
Applied Mathematics, 2017, 8, 786-798 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

DOI: 10.4236/am.2017.86061  June 14, 2017 

 
 
 

Searching for a Target Whose Truncated 
Brownian Motion 

Abd Elmoneim A. Teamah, Mohamed A. El-Hadidy, Marwa M. El-Ghoul 

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt 

  
 
 

Abstract 
This paper presents search model for a randomly moving target which follows 
truncated Brownian motion. The conditions that make the expected value of 
the first meeting time between the searcher and the target is finite are given. 
We show the existence of an optimal strategy which minimizes this first 
meeting time. 
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1. Introduction 

Detecting the holes on the oil pipeline under water prevents without a disaster 
such as that occurred in the Guilf of Mexico on April 2010. Linear search model 
is the one of the interesting search models which is used to detect these holes.  

Searching for a Brownian target on the real line has been studied by El-Rayes 
et al. [1]. They illustrated this problem when the searcher started the searching 
process from the origin. They found the conditions that make the expected value 
of the first meeting time between the searcher and target is finite. They showed 
the existence of the optimal search plan which makes the expected value of the 
first meeting time between the searcher and target minimum. Mohamed et al. [2] 
studied this problem for a Brownian target on one of n-intersected real lines. 
The information about the target position is not available to the searchers at all 
the time. Recently, El-Hadidy [3], studied this search problem for a d-dimen- 
sional Brownian target that moves randomly on d-space. 

The main contribution of this paper centers on studying the search problem 
for a one-dimensional truncated Brownian motion. The searcher moves with a 
linear motion. This kind of search problems recently has various applications in 
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physics such as finding a very small object that moves in the space like viruses 
and bacteria, or the object that is very large, like stars and planets. We aim to 
show the conditions that make the expected value of the first meeting time be-
tween the searcher and target is finite and show the existence of the optimal 
search plan that minimizes it. 

This paper is organized as follows. In Section 2, we introduce the problem. In 
Section 3, the finite search plan and the expected value of the first meeting are 
discussed. In Section 4, we find the existence of optimal search path. In Section 
5, we give an application to calculate the expected value of the first meeting time 
between the searcher and target. 

2. Problem Formulation 

The problem under study can be formally described as follows: We have a 
searcher starts the searching process from the origin of the line. The searcher 
moves continuously along its line in both directions of the starting point. The 
searcher would conduct its search in the following manner: Start at 0 0=H  and 
go to the left (right) as far as 1H . Then, turn back to explore the right (left) part 
of 0 0=H  as far as 2H . Retrace the steps again to explore the left (right) part 
of 1H  as far as 3H  and so on. The target is assumed to move randomly on the 
real line according to the one-dimensional truncated Brownian motion. The ini-
tial position of the target is unknown but the searcher knows the probability dis-
tribution of it, i.e., the probability distribution of the target is given at time 0, 
and the process ( ){ }, +∈W t t R , which controls the target’s motion, is truncated 
Brownian motion, where it has stationary independent increments, for any time 
interval (t1,t2) ( ) ( )1 2−W t W t  follows truncated normally distributed, and this 
process is called a truncated Brownian motion with drift µ′  and variance 2σ ′ . 
A search plan with speed V, which the searcher follows it, is a function 

:φ + →R R  such that: 
( ) ( )1 2 1 2 1 2, , .φ φ +− ≤ − ∀ ∈t t V t t t t R  where R is the set of real numbers 

And V is a constant in +R  and ( )0 0φ = . The first meeting time φτ  is a 
random variable valued in +R  defined as: 

( ) ( ){ }0inf ,φτ φ= = +t t X W t  

where 0X  is a random variable follows truncated normal distribution and in-
dependent with ( )W t  and represent initial position of the target. The aim of 
the searcher is to minimize the expected value of φτ . 

Let ( )ΦV t  is the set of all search plans with speed V. The problem is to find 
a search plan ( )φ ∈ΦV t  such that φτ < ∞E , in this case we call φ  is a finite 
search plan if: 

( )* , .φφ
τ τ φ≤ ∀ ∈ΦVE E t  

Then we call *φ  is optimal search plan. 
Let λ  and θ  be positive integers greater than one and v be a rational 

number such that: 
1) ν µ′> . 



A. A. Teamah et al. 
 

788 

2) 1θ >  such that ( )
( )

1
1

θ
µ

θ
−

′= >
+

v
c . 

