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Abstract 
In this paper, a practical analysis of stability by simulation for the effect of in-
corporating a Kalman estimator in the control loop of the inverted pendulum 
with a neurocontroller is presented. The neurocontroller is calculated by ap-
proximate optimal control, without considering the Kalman estimator in the 
loop following the Theorem of the separation. The results are compared with 
a time-varying linear controller, which in noiseless conditions in the state or 
in the measurement has an acceptable performance, but when it is under 
noise conditions its operation closes into a state space range more limited 
than the one proposed here. 
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1. Introduction 

The motivation for this case study known as inverted pendulum control arises 
from the need to obtain robust controller systems to implement in situations 
where it is desired to maintain equilibrium of an unstable system. A direct re-
lated situation is the attitude control of a booster rocket at takeoff for sending a 
payload to space. It is a well-known problem in the control theory literature [1] 
[2] and machine learning [3] [4] [5] [6]. However, such problems are challeng-
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ing since real systems are difficult to control and this is to some extent due to the 
fact that redundant feedback systems must be considered by the controller, as an 
effect similar to that of incorporating an estimator into the variables controller 
status. This fact causes instability in the closed loop, which must be foreseen and 
analyzed. The analysis can be done through simulations with the estima-
tor-controller system, in order to establish some stability domain. In this work 
we opt for the control based on optimization [7] [8] [9], where the optimal con-
trol problem is formulated. To solve the problem of optimal control, a very po-
werful tool is the Dynamic Programming technique [10] [11] implemented with 
approximations [3] [4] [5] in a machine learning scheme [12], since it allows 
dealing with constrained, nonlinear processes and non-quadratic performance 
indexes. However, it is often difficult to achieve a methodology for the imple-
mentation of controllers based on machine learning, since they require heuristic 
and a good knowledge of the involved adaptation mechanisms [3]. In this work, 
a methodology to determine the conditions that achieve good results to imple-
ment in simulation is shown. A controller consisting of a compact function 
called neurocontroller is achieved. 

In this paper, cases with and without estimator of a model that represents an 
inverted pendulum are studied. When a time varying linear quadratic regulator 
(TVLQR) with direct state measurement is used, good performance can be 
achieved. However, it can be improved with a neurocontroller. The obtained 
performances by using linear and neurocontroller are shown in Figure 1 and 
Figure 2, respectively. Note that the cumulative cost of the linear controller  
 

 
Figure 1. Controller TVLQR with direct measurements. The initial conditions are x0 = [0 0 
φ0 0]T, where φ0 takes the values 5.7˚, 11.5˚ and 63˚. Accumulated costs from each initial 
condition are 12.5, 51.8 and 3760.7, respectively. 
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Figure 2. Neurocontroller with direct measurements. The initial conditions are x0 = [0 0 φ0 
0]T, where φ0 takes the values 5.7˚, 11.5˚ and 63˚. Accumulated costs from each initial con-
dition are 123.8, 140.7 and 2691.3, respectively. 
 
(3760.7) is 28% higher than that of the Neurocontroller (2691.3). However, when 
the controller is used in more realistic situations using a state estimator and con-
sidering noisy conditions in the measurements, the performance of the linear 
controller deteriorates more than the performance of the neurocontroller even 
until fails to stabilize the system for the same initial conditions. In this paper, an 
analysis of the system performance deterioration is shown when it requires a 
state estimator. 

This paper is organized as follows. After this Introduction, the problem is de-
tailed and expressed as mathematical equation in Section 2. In Section 3 is de-
tailed the proposed solution. In Section 4 the implementation of the obtained 
solution and another one with classical methods for comparison purposes is de-
veloped. The obtained results are discussed in Section 5, with its pros and cons. 

2. Problem Formulation 

The dynamic programming approach assumes that the process evolution can be 
split in stages [10], so take the version of dynamic systems in discrete time [9] is 
straightforward. The problem formulation puts in formal terms the optimal 
control elements. These elements are the cost function to minimize, the control 
law and the dynamic system model with its constraints. If the system model 
cannot be or is not feasible to express it in closed analytical form through a dif-
ferential equation, it is useful to generate a black box model [13]. 

