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Abstract 
In this paper, we introduce a numerical treatment using generalized Euler 
method (GEM) for the non-linear programming problem which is governed 
by a system of fractional differential equations (FDEs). The appeared frac-
tional derivatives in these equations are in the Caputo sense. We compare our 
numerical solutions with those numerical solutions using RK4 method. The 
obtained numerical results of the optimization problem model show the sim-
plicity and the efficiency of the proposed scheme.  
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1. Introduction 

Fractional differential equations (FDEs) have recently been applied in various 
areas of engineering, science, finance, applied mathematics, bio-engineering and 
others. However, many researchers remain unaware of this field [1]. Consequently, 
considerable attention has been given to the solutions of FDEs of physical 
interest. Most FDEs do not have exact solutions, so approximate and numerical 
techniques ([2], [3]), must be used. Recently, several numerical methods to solve 
FDEs have been given, such as collocation method [4].  

Definition 1. 
The Caputo fractional operator Dν  of order ν  is defined in the following 

form  
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For more details on fractional derivatives definitions and its properties see [5].  
Optimization theory is aimed to find out the optimal solution of problems 

which are defined mathematically from a model arise in wide range of scientific 
and engineering disciplines. Many methods and algorithms have been developed 
for this purpose. The penalty function techniques are classical methods for 
solving non-linear programming (NLP) problem [6]. In this type of methods the 
optimization problem is formulated as a system of FDEs so that the equilibrium 
point of this system converges to the local minimum of the optimization 
problem ([7] [8] [9]). 

2. Mathematical Formulation  

In this section, we will reformulate the optimization problem as a system of 
FDEs. For achieve this propose, we will consider the non-linear programming 
problem with equality constraints defined by  

( )minimize , subject tox xψ ∈                 (1) 

with  

( ){ }: 0mx h x= ∈ℜ =  

where : mψ ℜ →ℜ  and ( )T
1 2, , , : m p

ph h h h= ℜ →ℜ  ( p m≤ ). It is assumed 
that the functions in the problem are at least twice continuously differentiable, 
that a solution exists, and that ( )h x∇  has full rank. To obtain a solution of (1), 
the penalty function method solves a sequence of unconstrained optimization 
problems. The well-known penalty function for this problem can be defined as 
follows  
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p
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Ψ = + ∑




                (2) 

for some constant 0θ >  and 0µ >  is an auxiliary penalty variable. 
The corresponding unconstrained optimization problem of (2) is defined as 

follows  

( )minimize ; , s.t. nx xµΨ ∈ℜ                  (3) 

Now, we consider the unconstrained optimization problem (3), an approach 
based on fractional dynamic system can be described by the following FDEs  

( ) ( ); , 0 1xD x t xν µ ν= −∇ Ψ < ≤                  (4) 

with the initial conditions ( )0 , 1, 2, ,ix t a i m= =  . 
Note that, a point ex  is called an equilibrium point of (4) if it satisfies the 

right hand side of the Equation (4). Also, we can rewrite the fractional dynamic 
system (4) in more general form as follows  

( ) ( )1 2, ; , , , , 1, 2, ,i i mD x t t x x x i mν χ µ= =              (5) 

The steady state solution of the non-linear system of FDEs (5) must be 
coincided with local optimal solution of the NLP problem (1). The existence and 
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the uniqueness of this system of FDEs are studied in more papers [10]. For more 
details about NLP problem, see [11]. 

3. The Proposed Methods 
3.1. Generalized Taylor’s Formula  

In this subsection, we give the generalization of Taylor’s formula that involves 
Caputo fractional derivatives [12]. Suppose that  

( ) ( ]0, , for 0,1, , 1, where 0 1kD x C a k nνψ ν∈ = + < ≤  

Then we have  
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The generalized Taylor’s Formula (6) can be reduced to the classical Taylor’s 
formula in case of 1ν =  [13]. 

