As a consequence of this Corollary, Hill’s equation can not be asymptotically 

stable, it may be stable (bounded) or unstable. 
Definition 7. The eigenvalues of the Monodromy matrix M , equivalently 

the roots of its characteristic polynomial ( )Mp λ   

( ) ( )2 1Mp tr Mλ λ λ= − +                    (11) 

are called multipliers of the Hill’s Equations (1) or (2), denoted by λ   
Definition 8. Associated to every multiplier λ , there exist (an infinite) 

numbers called characteristic exponents µ  related to a multiplier by 
2πjk T

Te
µ

λ
 + 
 = , 

k ∈ .  
The roots of ( )Mp λ  are the multipliers of (1):  

( ) ( )2

1,2

4
2

tr M tr M
λ

± −
=                  (12) 

 If ( )2 4tr M <  the multipliers are complex conjugates with modulus =1. 
This case corresponds to a stable system.  

 If ( )2 4tr M > , the multipliers are real and reciprocal and as a consequence 
one of the eigenvalues will be greater than one therefore this case 
corresponds to an unstable system.  

 ( )2 4tr M =  the multipliers are real and repeated 1= +  or 1= − . In this 
case Hill Equation is stable if only if M  is a diagonal matrix, otherwise the 
Hill Equation (1) is unstable.  

The boundaries between stability-instability correspond to this last case, i.e. 
when ( ) 2tr M = . It is clear that M  depends on the parameters α , β . It is 
customary to define [1] ( ) ( ), tr Mφ α β  , Hochstadt [24] was the first to 
recognize the important properties of ( ),φ α β . 

Theorem 6. Hochstadt [24] The function ( ),φ α β  for any β  constant. 
The functions ( ), 2 0φ α β ± =  have an infinite number of roots. For any 0β , 
and for 0α  sufficiently negative, ( )0 0,φ α β  is positive, therefore increasing 
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α  appears the first root for the equation ( ), 2 0φ α β − = , which corresponds to 
a double multiplier at 1+ , and from there appear two roots (not necessarily 
different) at 1− , then two roots 1+ , up to infinity. 

Due to the Hochstadt Theorem 6, there are two infinite sequences:  

0 1 2 3 4 5

1 2 3 4 5

, , , , , ,

, , , , ,

λ λ λ λ λ λ

λ λ λ λ λ





                    (13) 

Moreover they interlace as: 

0 1 2 1 2 3 4 3 4 5 6, , , , , , , , , , ,λ λ λ λ λ λ λ λ λ λ λ                (14) 

This fact is illustrated in Figure 2 
For the values of α  in which ( ),1.5 2φ α >  are shown in grey color and 

correspond to the unstable zones. 
Remark 2. The unstable regions in Figure 2 are also known as Arnold 

Tongues [25], and they are labeled from left to right with 0,1,2,3, . 
Note that the boundary of the 0-th Arnold tongue has a T-periodic solution 

since the discriminant ( ), 2 0φ α β − =  has an α  root on its boundary surface, 
the first Arnold tongue has 2T-periodic solutions, the second has T-periodic 
solutions and so on. In such a way that there is an alternation between 
T-periodic solutions and 2T-periodic solutions, in consecutive boundaries of the 
Arnold tongues.  

Theorem 7. The Arnold tongues associated to the Hill’s Equation (1) begin at 
2πk

T
α  =  

 
, 0,1,2,k =  . 

 

 
Figure 2. For a constant 1.5β = , ( ) ( ),1.5 tr Mφ α =  which is only function of α . 
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Proof. Let’s consider the case when 0β =  in (2)  

( ) ( ) ( )y t A t y t=  

then ( ) ( )( )
0 1

0
A t

p tα β
 

=  − + 
 will be 

0 1
0

A
α

 
=  − 

, with the general 

solution:  

( ) ( )0Aty t e y=  

If we are looking for periodic solutions:  

( ) ( ) ( ) ( ) ( )0 0A t T At AT ATy t y t T e y T e e t e I+= + = + = ⇒ =  

then: 

( ) ( )

( ) ( )