1) Notation and Assumptions 
This section introduces the nomenclature used along the article. The symbols 
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are listed and explained. 
i. k∈  describes the discrete time variable. 
ii. x(k), with ( ) nk ∈ℜx  is the time dependent n-dimensional state vector 

whose components has the system’s state variables. These variables describe the 
process dynamics over discrete time. 

iii. f is a nonlinear continuous function, : n m nf ℜ ×ℜ →ℜ  that describes the 
relation between the state vector for two time instants. 

iv. ( ) mk ∈ℜu  is the system input or manipulated vector. 
v. I is a convex function, : n mI +ℜ ×ℜ × →ℜ  called the performance index 

designed by the control engineer. 
vi. J is a convex function, : n mJ +ℜ ×ℜ × →ℜ  named the cost function de-

signed by the control engineer. 
vii. X is a bounded and closed set, nX ⊂ℜ . 
viii. U is a bounded and closed set, mU ⊂ℜ . 
ix. µ is the control law or decision policy : n mµ ℜ →ℜ , this function maps 

each state vector value with a control action u. 
x. r and v are real value arrays of parameters 2, n h+ +∈ℜr v , where h∈  is 

determined by the control engineer. 
xi. J  is the approximation of the cost function J, and its domains includes 

the parameter vector r, 2: n m n hJ + + +ℜ ×ℜ ×ℜ →ℜ . 
xii. µ  is a function whose behavior approximates the function µ, includes 

the parameter vector v, 2: n n h mµ + +ℜ ×ℜ →ℜ . 
xiii. ( )( )*J kx  is the minimum cost to go from the state x at time k up to the 

terminal state at time N. 
xiv. ( )o mk ∈ℜu  is the optimal control action at time k. 
xv. 1 2, , , hξ ξ ξ  are real scalar values. 
xvi. S  data set of samples from the process under study. 
xvii. C(i) is the cost associate to a control law evolving from the state i up to the 

terminal process state. 
xviii. ( )iJ µ  is the value of the cost to go function obtained after use the control 

law µ starting at state i up to terminal state at time N. 
xix. ∇ gradient operator. 
xx. ( ),Q i u , real valued function associated at state i and action u. 
xxi. nη  is a function that varies with iteration number n, bounded between 0 

and 1. 
xxii. ( ),Q i u  is the approximate version of the factor ( ),Q i u . 
xxiii. nγ  is the discount factor, variable with iteration n and bounded be-

tween 0 and 1. 
xxiv. µ  control action expressed as look up table from every state. 
xxv. ( ),J µ ⋅ r  approximate cost to go function associated with the control law 

µ. 
xxvi. n n×∈ℜA  is the state matrix for the linear dynamic model. 
xxvii. 1n×∈ℜB  is the input matrix of the linear dynamic model. 
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xxviii. n n×∈ℜF  is the additive noise model at the state variables. 
xxix. ( ) nk ∈ℜv  is the random sequence with Gaussian distribution in each 

variable, zero mean and unit variance. 
xxx. ( )k ∈ℜy  is the linear model output. 
xxxi. 1 n×∈ℜC  is the linear model output matrix. 
xxxii. ∈ℜG  is the noise model at the measured variable. 
xxxiii. ( )k ∈ℜw  is a white noise sequence with zero mean and unit va-

riance. 
xxxiv. δ ∈ℜ  is longitudinal displacement of the cart. 
xxxv. δ ∈ℜ  is longitudinal velocity of the cart. 
xxxvi. φ ∈ℜ  is the angle of the inverted pendulum bar. 
xxxvii. φ ∈ℜ  is the angular velocity of the inverted pendulum bar. 
xxxviii. MP is the cart concentrated mass, whose value here is 0.5 Kgr. 
xxxix. mP is the bar concentrated mass, valued here is 0.1 Kgr. 
xl. FP is the displacement friction constant assigned 0.1 N∙m−1∙s. 
xli. lP is the size of the pendulum bar, 0.6 m. 
xlii. gP is the standard acceleration due to gravity, 9.81 m∙s−2. 
xliii. 4 4×∈ℜQ  is the weighing matrix for the state vector from k = 0 to k = N 

− 1 with N the terminal state time. 
xliv. 4 4×∈ℜS  is the weighing matrix for the state vector at the terminal state 

time N. 
xlv. ∈ℜR  is the weighing matrix for the control action variable. 
2) The basic problem 
Thus, to formulate the optimal control problem the expressions of the process 

model in discrete time, the restrictions in the variables and the cost function to 
be minimized are presented. Next, the problem of minimizing the separable cost 
function is considered by 