We shall define two sequences { } 0≥i i
G , { } 0≥i i

H  and a search plan with speed 
v as follows: 

( ) ( ) ( )1 11 , 1 1 1 .λ θ + + = − = − + + − 
i ii

i i iG H c G  

For any +∈t R , if 1+≤ ≤i iG t G , ( ) ( ) ( )1 .φ = + − −i
i it H t G v  

Note that the truncated normal distribution: 
If Y is ( )2,µ σN  then, the probability density function of double truncated 

of X is given by: 

( )

( )

[ ] ( )

2

22

,

1 exp
22π

for .

µ
σσ

µ µ
σ σ

 − −
 
 
 = ≤ ≤

− −   −   
   

X a b

x

f x I x a x b
b aF F

 

where F is the cumulative distribution function and [ ] ( ), 1=a bI x  which is the 
indicator function. 

And the expected value for truncated normal distribution is given by: 

( ) .

µ µ
σ σµ µ σ
µ µ

σ σ

 − −    −        ′ = = +
− −    −        

a bf f
E x

b aF F
 

The variance for truncated normal distribution is given by:  

( )2 2

2

2

var 1

.

µ µ µ µ
σ σ σ σσ σ

µ µ
σ σ

µ µ
σ σσ
µ µ

σ σ

 − − − −        −                ′ = = +
− −    −        

 − −    −        −
− −    −        

a a b bf f
x

b aF F

a bf f

b aF F

 

3. Existence of a Finite Search Plan 

In this section we aim to find the conditions that make the search plan to be fi-
nite and minimize the expected value of the first meeting time. 

Theorem 3.1: Let υ  be the measure defined on R  by oX  and if ( )φ t  is 
the search plan defined above, then the expectation 

φτ
E  is finite if: 

( ){ } ( ) ( ){ } ( )
0

2 2 1
2 2 1

1 10

d , dθ ψ υ θ ψ υ
∞ ∞

+
+

= =

< − > −∑ ∑∫ ∫

b
i i

i i
i ia

p G x x p G x x  

are finite, where ( ) ( )2 2 2ψ = + i i iG W G cG , ( ) ( ) ( )2 1 2 1 2 1ψ + + += −i i iG W G c G . 
Proof: 
The continuity of ( )φ t  and ( )W t  imply that if 0X  is positive then  

( )0 +X W t  is greater than ( )φ t  until the first meeting, also if 0X  is negative 
then ( )0 +X W t  is smaller than ( )φ t  until the first meeting, hence for any 
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0≥i  

( ) ( )( ) ( )

( )( ) ( )

0

2 1 0 2 2 0

0 2 1 2 1 0
0

/ d

/ d ,

φτ υ

υ

+

+ +

> ≤ + < =

+ + > =

∫

∫

i i i
a

b

i i

p G p X W G H X x x

p X W G H X x x
 where 0, 0.< >a b  (1) 

Using the notation: ( ) ( )2 2 2ψ = + i i iG W G cG , we obtain:  

W(G2i) − H2i < X0 = −x, then ( ) ( ) ( )( )2 1 2 1
2 2 01 1 1+ + − − + + − < = −  

i i
i iW G c G X x . 

Leads to: ( ) ( ) [ ] ( ) ( )2 2 2 2 21 1 1 .ψ− − + − = + = < −i i i i iW G c G W G cG G x  
Similarly, by using the notation: ( ) ( )2 1 2 1 2 1ψ + + += −i i iG W G cG . 

( ) ( )( ) ( ) ( )( ) ( )
0

2 1 2 2 1
0

d d .φτ ψ υ ψ υ+ +> ≤ < − + > −∫ ∫

b

i i i
a

p G p G x x p G x x    (2) 

Similarly for any 0>i  

( ) ( )( ) ( ) ( )( ) ( )
0

2 2 2 1
0

d d .φτ ψ υ ψ υ−> ≤ < − + > −∫ ∫

b

i i i
a

p G p G x x p G x x     (3) 

But we have  

( ) ( ) ( )

( ) ( ) ( )

1

1

00

1
0 0

d d

d .

φ φ φ

φ φ

τ τ τ

τ τ

+

+

∞ ∞

=

∞ ∞

+
= =

= > = >

≤ > = − >

∑∫ ∫

∑ ∑∫

i

i

i

i

G

i G

G

i i i i
i iG

E p t t p t t

p G t G G p G
         (4) 

Since ( )1λ θ= −i
iG  and ( )1

1 1λ θ +
+ = −i

iG  

( ) ( ) ( )1 1
1 1 1λ θ λ θ λ θ θ+ +
+ − = − − − = −i i i i

i iG G  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( )