1cos sin
1 0
0 1sin cos

AT

T T
e

T T

α α
α

α
α α

α

 
    = =     − 
 

 

from where: 

( )cos 1Tα =  

π, 0,1, 2,T k kα = =   

∴  the Arnold tongues of any Hill’s Equation (1) begin at:  
2π , 0,1, 2,3,k k

T
α  = = 

 
                    (15) 

When the periodic function ( ) ( )( )sign cosp t t=  of the Hill’s Equation (1) is 
known as the Meissner’s equation, with a period 2πT =  the points where the  

Arnold tongues are born given the previous theorem are α : 0, 
1
4

, 1, 
9
4

, 4,   

as is shown in the Figure 3. 
 

 
Figure 3. Meissner’s equation. 
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Remark 3. Notice that according with (15) and theorem 6 generically, there is 
an infinite number of Arnold tongues of the Hill’s Equation (1) in continuous 
time.  

The classical problem of Hill is to find the values of α , β  for which (1) has 
periodic solutions, i.e., to determine the boundaries of the Arnold tongues of (1). 

Definition 9. [4] A solution of a differential equation ( ) ( ) ( )y t A t y t=  as in 

(2), where ( ) ( )( )
0 1

0
A t

p tα β
 

=  − + 
, ( ) ( )A t T A t+ = , is said to be nono-  

scillatory, if it has at most one zero on ( ),−∞ +∞ . If it has an infinite number of 
zeros without accumulation points of the zeros on ( ),−∞ +∞ , is said to be 
oscillatory. 

Lemma 8. [4] [5] Nonoscillation criteria for Hill’s equation For each fixed 
β  of (1), there is an ( )0α α β= , for which if 
 0α α≤  all solutions of (1) are nonoscillatory.  
 0α α>  all solutions of (1) are oscillatory.  

2.4. Discretization Methods 

Consider the following system  

( ) ( ) ( )x t A t x t=                          (16) 

When we apply a discretization method we have to change t  by kh , where 
h  is the sampling interval and k∈  is the discrete time. By notation we will 
omit the sampling interval i.e. kx  instead of ( )x kh . 

Definition 10. The discretization of (16) by the method of forward Euler is 
defined by [26] [27] 

1k k k kx x hA x+ − =                         (17) 

where ( )kA A kh=   
Definition 11. The discretization of (16) by the method of backward Euler is 

defined by [26] [27]  

1k k k kx x hA x−− =                         (18) 

Definition 12. Tustin method [26] 
The discretization of (16) by the Tustin is defined by  

1 1 1
1 1
2 2k k k k k kx x hA x hA x+ + +− = +  

1

1 1
1 1
2 2k k k kx I hA I hA x

−

+ +
   = − +      

                (19) 

Definition 13. Pole-Zero matching equivalence3 
Let a  be a pole of the system  

( ) ( )x t Ax t=  

the technique of pole zero Matching Equivalence [26] consists on setting ahe  as 

 

 

3Even if the method mention zero matching we will only care about the pole matching because in 
our linear Hamiltonian system we don’t have the matrix B , C  that are related with the zeros. 
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a pole of the discrete system.  
The Zero-order hold consists in sampling a continuous signal and hold it 

during the sampling interval so it is defined by:  
Definition 14. Zero-order hold [26] 
The discrete system of (16) is defined by4 

( )1 1,k kx k k x+ = Φ +                         (20) 

where ( )0,t tΦ  is the state transition matrix of (16).  

2.5. Solution of Linear Difference Equations 

Since we are dealing with discrete systems we mention a theorem that gives the 
structure of the solution of a difference equation. 

Consider the following difference linear equation  

( ) ( ) ( )1 01 0nu k n p u k n p u k−+ + + − + + =            (21) 

where 0 1, , np p −  are constants and 0 0p ≠ . 
Theorem 9. [28] 

 Suppose that (21) has characteristic roots 
11, , nλ λ  with multiplicities 

11, , nα α  respectively. Then (21) has the n independent solutions 1
kλ ,  , 

1 1
1
kkα λ− , 2

kλ ,  , 2 1
2
kkα λ− ,  , 

1

k
nλ ,  , 1

1

1n k
nkα λ− .  