( ) ( ) ( )( )1 , , , 0,1, , 1k f k k k k N+ = = −x x u             (1) 

where x(0) has a fixed value and the constraints must be satisfied together with 
the system equation, 

( ) ( )( ) ( ) ( )( )
0

, ,
N

k
J k k I k k

=

= ∑x u x u                  (2) 

where the constraints on state and manipulated variables are 

,   .n mX U∈ ⊂ℜ ∈ ⊂ℜx u                      (3) 

The function I(⋅) is defined by the control engineer which must be convex but 
not necessarily quadratic, and f(⋅) is the nonlinear relationship between instants 
k and k + 1 of the state and manipulated variables. Moreover, they are bounded 
and continuous functions of their arguments, and both x and u belong to closed 
and bounded subsets of ℜn and ℜm, respectively. Then, the Weierstrass theorem 
asserts that there exists a minimization policy also called control law. Therefore, 
it is desired to find a correspondence relation 
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( )( ) : n mkµ ℜ →ℜx                         (4) 

that makes evolve the processes modelled by (2) from any initial condition to the 
final terminal state x(N) satisfying constraints (3), and minimizing the cost 
function (1). The implementation is shown in Figure 3, where the flow of in-
formation between the controller and the closed-loop system is stated. Note that 
the behavior of the closed loop system is done by designing the performance in-
dex which is added at each stage in the cost function (1). 

3. Proposed Solution 

In order to solve the formulated problem, the proposed solution is by using dy-
namic programming and then approximations are introduced through functions 

( )( ), : ,n mkµ ℜ →ℜx v                       (5) 

( ), , : n m NJ × × +ℜ →ℜx u r                      (6) 

where the parameter vectors v and r must be determined. 
1) Optimal control for processes modelled as constrained nonlinear sys-

tems 
The procedure to solve the optimal control problem for both continuous and 

discrete time dynamic systems is well known [7] [8] [14], and consists of analyt-
ically minimize the proposed cost function (1) and from this minimization 
achieve an expression for function μ. When the system is linear and the cost 
function is quadratic, the optimal control problem has unique solution through 
the Riccati Equation. However, when the system is nonlinear the solution of the 
Hamilton-Jacobi-Bellman equation [14] must be found, whose solution is re-
stricted to a certain class of nonlinear systems. Here, an optimization principle 
to solve the same control problem that allows to use any cost function and res-
pecting the constraints in the state variables and in the control variables in a 
natural way is used. 

2) Bellman’s optimality principle 
The principle of optimality [10] allows solving an optimization problem in 

 

 
Figure 3. Implementation of the controller based on numerical 
dynamic programming. 
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which a dynamic process evolves over time through stages. Applying the prin-
ciple of optimality in (1), we obtain 

( )( )
( )

( ) ( )( )

( )
( ) ( )( ){ ( ) ( )( )( )}

*

*

min ,

min , , ,

u k

u k

J k J k k

I k k J f k k

=

= +

x x u

x u x u
     (7) 

called the Bellman’s Equation. Therefore, the optimal control action uo will be 

( )
( )

( ) ( )( ){ ( ) ( )( )( )}*arg min , , ,o

u k
k I k k J f k k= +u x u x u       (8) 

which is the optimal policy of decisions or optimal control law. Note that J* does 
not depend explicitly on u(k), as shows Equation (8). 

3) Introducing approximations 
To obtain the control law or the decision policy, there exists numerical me-

thods, [3] [4] [10] [11] and approximations [3] [5] [12] which are detailed below. 
Now, an approximation function for values of Equation (1) in a compact do-
main is introduced. Thus, a compact representation of the cost associated with 
each state of the process is obtained. 