3.2. Generalized Euler Method 

In this subsection, we will introduce a generalization of the classical Euler’s 
method with Caputo derivatives. To achieve this aim, we consider the following 
IVP in its general form:  

( ) ( )( ) ( ) 0, , 0 , 0 1, 0D t t t t aν ψ νϒ = ϒ ϒ = ϒ < ≤ < <           (7) 

In the proposed method we will not find a function ( )tϒ  that satisfies IVP (7) 
but we will find a set of points ( )( ),j jt tϒ  and use it for our approximation. For 
convenience we divide the interval [ ]0,a  into n subintervals 1,j jt t +    of equal 
width h a n=  by using the nodes jt jh= , for 0,1, ,j n=  . Assume that 
( ) ( ),t D tνϒ ϒ  and ( )2D tν ϒ  are continuous on [ ]0,a  and use the generalized 

Taylor’s Formula (6) to expand ( )tϒ  about 0 0t t= = . For each value t there is 
a value 1c  so that  
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Now, when ( ) ( )( )0 0 0,D t t tν ψϒ = ϒ  and 1h t=  are substituted into 
Equation (8), the result is an expression for ( )1tϒ   

( ) ( ) ( )( ) ( ) ( ) ( )
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If the step size h is chosen small enough, then we may neglect the second-order 
term (involving 2h ν ) and get  

( ) ( ) ( )( ) ( )1 0 0 0,
1

ht t t t
ν

ψ
ν

ϒ = ϒ + ϒ
Γ +

 

The process is repeated to generate a sequence of points that approximates the 
solution ( )tϒ . The general formula for GEM when 1j jt t h+ = +  is given by:  
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( ) ( ) ( )( ) ( )1 , , 0,1, , 1
1j j j j

ht t t t j n
ν

ψ
ν+ϒ = ϒ + ϒ = −

Γ +
        (9) 

Remark: 
1) The generalized Euler’s method (9) is derived by Zaid and Momani for the 

numerical solution of IVPs with Caputo derivatives [12].  
2) The generalized Euler’s method (9) can be reduced to the classical Euler’s 

method in the case 1ν =  [12].  

4. Numerical Simulation 

In this section, we illustrate the effectiveness of the proposed method and 
validate the solution scheme for solving the system of FDEs which generated 
from the non-linear programming problem. To achieve this propose, we 
consider the following two cases of optimization problems.  

Example 1: 
Consider the following non-linear programming problem (Optimization 

problem) ([14], [15])  

( ) ( ) ( )
( ) ( )

2 22minimize 100 1 ,

subject to 4 2 12 0

x u v u

h x u u v

ψ = − + −

= − − + =
              (10) 

The optimal solution is ( )* 2, 4x = , where ( ),x u v= . For solving the above 
problem, we convert it to an unconstrained optimization problem with 
quadratic penalty function (2) for 2θ = , then we have  

( ) ( ) ( ) ( )( )2 222 1; 100 1 4 2 12
2

x u v u u u vµ µΨ = − + − + − − +  

where µ +∈ℜ  is an auxiliary penalty variable. The corresponding non-linear 
system of FDEs from (5) is defined as  

( ) ( ) ( ) ( )( )
( ) ( ) ( )
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The initial conditions are ( )0 0u =  and ( )0 0v = . 
Now, we solve numerically this system of non-linear FDEs using the GEM. In 

view of the GEM, the numerical scheme of the proposed model (11) is given in 
the following form  
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where the quantities ( ) ( )( )1 , ,j j jt u t v tψ  and ( ) ( )( )2 , ,j j jt u t v tψ  are compu- 
ted from the following functions, respectively, at the points , 0,1, ,jt jh j n= =  .  
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In Figure 1 and Figure 2, we presented the behavior of the numerical solution 
( ) ( )( ),u t v t  of the problem (11) using GEM and RK4 method at 1ν = , 

respectively. From Figure 1, we can see that for 1ν =  our solutions obtained 
using the proposed method are in excellent agreement with the solution using 
RK4 method and from Figure 2, we can note that the numerical solution takes 
the same behavior of the numerical solution as in the case 1ν = . All 
computations in this paper are done using Matlab 8.0. 
 

 
Figure 1. The numerical solution using GEM with 10, 0.1n h= = , and RK4 method at 

1ν = . 
 