 If the characteristic roots include a complex pair a bλ = ± , then real-valued 
solutions of (21) can be found by using polar form ( )cos sinire r iθλ θ θ±= = ±  
then ( )cos sink k i k kr e r iθλ θ θ±= = ± .  

3. Discretization of Linear Hamiltonian Systems 

In this section we will mention some methods that preserves the Hamiltonian 
structure, i.e. that after discretizing a continuous time Hamiltonian system give 
us as a result a discrete time Hamiltonian system, according with definitions 5 
and 6. Opposite to what we could think not all the discretization methods 
preserve the Hamiltonian structure. 

Consider the following Hamiltonian system  

( ) ( ) ( )x t JHx t Ex tλ λ= =                     (22) 

where 
y

x
z
 

=  
 

, 
0

0
I

J
I

 
=  − 

, λ +∈ , 
T

T A B
H H

B D
 

= =  
 

, T

B D
E

A B
 

=  − − 
. 

3.1. Rasvan’s Procedure [29] 

Using the discretization method of Euler with step h , but using forward Euler 
in the first equation and backward Euler in the second equation [29], [30] 

( )( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )T

1

1

y k h y kh
By kh Dz kh

h
z kh z k h

Ay kh B z kh
h

λ λ

λ λ

+ −
= +

− −
= − −

           (23) 

 

 

4Remember that even when we write ( )1,k kΦ +  actually is ( )( )1 ,h k hkΦ + .  
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will result into the system  

( )1k kx C xλ+ =  

where 
y

x
z

 
=  
 

, ( )
1 0

0 T

I D I B
C

I B A I
λ λ

λ
λ λ

−− +   
=    + −   

. 

Lemma 10. The matrix ( )C λ  is symplectic [29] [30]. 

3.2. Comparison of Discretization Methods 

Consider the following Hamiltonian system  

( ) ( ) ( )x t JHx t Ax t= =                      (24) 

where T 2 2n nH H ×= ∈  and J  as in (22). 
When a discretization method is applied to a Hamiltonian system (24) it will 

take the following structure  

1k kx Rx+ =                           (25) 

In the Table 1 we compare some discretization method, looking for those who 
preserve the Hamiltonian structure. 

The proof can be found in [31] or by verifying that TR JR J=  for the given 
discretization method. 

3.3. Example 

Consider the following differential equation  
( ) ( )x t Ax t=                         (26) 

where A  is a Hamiltonian matrix. 
Example 1. Let the matrix A  of the system (26) have the following spectrum 
( ) { }10 , 50 , 110A i i iσ = ± ± ±  note here that different to the previous example we 

have just “stable” eigenvalues with zero real part. 
However in Figure 4 the forward Euler method gives us an unstable discrete 

system and the backward Euler method gives us an asymptotically stable discrete 
system. Furthermore as we expected the Rasvan’s procedure, the Tustin method and  
 
Table 1. Comparison of discretization methods. 

R =  Discretization method Preserves Hamiltonian structure? 

[ ]I hA+  forward Euler No 

[ ] 1I hA −
−  backward Euler No 

11 1
2 2

I hA I hA
−

   − +      
 Tustin Yes 

Ahe  Pole zero matching Yes 

( )1, Ahk k eΦ + =  Zero-order hold Yes 
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(a)                                       (b) 

Figure 4. Eigenvalues of the discretized Hamiltonian system. (b) A close look. 
 
the Pole matching5 give us as a result a “stable” discrete system but with some 
differences between Rasvan, Tustin and Pole matching method related with the 
step h  [27]. The Figure 5 shows the response to some initial conditions of the 
Hamiltonian system of example 1, and also the different responses to the same 
initial conditions for the different methods analyzed previously. 

In the discrete time approximation the forward Euler method gives us an 
unstable system and the backward Euler method gives us an asymptotically 
stable system, only the Rasvan’s procedure, the Tustin method and pole 
matching give us a stable system as the continuous time approach moreover this 
information is consistent with the discrete eigenvalue stability information. 