4) Design of the approximation function 
The approximation function incorporates a set of vectors of parameters r, 

which is defined as a partitioned vector whose structure defines the function 
structure, 

{ }1 2
1 1 1 2, , , ,hr r r r=r                          (9) 

where each vector r1 has the same dimension, which is the number of inputs of 
the function plus one to consider a static scalar unit parameter. So, h interme-
diate scalar values ξ are computed as the scalar product between the input vector 
x and the corresponding parameters as 

T 1
1 11 ,rξ  = ⋅ x                         (10) 

T 2
2 11 ,rξ  = ⋅ x                        (11) 

T
11 ,h

h rξ  = ⋅ x                         (12) 

every single value are processed through the hyperbolic tangent function, avoid-
ing large numbers by 

( ) ( ) ( )
( ) ( ) ( )

exp exp 21
exp exp 1 exp 2

f
ξ ξ

ξ
ξ ξ ξ

− −
= = −

+ − +
          (13) 

where the right side has only one exp(⋅) computation for improving calculation 
time. So, with these h values together with the polarization 1 the inner product is 
implemented with the rest of the r parameter vector which is r2, and must be 
consistent in its dimension to be able to perform the product 

( )( ) ( ) ( ) ( ) T
1 2 2, 1 .hk f f fµ ξ ξ ξ = ⋅ x r r

        (14) 

This approximation function has the parameter h as a tuning parameter for the 
dimension of vector r, in terms of the structure of the approximation function. 
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Finding a suitable value for vector r, one have the approximated value of the 
minimum cost that is incurred to reach the terminal state from the current state 
x(k), and with the model of the system can be found the control policy using the 
argument u(k) that minimizes 

( )( ) ( ) ( )( ) ( ) ( )( )( ){ }* *min , , , .
ku

J k I k k J f k k= + x x u x u r         (15) 

For finding r, the search process that finds the policy function is divided into 
two tasks, as shown in Figure 4. One of them, is the evaluation of a defined con-
trol policy or control law, from which the costs for all stages of the process are 
calculated. The other one, is the policy improvement procedure. Both tasks are 
done approximately with respect to the original system, because an approxima-
tion function is used that tune its behavior. 

5) Implementation 
A set of representative data S  in the state space in a domain is available and 

for each state i S∈   the cost values C(i) are calculated. To this end, an initial 
control law or control policy is proposed, and the system (1) is evolved from the 
given state i to the terminal stage, evaluating the performance index by expres-
sion (2) of the cost function ( )iJ µ . This procedure is performed for every state 
i S∈  . Then the approximated cost function is tuned by minimizing in r 

( ) ( )( )2
min ,

r i S
J i r C i

∈

−∑


                        (16) 

an approximation function for the cost associated to the evaluated policy is ob-
tained. The parameters vector r is obtained by minimizing expression (16). The 
incremental gradient iteration is 

( ) ( ) ( )( ): , , ,    n J i C i J i i Sη= + ∇ − ∀ ∈r r r r               (17) 

where η fulfills the conditions 

( ) ( ) ( )2

0 0
, ,  , ,     , ,n n

n n
i u i u i u U iη η

∞ ∞

= =

= ∞ < ∞ ∀ ∈∑ ∑            (18) 

such that the algorithm converges, where n refers to the tuning iteration n. For 
computing C(i) the performance evaluation is implemented through the system 
model (1) and the cost function (2). 

Then the costs associated with each state-action pair are computed, by using 
 

 
Figure 4. Scheme of the optimal control policy search process. 
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the auxiliary cost function Q(i, u), which in its approximate version is 

( ) ( ) ( ), , ,nQ i u I i u J j rγ= +                     (19) 

where γn is a discount factor that can vary from iteration to iteration up to reach 
unity. Then, the improved policy is obtained by the table 

( )
( )

( ) ( )( )arg min , , ,    .nu U i
i I i u J j r i Sµ γ

∈
= + ∀ ∈            (20) 

Once available ( ),J rµ ⋅ , it can be obtained ( )µ ⋅  from Equation (20). Then 
the costs associated with each state, symbolized by C(i), are evaluated by Equa-
tion (17), and the r parameters are tuned by obtaining a new version of the ap-
proximation function ( ), ,J i r i Sµ ∀ ∈  . Then, the policy improvement task is 
carried out, in which a new tabulated control policy ( )µ ⋅  expressed as (20) is 
obtained. After that, the calculation of the costs for each state i starts, and in 
each iteration the function γn is updated. 

Simultaneously with the described tasks, an approximation for the improved 
control law ( )µ ⋅  is introduced, by a function with parameters v as shown Fig-
ure 5 following the same structure as that described by Equations (9)-(14). 