0 0
2 3

1 2 3

1

0
2

2 1
0

0
3

2 3
0

4
4 3

1 1

1 0

1 0

d d

d d

d d

i i
i i

i i

b

a
b

a

E p G p G

p p G p G p G

p p G

p G x x p G x x

p G x x p G x x

p G x x p G x

φ φ φ

φ φ φ φ

φ φ

τ λθ θ τ λ θ θ τ

λ θ τ θ τ θ τ θ τ

λ θ τ θ τ

θ ψ υ ψ υ

θ ψ υ ψ υ

θ ψ υ ψ υ

∞ ∞

= =

≤ − > = − >

 = − > + > + > + > + 
= − > + >

 
+ < − + > − 

 
 

+ < − + > − 
 

+ < − + > −

∑ ∑

∫ ∫

∫ ∫







 ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

0

0
0

1
0

0
1

1
0

0
2

2 1
0

0
3

2 3
0

d d

d d

d d

d d .

b

a
b

k
k k

a
b

k
k k

a
b

k
k k

a
b

k
k k

a

x

p G x x p G x x

p G x x p G x x

p G x x p G x x

p G x x p G x x

θ ψ υ ψ υ

θ ψ υ ψ υ

θ ψ υ ψ υ

θ ψ υ ψ υ

−

+
+

+
+ +

+
+ +

 
+ 

 
 

+ < − + > − 
 
 

+ < − + > − 
 
 

+ < − + > − 
 

 
+ < − + > − +  

  

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫
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Then:  

( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

3

0
2

1 2

0
2 3

1 2
0

3

0

2
1 1

0

0
2 3 3 4

2 3
0

0
4 5

4

1 0 d

d d

d

1 0 d

d d

d

a

b

a

b

b

b

a

k k

a

E p p G p G x x

p G x x p G x x

p G x x

p p G p G x x

p G x x p G x x

p G x x

ϕ φ φ

φ φ

τ λ θ τ θ τ θ ψ υ

θ ψ υ θ ψ υ

θ ψ υ

λ θ τ θ τ θ ψ υ

θ θ ψ υ θ θ ψ υ

θ θ ψ υ θ θ +


≤ − > + > + < −



+ > − + < −


+ > − + 




= − > + > + > −



+ + < − + + > −

+ + < − + + +

∫

∫ ∫

∫

∫

∫ ∫

∫










 ( ) ( )( ) ( )

( ) ( )( ) ( )

0
1

1 2
1

0

d

d .

k
a

b
k k

k

p G x x

p G x x

ψ υ

θ θ ψ υ+ +
+

< −


+ + > − + 



∫

∫





 

Then: 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

2
1 1

0

0 0
2 4

2 4

0
3

3
0

5 1
5 1

0 0

1 0 d

1 d 1 d

1 d 1 d

1 d 1 d .

b

a a

b
k

k
a

b b
k

k

E p p G p G x x

p G x x p G x x

p G x x p G x x

p G x x p G x x

φ φ φτ λ θ τ θ τ θ ψ υ

θ θ ψ υ θ θ ψ υ

θ θ ψ υ θ θ ψ υ

θ θ ψ υ θ θ ψ υ+
+


≤ − > + > + > −



+ + < − + + < −

+ + + < − + + > −


+ + > − + + + > − + 



∫

∫ ∫

∫ ∫

∫ ∫

 




 

 

Leads to: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

1 1 d d .φτ λ θ θ υ υ
  

≤ − + + +  
   

∫ ∫
b

a

E g M x x B x x     (5) 

where: 

( ) ( ) ( )( ) ( )2
1 1

0

0 dφ φτ θ τ θ ψ υ= > + > + > −∫
b

g p p G p G x x  

( ) ( )( )2
2

1
.θ ψ

∞

=

= < −∑ 

i
i

i
M x p G x  

( ) ( )( )2 1
2 1

1
.θ ψ

∞
+

+
=

= > −∑ i
i

i
B x p G x  

Lemma 3.1: Let 0≥na  for 0≥n , and 1+ ≤n na a . Let { }nd , 0≥n  be a 
strictly increasing sequence of integers with 0 0=d . Then for any 0≥k  see 
[4] 

( ) ( )
11 1 .
+

∞ ∞ ∞

+ +
= = =

− ≤ ≤ −∑ ∑ ∑n n
k

n n d k n n d
n k n d n k

d d a a d d a  
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Lemma 3.2: If µ′≥c , where µ′  is the drift of ( )W t  and c is a constant, 
then for any 0>t , and for some 0ε >  

( ){ } ( ) ( )
1 1 .
2

ε≥ ≤
−

tp W t ct
F b F a

 

Proof: 

( ){ } { } ( )

( ) ( )
( )

21 exp
22π d , .