4. Discretized Hill’s Equation 

In this section we will discretize the Hill’s equation in the integral equation form  

( ) ( ) ( ) ( )
0

d 0
T

y T A y yτ τ τ= +∫                  (27) 

and then analyze the result as a discrete system without forgetting that we are 
discretizing a continuous time system therefore the resultants Arnold’s tongues 
will correspond to the continuous time Hill’s equation. We can use any 
discretization method as long as it preserves the Hamiltonian structure of the 
Hill equation. 

By chosing the step 
Th
K

= , such that we can set a discrete period K  to 
discretize the continuous time Hill’s Equation (2) and obtain a discrete system of 
the following form  

( )1 kh khk hy A y+ =                          (28) 

where ( ) khk K hA A+ = , T  is the continuous time period of the Hill’s Equation (2). 
For notation we will drop the h  and write only 1k k ky A y+ = , k K kA A+ = , 

k∀ ∈ . 
Theorem 11 (Lifting technique). Consider the following discrete time 

periodic system 

 

 

5When we mention Pole matching we mean Pole Zero matching and we are also referring to the Ze-
ro order hold as it gives us the same discrete system. 
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Figure 5. Comparison between the discretization methods and continuous time. 

 

1 ,k k k k K ky A y A A+ += =                     (29) 

the system (29) is equivalent to a linear invariant time discrete system  

1k kx Ax+ =  

Proof. Let’s define the following discrete vector state  
[ ]1 1k Kn Kn Kn Kx y y y+ + −=  , then we can transform (29) in this6 

( )1 nnx Ax+ =                          (30) 

where A  is a constant diagonal blocks matrix, 

( )1 1 0 2 0 1diag , ,K K KA A A A A A A− − −=    .  

Corollary 3. Let ( ) 1 2 1 0,0 K KM K A A A A− −= Φ =   be the Monodromy matrix 
of the system (29), then the system (29) is: 
 stable if ( ) { }1 : 1M D z zσ ⊂ ∈ =  & ( )Mµ σ∈  & 1µ = , µ  is a 

simple root of the minimal polynomial M .  
 Unstable if ( ) : 1Mµ σ µ∃ ∈ >  or if ( ) 1M Dσ ⊂ , : 1µ µ∃ =  & is not a 

simple root of the minimal polynomial.  
Proof.  

( ) ( )
1

det det
K

ii
i

I A I Aλ λ
=

− = −∏  

on the other hand  

( ) ( )
( )

1 1 0 0 1 1

2 0 1

det det

det
K K

K K

I A A A I A A A

I A A A

λ λ

λ
− −

− −

− = − =

= −

  



 

which implies that  

( ) ( ) ( )1 1 0 0 1 1 2 0 1K K K KA A A A A A A A Aσ σ σ− − − −= = =     

therefore the stability of (29) is given by 1 1 0KM A A A−=  .  

 

 

6This procedure is known as lifting technique [32]. 
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Example 

Example 2. Consider the following system  

( ) ( ) ( )y t A t y t=                        (31) 

where ( ) ( )( )
0 1

0
A t

p tα β
 

=  − + 
, α , β  are constant, with the periodic  

function ( ) ( )( )sign cosp t t=  we obtain the Figure 6, where the white zones 
shows the stability zones and the grey zones denote instability zones. 

By fixing ( ),α β  and using the theorem 11 to discretize the system (31) and 
using the corollary 3 to obtain the Monodromy matrix and to analyze its 
spectrum, plotting a grey dot when the pair ( ),α β  is unstable, and by 
repeating this process while doing a sweep on the pair ( ),α β  we obtain the 
Arnold tongues (Figure 6). 

Remark 4. If we have in mind that we need to calculate the Monodromy 
matrix and its eigenvalues for a grid of points α  and β  in order to plot the 
Arnold’s tongues. So let’s say that computing the Monodromy matrix for one 
point ( ),α β  takes 0.005 seconds, for a resolution of points on alpha and beta 
of 1000 point this would take approximately 13.8 hours to compute and plot the 
Arnold tongues, however since this computational process can be parallelized we 
use GPUs to reduce the computational time from hours to seconds.  

Notice that the objective of discretizing the Hill’s equation was to recover 
partially some properties of the continuous time system. 
 