Thus, since the function ( )µ ⋅  is the analytical solution of the optimal control 
problem, it is intended to obtain an approximation ( ),µ ⋅ v  of the function 
( )µ ⋅  -which is expressed as table, where v is the parameter vector. 
To find the approximation function ( ),µ ⋅ v , using the data of the improved 

policy ( )µ ⋅  defined in (20), it is proposed to minimize the expression 

( ) ( )( )2
min ,

i S
i iµ µ

∈

−∑
v

v                      (21) 

within the set S , where the control law is represented by ( ),µ ⋅ v  with the 
tuning parameters vector v. A solution for Equation (21) is obtained by the in-
cremental gradient method [13], which is expressed as iterations on n by 

( ) ( ) ( )( ): , , ,  n i i i i Sη µ µ µ= + ∇ − ∀ ∈v v v v 

              (22) 

where ηn fulfills the conditions (18). A summary of the algorithm is detailed in 
Table 1. 

Note that two approximation problems are solved at the same time, since 
given ( )µ ⋅  it is evaluated to find ( ),J rµ ⋅  of ( )J µ ⋅  defined by C(i) with 
i S∈  . 

Then, given ( ),J µ ⋅ r , the improved policy ( )iµ  is computed for i S∈   and 
then find the new policy ( ),µ ⋅ v . Once the function ( ),µ ⋅ v  is available, the 
control actions are obtained as shown in Figure 5. The control scheme is shown 
in Figure 6. 
 

 
Figure 5. Compact expression of the policy or control law. 
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Figure 6. System and neurocontroller closed loop scheme. 

 
Table 1. Approximate optimal controller calculation algorithm. 

Item Do 

1 Initialize: γn, Iterations, h, parameters r and v. 

2 Evaluate the initial policy ( ),µ ⋅ v  through (16). 

3 Update the parameters r via (17)  

4 Compute functions Q(⋅) by (19)  

5 Update policy ( )µ ⋅ using (20)  

6 Update the parameters v of ( ),µ ⋅ v  by (22)  

7 Update function γn. 

8 Go to 2 and repeat items 2, 3, 4, 5, 6 and 7 until the complete the Iterations 

 
6) Discussion and comment on the implementation 
The algorithm to solve the optimal control problem for nonlinear processes 

with non-quadratic cost function and constraints was detailed. Given the em-
ployment of approximations, the topic of approximation function in dynamic 
systems [13] must be well mastered to obtain suitable result in the closed loop 
system. 

As general suggestions, it must be mentioned that as in many nonlinear sys-
tem, the algorithm is strongly dependent on the initial conditions. Thus, its de-
pendence lies on the initial policy and on the states used to compute ( ),µ ⋅ v , 
represented by set S . 

The parameter tune speed with respect of the iterations, is fixed by the func-
tion γ, and the method is sensitive to this parameter. Usually one can make the 
first attempts setting γ = 1 constant, with few iterations, and then begin to mod-
ify it to converge to 1 with the iterations, always verifying that the performance 
of the controller improves at the long term. The adjustment parameters amount 
in each approximation function depends on the data complexity, which general-
ly are conditioned by implementing some normalization or feature extraction 
techniques. 

4. Control of the Inverted Pendulum 

The inverted pendulum can be represented as shown Figure 7. For this cart-bar  
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Figure 7. Diagram of the inverted pendulum system on a cart. 
 
system, a controller will be designed using the algorithm of Table 1. Knowing 
that the equations that describe the angle and the linear displacement dynamics 
are, 

( ) 2cos sin

sin cos 0
P P P P P P P

P P

M m m l m l F u

l g

δ φ ϕ φ φ δ

φ φ δ φ

 + + − + =


− + =

   

 

         (23) 

whereas the controller is designed the system trajectories are generated by simu-
lation for initial angle φ of 0.2 radians. It is considered that the force u must ful-
fill with the constraint 30 30u− ≤ ≤ . 