 
Figure 2. The numerical solution using GEM, with 10, 0.1n h= =  at 0.9ν = . 
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Example 2: 
Consider the equality constrained optimization problem ([14], [15])  

( ) ( ) ( ) ( )
( ) ( )

( )
( )
( )

22 2
1 1 2 2 3

4 4
3 4 4 5

2 3
1 1 2 3

2
2 2 3 4

3 1 5

minimize 1

,

subject to 2 3 2 0,

2 2 2 0,

2 0

x x x x x x

x x x x

h x x x x

h x x x x

h x x x

ψ = − + − + −

+ − + −

= + + − − =

= − + + − =

= − =

        (13) 

The solution of (13) is ( )* 1.191127,1.362603,1.472818,1.635017,1.679081x ≈  
and this is not an exact solution. For solving the above problem, we convert it to 
an unconstrained optimization problem with quadratic penalty function (2) for 

2θ = , then we have  

( ) ( ) ( )( )
3 2

1

1;
2

x x h xµ ψ µ
=

Ψ = + ∑




                 (14) 

where µ +∈ℜ  is an auxiliary penalty variable. The corresponding non-linear 
system of FDEs from (5) is defined as  

( ) ( ) ( ) ( ) , 0 1D x t x h x h xν ψ µ ν= −∇ − ∇ < ≤             (15) 

The initial condition is ( ) ( )T0 2,2,2,2,2x =  that is not feasible. 
The numerical solution of the proposed optimization problem (13) can be 

obtained by pursuing the procedure stated in the previous example and solving 
the resulting nonlinear system of ODEs. The obtained numerical results from 
the proposed methods are presented in Tables 1-3. In Table 1 and Table 2, we 
presented the numerical solution ( ) ( ) ( ) ( )( )1 2 5, , ,x t x t x t x t=   using the GEM 
and the RK4 method at 1ν = , respectively. But in Table 3, we presented the 
numerical solution of the same system (15) using the proposed method with 

0.9ν = . From these tables, we can conclude that our solutions of the proposed 
method are in excellent agreement with the RK4 method. In addition, we can see 
that the behavior of the solution is in agreement with the physical meaning of 
the proposed problem. 
 
Table 1. The numerical solution of Example 2 using GEM at 1ν = . 

t  ( )1x t  ( )2x t  ( )3x t  ( )4x t  ( )5x t  

0 2 2 2 2 2 

2 1.191010 1.359541 1.474039 1.641529 1.679209 

10 1.191082 1.362524 1.472778 1.634755 1.679140 

15 1.191090 1.362530 1.472774 1.634738 1.679130 

20 1.191090 1.362530 1.472774 1.634738 1.679130 

30 1.191090 1.362530 1.472774 1.634738 1.679130 
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Table 2. The numerical solution of Example 2 using the RK4 method at 1ν = . 

t  ( )1x t  ( )2x t  ( )3x t  ( )4x t  ( )5x t  

0 2 2 2 2 2 

2 1.191010 1.359541 1.474039 1.641529 1.679209 

10 1.191082 1.362524 1.472778 1.634755 1.679140 

15 1.191090 1.362530 1.472774 1.634738 1.679130 

20 1.191090 1.362530 1.472774 1.634738 1.679130 

30 1.191090 1.362530 1.472774 1.634738 1.679130 

 
Table 3. The numerical solution of Example 2 using GEM at 0.9ν = .  

t  ( )1x t  ( )2x t  ( )3x t  ( )4x t  ( )5x t  

0 2 2 2 2 2 

2 1.198931 1.369223 1.468744 1.616076 1.668076 

10 1.191090 1.362530 1.472774 1.634738 1.679140 

15 1.191090 1.362530 1.472774 1.634738 1.679130 

20 1.191090 1.362530 1.472774 1.634738 1.679130 

30 1.191090 1.362530 1.472774 1.634738 1.679130 

5. Conclusion 

We implemented the GEM for studying the numerical solution for the system of 
FDEs which described the NLP model. This work is devoted to introduce a study 
of the behavior of the numerical solution of the proposed problem for various 
fractional Brownian motions and also for standard motion 1ν = . Also, we 
compared the obtained numerical solutions with those numerical solutions 
using RK4 method. From this study, we can see that the obtained numerical 
solution using the suggested method is in excellent agreement with the 
numerical solution using RK4 method and shows that this approach can be 
solved the problem effectively and illustrates the validity and the great potential 
of the proposed technique. Finally, the recent appearance of FDEs as models in 
some fields of applied mathematics makes it necessary to investigate analytical 
and numerical methods for such equations. 
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