 

Figure 6. Arnold tongues ( ) ( ) ( ) 0z t p t z tα β+  +  =   with ( ) ( )( )sign cosp t t= , 

270K = . 
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5. Hill’s Equation: Discrete Time Case 

Unlike the discretized case, the discrete Hill’s equation has some properties 
completely different, that we will describe for the first time. 

In this section we will study the Discrete Hill’s equation presented among 
others by Chulaevsky in 1989 [33]7 and we will give it a graphical interpretation 
of parametric stability for the first time i.e. discrete Arnold tongues [25]. We will 
give a formula of where the discrete Arnold’s tongues begin and proof the 
nonoscilation criteria for discrete Hill’s equation. 

Consider the following difference equation  

( )( )2 1 0k k kq p k q qα β+ ++ + + =                   (32) 

named here as the Discrete Hill’s equation [33], where ,k K ∈ , ( ) ( )p k K p k+ = , 

is a sequence of period K  and of zero average, i.e. ( )
1

0
0

K

k
p k

−

=

=∑ . It may be 

obtained by discrete variational methods [34]. 
As in the case of continuous time, we can define the state vector [ ]1k k ky q q+=  

to rewrite the Equation (32) as 

1k k ky A y+ =                          (33) 

where 
( )( ) 1

1 0
k

p k
A

α β − + −
=  
  

, k K kA A+ = . 

Remark 5. Notice that kA  is a symplectic matrix, i.e. 
T
k kA JA J=  

where 
0

0
I

J
I

 
=  − 

 ∴  (33) is a discrete hamiltonian system [22].  

Remark 6. Notice that since k K kA A+ =  on (33) is periodic we can use the 
theorem 11 and the Corollary 3 to analyze the stability conditions of (33).  

5.1. Examples 

Example 3. Consider the discrete Hill equation ( )( )2 1 0k k kq p k q qα β+ ++ + + =  
as in (32) for some sequences, going from 1K =  up to 6K = , the following 
Figure 7 and Figure 8 shows the parametric stability or Arnold Tongues, of the 
Discrete Hill’s equation. 

Remark 7. For K  even there is a symmetry with respect to both axes; for 
K  odd the symmetry with respect to 0β =  is preserved, but appear a 
symmetry with respect to the origin.  

Where the white zones shows the stability zones and the grey zones denote 
instability zones or Arnold tongues labeled from left to right with 0,1, , 1K −

 
and K . 

Remark 8. Notice that in continuous time generically there is an infinite 
number of tongues, this however is not true for the discrete case, in the discrete  

 

 

7It may be proven that this Equation (32) results to apply a discrete Variational Method to a discrete 
Lagrangian through a discrete Euler-Lagrange equation, this will be reported in another paper. 
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(a)                                        (b) 

Figure 7. Parametric stability of ( )( )2 1 0k k kq p k q qα β+ ++ + + = . (a) ( ) { }1p k = ; (b) 

( ) { }1, 1p k = − . 

 

  
(a)                                        (b) 

 
(c)                                       (d) 

Figure 8. Parametric stability of ( )( )2 1 0k k kq p k q qα β+ ++ + + = . (a) ( ) { }1, 1,0p k = − ; (b) 

( ) { }1,1, 1,1p k = − − ; (c) ( ) { }1, 1, 1,1,0p k = − − ; (d) ( ) { }1,1, 1, 1, 1,1p k = − − − . 
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case we have generically, only 1K +  tongues.  
Theorem 12. The Arnold’s tongues of the discrete Hill’s equation  

1k k ky A y+ =  as (33), where 
( )( ) 1

1 0
k

p k
A

α β − + −
=  
  

, k K kA A+ = , begin at  

( ) ( ) ( ) ( )2 4
0 1 2

2

2K K K i
K il l l lα α α α− −
−− + − + − + + − =    (34) 

where  

1 if is even
0 if is odd

K
i

K


= 


  

0 1l =  

( )1l K= −  

( )( ) ( )
2 1

1 2
2! 1!

K K K
l l

− −
= − −  

( )( )( ) ( )( ) ( )
3 1 2

1 2 2 3 4
3! 2! 1!