The proposed cost function is composed by 

( ) T

0

5 0 0 0
0 0 0 0

, 0.001
0 0 50 0
0 0 0 0

N

k k u
k

J u x x θ
=

 
 
 = + ⋅
 
 
 

∑x            (24) 

where θu is defined to constrain the values of uk by 

30 , if 30,

30 , if 30.
k k

u
k k

u u

u u
θ

 − >= 
− − < −

                  (25) 

The continuous time model is discretized at a rate of 0.1 Section. 
1) State estimation 
In order to retrieve the system state vector, a Kalman estimator is used, where 

the discrete-time linearized version estimate of (23) is given by 

1k k k ku v+ = + +x Ax B F                      (26) 

k k kw= +y Cx G                        (27) 

where T , , ,δ δ φ φ =  x   , uk is the operating force as shows Figure 7, and the 
matrices 4 4×∈A R  and 4 1×∈B R  are obtained by discretizing the continuous 
time linear version of (23) with a sampling time of 0.1 Section For the case of the 
pendulum 4∈v R , 1∈w R , assuming that Gaussian sequences have zero mean 
and unit variance. The matrices F and G are defined as 

https://doi.org/10.4236/am.2017.811117


J. Pucheta et al. 
 

 

DOI: 10.4236/am.2017.811117 1613 Applied Mathematics 
 

11

22

33

44

0 0 0
0 0 0
0 0 0
0 0 0

F

σ
σ

σ
σ

 
 
 =
 
 
 

                    (28) 

with 31 10iiσ −= ×  for the state vector x, and 

[ ]G ς=                                (29) 

with 31 10ς −= ×  for the measure y(k). Furthermore, C = [1 0 0 0]. 
To find the x(k) estimate, it used a priori estimate of the observed states by 
means of 

( ) ( ) ( )1ˆ ˆk k k
−
+ = +x Ax Bu                          (30) 

and these states x̂  are obtained from measurements of the system output 

( ) ( ) ( ) ( )( )ˆ ˆ ˆOk k k kK y C− −= + −x x x                      (31) 

where KO is the Kalman gain [15]. This gain is calculated by using a Gaussian 
noise model in the state x(k) and in the measurement y(k) given by (26) and 
(27). 

2) Implementing the controller 
The tune of the Table 1 algorithm was done to achieve the control objective 

that is to bring the bar to the vertical position, starting from positions smaller 
than 1 radian. Figure 10 shows the evolution of the algorithm parameters which 
are the cost to go function from the initial condition [0 0 0.2 0]T to the final time, 
set in 10 sec. Note that the behavior is not stable in first half of the performed 
iterations, but then stabilizes and the control objective is achieved. 

The set S  was of 3000 samples in the ℜ4 space of the state variables, with 
the range shown in Figure 11. The control law is 

( ) ( )( )ˆ ,u k kµ= x v                       (32) 

where ( )ˆ kx  is obtained from Equation (31), and v contains the parameters 
corresponding to a set as (9), where 7 hidden nodes were used, which gives 7 
vectors 5

1
i ∈r R , and vector 8

2 ∈r R , implementing the Equation (14). For the 
approximation of the function J(⋅) defined in Equation (24) it is used the same 
structure of the approximation function as for the control law. The parameters 
tuning was performed by the Levenberg Marquardt algorithm [5]. 

In order to perform the comparison of the neurocontroller performance, a 
time variant-discrete linear quadratic regulator controller with the classical LQR 
theory in discrete time [16] (TVDLQR) was implemented. Here, the design ma-
trices were 

3

3 2

10 0 0 0 10 0 0 0
0 10 0 0 0 10 0 0

,    and 1.
0 0 10 0 0 0 10 0
0 0 0 10 0 0 0 10

R

   
   
   = = =
   
   
   

Q S      (33) 
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3) System simulation results under noise conditions 
Figure 8 and Figure 12 show both performance results of the neurocontroller 

and the TVDLQR, with the same Kalman estimator. Under no-noise conditions, 
the performance of the system in both cases are quite similar, as shown in Fig-
ure 1 and Figure 2. Nevertheless, under noise conditions the TVDLQR does not 
achieve the same performance as that of the neurocontroller since the last allows 
to increase the range of initial conditions from 0.19 to 0.47 rad as seen in Figure 
13 and Figure 12. Furthermore, estimated variables used by the LQR controller 
are shown in Figure 9. 