µ
σ µ

σ

µ
σ′

′− 
′ ′≥ = + ≥ = ≥ 

′ 
 −
  ′−  ′= =

− ′∫
b

k

c t
p W t ct p t X ct p X

t

x
c t

x k
F b F a t

 

Hence: 

( ) ( ) ( ) ( )

21 exp
22π 1 1d .

2 2 2′

 −
   ′      = −     − −      

∫
b

k

x
b kx Erf Erf

F b F a F b F a
 

And then 
21 1 1exp d ,

2 2 22π 2
ε

∞  −  = ≤   
  

∫ t

k

x kx Erfc  see [1]. 

where: Erfc  is the complementary Error function commonly donated ( )Erfc x , 
is an entire function defined by  

( ) ( ) 221 e d
π

∞
−= − = ∫ r

x

Erfc x Erf x r , then 1
2 2

   = −   
   

k kErfc Erf  

Then: 

1 1 1 1
2 22 2 2 2

1
2 2 2
1 1 .
2 22

ε

′ ′          − = − − +          
          

′    = −    
    
 ≤ ≤ 
 

t

b k b kErf Erf Erfc Erfc

k bErfc Erfc

kErfc

   (6) 

Then: 
( ) ( ) ( ) ( )

1 1 1 1 .
2 22 2

ε
′    − ≤    − −    

tk bErfc Erfc
F b F a F b F a

    (7) 

Hence: ( ){ } ( ) ( )( )
1 .

2
ε≥ ≤

−
tp W t ct

F b F a
                         (8) 

where 
( )2

22e
µ

σε
−

−
=

c

, and X follows truncated standardized normal distribution. 

Lemma 3.3: If 0µ′ ≠ , 1 2≥x x , 1 2max ,
µ µ

 
≥  ′ ′ 

x xt , 0, 0< >a b  then 

( ){ }2 1≤ ≤p x W t x  is non-increasing with t. 
Proof: Since 

( )( ) ( ) 2 1
2 1 2 1

µ µσ µ
σ σ

′ ′− − ′ ′≤ ≤ = ≤ + ≤ = ≤ ≤ ′ ′ 

x t x tP x W t x P x t X t x P X
t t

 if 

0µ′ < , then ( )2 µ σ′ ′−x t t  and ( )( )2
d 0
d

µ σ′ ′− ≥x t t
t

 this implies that  
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( )( )2 1≤ ≤P x W t x  is non-increasing also if 0µ′ > , then ( )1 0µ σ′ ′− ≤x t t , 
this implies that ( )( )2 1≤ ≤P x W t x  is non-increasing. 

Lemma 3.4: If ( )
1=

= ∑
n

i
i

W n X , 1≥n , where { }iX  is a sequence of inde-  

pendent identically distributed random variables (i.i.d.r.v), such that iX  is 
truncated normally distributed with parameters µ′ − c  and 2σ ′ , and so 

( ) ( ) ( ){ }
0

, 1 1
∞

=

+ = − + < < −∑
n

q j j p j W n j  

Satisfies the conditions of the Renewal theorem, see [5]. 
Theorem 3.2: The chosen search plan satisfies: 

( ) ( )≤ M x L x  and ( ) ( )≤B x L x . 
where ( )L x  and ( )L x  are linear functions. 

Proof If 0≤x , then ( ) ( )0≤B x B , but we have for 0>x  

( ) ( )( )2 1
2 1

1
0 0θ ψ

∞
+

+
=

= >∑ i
i

i
B p G , ( ) ( )2 1

2 1
1
θ

∞
+

+
=

= > −∑ i
i

i
B x p G x . 

Then ( ) ( ) ( )( )2 1
2 1

1
0 0 .θ ψ

∞
+

+
=

= + − < ≤∑ i
i

i
B x B p x G  

Lemma 3.2 states that ( ){ } ( ) ( )
1 1
2

ε≥ ≤
−

tp W t ct
F b F a

, then 

( )( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1 10 0 .
2 2

ε ψ ε− ≥ ≤ ⇒ ≥ ≤
− −

t tp W t ct p t
F b F a F b F a

 

where ( ) ( )ψ = −t W t ct , ( ) ( ) ( )
2 12 1

1

10 θ ε +
∞

+

=

<
− ∑ iGi

i
B

F b F a
, 0 1ε< < . 

We define the following: 

1) ( )
1

ψ
=

= ∑
n

i
i

n y , where { } 1≥i i
y  is a sequence of (i.i.d.r.v), ( )2,µ σ′ ′≈ −iy N c  

2) ( )2 1
2 1 1λ θ +

+= = −n
n nd G . 