K K K K K K
l l l

− − − − −
= − − −  

  

( )( )

( )

2

1
1

2

1 1
2

!
2

2 2
22
1!1 !

2

K i

K i

K iK K K
l K i

K iK K
il l

K i

−

− − 
 

− − − − 
 = −
−

− − − −  + − − −
− − 

 







 

Proof. We are looking for K-periodic solutions of 1k k ky A y+ = , i.e. 

( ) ( ) ( ) ( )0 0 0,0 , ,0 ,0k k Ky y k K y k K K K y k My+= = Φ + = Φ + Φ = Φ  

since the tongues begin at 0β = , let’s analyze M  for 0β = .  

1 2 0 0
K

K KM A A A A
β− − =

= =   

where  

1
1 0

A
α− − 

=  
 

 , 

( ) 2 2
1 2

1 1 1 14 , 4
2 2 2 2

A i iσ λ α α λ α α = = − − − = − + − 
 

 , 

Since M  is a symplectic matrix of dimensions 2 2× , its characteristic 
polynomial is as follows  

( ) ( )2 1K
MP Tr Aλ λ λ= − +  

so the Arnold tongues will begin at the stability boundary ( ) 2KTr A =  
Since ( ) { }1 2,K K KAσ λ λ=  
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( ) 1 2
K K KTr A λ λ= +                       (35) 

notice that 1 2α λ λ− = + , then by substituting in (35) we obtain the polynomial 
in (34). 

Example 4. For a period 5K =  

( )5 5 3
1 2Tr A l lα α α= − − −                    (36) 

with 1 5l = − , ( )2
5 4 3 5 5

2
l ×
= − − − = , then  

5 35 5 2α α α− + − =  

has the periodic roots on { }2, 0.618, 0.618,1.618,1.618α = − − −  and  
5 35 5 2α α α− + − = −  

has the anti-periodic roots on { }1.618, 1.618,0.618,0.618,2α = − − .  
Remark 9. It may be observed that the boundaries of the Arnold Tongues are 

K-periodic or 2K-periodic; alternating and starting with K-periodic (Figure 9). 
Remark 10. Worth notice that all the Arnold tongues with the same period 

K  begin at the same points, since the Equation (34) is independent of the 
sequence ( )p k  (Figure 10). 

5.2. Nonoscillation Criteria for Discrete Hill’s Equation 

We have found that the Nonoscillation Criteria for continuous time Hill’s 
equation is also fulfilled for the discrete Hill Equation (32). 
 

 
Figure 9. ( ) { }1 1, 0,1,1p k = − − . 
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Figure 10. Overlaying of Figure 9 with Figure 8(c). 
 

Definition 15. A solution of a difference equation 1k k ky A y+ =  as in (33), 

where 
( )( ) 1

1 0
k

p k
A

α β − + −
=  
  

, k K kA A+ = , is said to be nonoscillatory if  

there is at most one change of sign in the solution of (33). If there are an infinite 
number of zeros of the solutions, they are called Oscillatory.  

Theorem 13. For each fixed β  of (33), there is an ( )0α α β= , for which if 
 0α α<  all solutions of (32) are nonoscillatory.  
 0α α≥  all solutions of (32) are oscillatory.  

Even more all the nonoscillatory solutions of (32) fall into the 0-th Arnold 
tongue. 

Proof. Consider first the case with 0β =  

2 1 0k k kq q qα+ ++ + =                      (37) 

its characteristic polynomial is  

( )2 1 0kqλ αλ+ + =                       (38) 

with the following general solutions, using the Theorem 9:  
 for 2α < −  the general solution of (37) is Nonoscillatory  

2 24 4
2 2 2 2

k k

kq C Dα α α α   − −
   = − + +
   
   

 

 for 2α = −  the general solution of (37) is Nonoscillatory  

1 1k k
kq C Dt= +  
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 for 2α <  the general solution of (37) is oscillatory  

k ki ik k
kq Cr e Dr eθ θ−= +  

where r  is the magnitude of λ , 1r∴ = . 
 for 2α =  the general solution of (37) is oscillatory  