4) Discussion 
Since the control objective of the system with estimator is that the pendulum 

does not fall, a qualitative analysis of the performance of the TVLQR and NC 
controllers can be inferred. As can be seen in the examples shown, in Figure 8 
can be seen that the linear controller meets the control objective for initial con-
ditions of 0.19 rad or less. In contrast, for the case of the NC in Figure 13 and 
Figure 12 shows that with initial conditions of 0.19 radians the linear controller 
does not meet the control objective, but the NC does. In Figure 10 can be see 
that the tuning parameter’s procedure is erratic and difficult to adjust since the 
value of the costs associated with the control policies are not necessarily mono-
tonically decreasing. This means that is hard to tune the algorithm of Table 1, 
which must be tuned by trial-test and error for each particular system. Also, in 
Figure 11 the range of the system samples used in the calculation of the NC to  
 

 
Figure 8. Output evolution of the inverted pendulum system controlled by the time va-
riant DLQR with estimator and with noise in the state and in the measurement. The ini-
tial conditions are x0 = [0 0 φ0 0]T, with φ0 taking values 0.1, 0.15 and 0.19 rad or 5.7296˚, 
8.5944˚ and 10.8862˚. 
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Figure 9. Estimated variables evolution for three initial conditions of the inverted pen-
dulum system when it has noise in the states and in the measurement, with initial condi-
tions of x0 = [0 0 φ0 0]T, where φ0 takes the values 0.1, 0.15 , and 0.19 rad, i.e. 5.7296˚, 
8.5944˚ and 10.8862˚. 
 

 
Figure 10. Cost-to-go function evolution associated with the initial condition x0 = [0 0 
0.2 0]T and tuning law evolution used for the neurocontroller calculation. 
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Figure 11. Phase planes for the initial conditions x0 = [0 0 φ0 0]T where φ0 takes the values 
0.1, 0.15, and 0.47 rad i.e. 5.7296˚, 8.5944˚ and 26.9290˚. Continuous lines show the evo-
lution of system trajectories under noise conditions in the state and in the measurement. 
 

 
Figure 12. System evolution of the inverted pendulum with Kalman estimator neurocon-
troller. The initial conditions are x0 = [0 0 φ0 0]T. φ0 = {0.1,0.15,0.47} rad, i.e. {5.7296˚, 
8.5944˚, 26.9290˚}. 
 
implement the algorithm of Table 1 is detailed. Note that the system evolution 
can be out of range and the policy function must be able to give a response that 
stabilizes the system. This was achieved because of the suitable relation between 
the data set S  and the problem complexity. Therefore, the results are encour-
aging since in the examples the control objective is met, which is to obtain zero 
error in the output with respect to the desired value that is the origin. In a com-
parison of the performances from both control systems can be seen in Table 2. It 
is important to state that the linear controller is unable to keep the pendulum 
vertical when the angle initial condition exceeds 0.2 rad whereas the NC achieves 
it even up to 0.47 rad. 
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Figure 13. Evolution of the estimated variables of the inverted pendulum system with the 
Kalman estimator and neurocontroller. The initial conditions are x0 = [0 0 φo 0]T. φ0 = 
{.1,.15,.47} rad, i.e. {5.7296˚, 8.5944˚, 26.9290˚). 
 
Table 2. Comparative figures of performance results obtained by both controller estima-
tor systems. The Monte Carlo simulation was realized with 150 trays, along 1000 time 
steps of 0.1sec. Figure 8 and Figure 12 show the temporal evolution of these indices. 

 LQR TVLQR NC 

ϕo [rad]  Expected Cost to go Expected Cost to go 

0.1 4282.3523 4346.1949 45574.606 

0.15 4330.45 4394.2924 45595.4206 

0.19 4396.1917 4460.034 45605.0514 

0.47 Too large Too large 45760.5241 

 
The temporal evolution of these indices is shown in Figure 8 and Figure 12, 

where the mean value and the 66% quota from the 150 trajectories of the Monte 
Carlo simulation are highlighted. In Table 2 are resumed the performance 
achieved by each controller. Note that even with higher cost to go figures, the 
NC gives robust behavior with regards to the initial conditions and noise. 

5. Conclusions 

In this paper, a stability analysis of a neurocontroller with Kalman estimator for 
the inverted pendulum case was presented. The NC performance was compared 
against the TVLQR controller with the same Kalman estimator. 

The obtained results can be stated that the use of approximate optimal control 
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implemented through Table 1, is a very powerful and promising tool to deal 
with controllers for nonlinear processes with Kalman estimator. 

The initial angle range was possible to extend from 0.19 rad for the case of li-
near controller with estimator, to 0.47 rad in the present scheme simulating a 
Monte Carlo with 150 trajectories. 

It is important to highlight that the technique requires a good mastery for 
functions approximation for dynamic processes, and simulation of natural 
process through numerical methods. 
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