( ) ( )1 1k k
kq C Dk= − + −  

 for 2α >  the general solution of (37) is oscillatory  

2 24 4
2 2 2 2

k k

kq C Dα α α α   − −
   = − − + − +
   
   

 

where C , D  are constants, here we see that 0 2α = − , for 0β = . 
Let us go back to the case with 0β ≠ . 
Due to corollary 3 the Equation (32) is equivalent to an invariant linear 

system with the same spectrum of the Monodromy matrix M  therefore the 
solutions of (32) are as follow 

Let ( )Mλ σ∈  and ( )p kα β+  be such that:  
 for 1λ >  by hamiltonian properties the general solution of (32) will be 

Nonoscillatory  

( )1 kk
kq C Dλ λ−= +  

 for 1λ =  by hamiltonian properties the general solution of (32) is 
Nonoscillatory  

1 1k k
kq C Dk= +  

 for a ibλ = +  the general solution of (37) is oscillatory  

k ki ik k
kq Cr e Dr eθ θ−= +  

 for 1λ = −  by hamiltonian properties the general solution of (32) is 
oscillatory  

( ) ( )1 1k k
kq C Dt= − + −  

 for 1λ < −  by hamiltonian properties and since λ  is negative, the general 
solution of (32) is oscillatory  

( ) ( )1 kk
kq C Dλ λ−= +  

where C , D  are constants, notice here that the 0-th Arnold tongue lies in the 
case where 1λ ≥  i.e. all the nonoscillatory solutions of (32) fall into the 0-th 
Arnold tongue.  

We have proved the next result:  
Theorem 14. Given Equation (32), a discrete Hill equation, with a K-periodic 

coefficient ( )p k ; 0,1, 2, , 1k K= − , then (32) is nonoscillatory if and only if 
( ),α β  belong to the 0-th Arnold tongue.  

Example 5. To illustrate this result, let us use the Arnold tongues obtained in 
the Figure 8(d) of the example 3, then the Figure 11 shows the solutions kq   
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Figure 11. Solutions of the discrete Hill Equation (33) for a sequence  

( ) 2πsign cos
6

p k k  =   
  

 with period 6K = . 

 
over the time, for a different pair of ( ),α β  with the initial condition 

[ ]T0 1 0y = . 
In the Figure 11 we can see that only the solution of the 0-th Arnold tongue 

has a nonoscillatory solution.  
Let’s summarize the properties discussed in this work. So in the Table 2 we 

compare the discrete Hill’s equation and the continuous time Hill’s equation 
side by side. 

6. Conclusions 

In this paper we found that the Monodromy matrix is a symplectic matrix for 
both continuous Hill’s equation and discrete Hill’s equation. 

It is important to use a discretization method that preserves the Hamiltonian 
structure otherwise the stability of the discretized system won’t correspond to 
the original system. 

We found that unlike the case of continuous time Hill’s equation where there 
is an infinite number of tongues, in the discrete time case there is only a finite  
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Table 2. Comparison of properties. 

 
Continuous time 
Hill’s equation 

Discrete time 
Hill’s equation 

Is a Hamiltonian system? yes yes 

Its Monodromy matrix is symplectic? yes yes 

Numbers of Arnold tongues generically ∞  1K +  

Arnold Tongues begin at 

2πk
T

α  =  
 

 

0,1,2,k =   

( )
2 2

0

2

K i

K j

j
j

l α

−

−

=

− =∑  

jl  and i  as in theorem 12 

Periodic/anti-periodicsolution  
alternation in the boundaries of  

the Arnold Tongues? 
yes yes 

0-th Arnold tongue has  
a nonoscillatory solution? 

yes yes 

 
number of them, this is mainly because of the nature of their state transition 
matrix, while one can have infinite roots of α  the other can only have a finite 
number of roots of α . We found that the solutions of the Discrete time Hill’s 
equation are nonoscillatory if and only if the corresponding ( ),α β  parameters 
belongs to the 0-th Arnold tongue. 

We are leaving for future work the study of higher order discrete Hill’s 
equation since here we were focused on the one degree of freedom case. 
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