3) we choose md  such that ( )max 0, µ= −md x , refer to Lemma 3.3 putting 

1 0=x  and 2 1= −x x . 

4) ( ) ( )( ) ( ) ( )( )
0

0 1 .ψ ψ
=

= − < ≤ = − + < ≤ −∑
x

j
a n p x n p j n j  

5) ( )2 2 1 .α θ λ θ= −  

6) ( ) ( ) ( )( )
0

, 1 1 .ψ
∞

=

+ = − + < ≤ −∑
n

U j j p j n j  

If > mn d  then by Lemma 3.3, ( )a n  is non-increasing and we can apply 
Lemma 3.1 we obtain; 

( ) ( ) ( ) ( ) ( )

( )
( )
( ) ( )

2 1
1

1 1

3 2
2 1

2
1 0

0

1
, 1

1

θ α

θ θ
θ α

θ

∞
+

−
= = +

∞
+

= = =

− = + −

−
≤ + ≤ + +

−

∑ ∑

∑ ∑ ∑
m

m
n

n n n n
n n m

m xm
n

n n d j

B x B a d d d a d

a n U j j
 

( ), 1+U j j  satisfies the conditions of Renewal theorem (by Lemma 3.4), 
hence ( ), 1+U j j  is bounded for all j, by a constant , so 
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( ) ( ) ( )1 20 .≤ + + =B x B S S x L x  

We can prove ( ) ( )≤ M x L x  by similar way. 
Lemma 3.5: 

( ) ( ) ( ).σ µ′ ′≤ +E W T E T E T  

where E  stand for the expectation value and 2σ ′  is the variance. 
Proof 
Let ( )X t  be a standard truncated Brownian motion, assume that  

( )min ,=nT T n  is a bounded stopping time ( )x t . since ( )2 −x t t  is a conti-
nuous martingale, then ( )( ) ( )2 2 0 0− = =n nE X T T EX  see [5]. 

But ( )( ) ( )( )( ) ( )( )( )2 2 2lim inf lim inf
→∞ →∞

= ≤n n nn n
E X T E X T E X T  by Fatou  

lemma 

( )( )( )lim inf .
→∞

≤ nn
E X T                       (9) 

Hence ( )( ) ( )2 ≤E X T E T  by monotonically of nT , since  
( ) ( )σ µ′ ′= +W t X t t , then 

( ) ( ) ( ).σ µ′ ′≤ +E W T E X T E T                 (10) 

But ( ) ( ) ( )2≤ ≤E X T EX T E T  

Then: ( ) ( ) ( ).σ µ′ ′≤ +E W T E T E T                              (11) 

4. Existence of an Optimal Path 

Definition 
Let ( ) , 1φ ∈Φ ≥n V t n  be a sequence of search plans, we say that φn  con-

verges to φ  as n tends to ∞  if and only if for any +∈t R , φn  converges to 
( )φ t  uniformly on every compact subset. 
Note that the set ( )ΦV t  constitutes an equicontinuous family of function, 

also ( )φ ≤n t V t  for all n. We deduce that there exists a subsequence φ
kn

which converges to a continuous function φ  by applying the theorem of Ass-
coli, see [6], it is easy to verify that this function φ  contained in ( )ΦV t  that is, 
the set ( )ΦV t  is sequentially compact. 

Theorem 4.1 
Let for any +∈t R , ( )W t  be truncated Brownian process. The mapping  

φφ τ +→ ∈E R  

is lower semi continuous on ( )ΦV t  
Proof let w be a sample point corresponding to the sample path ( )ψ t  of 

( )+ox W t  
Let ( )( ) 1

φ
≥n n

t  be a sequence of search plans which converges to ( )φ ∈ΦV t . 
Given +∈t R , we define for any 1≥n  

( ) ( ) ( ){ }: minψ φ
≤ ≤

= − >n no x t
B t w x x a  and ( ) ( ) ( ){ }0

: minψ φ
≤ ≤

= − >
x t

B t w x x a  

Let ( )∈w B t  since ( )φn t  converges uniformly on [0,t] to φ , then there ex-
ists an integer ( )n w  such that for any 0 ≤ ≤x t ,  
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( ) ( ) ( ) ( )
0

1 min
2

φ φ ε ψ φ
≤ ≤

− < = −n x t
x x x x  

Hence for any 0 ≤ ≤x t  and for any ( )>n n w  

( ) ( ) ( ) ( ) ( ) ( ) 2ψ φ ψ φ φ φ ε ε ε− ≥ − − − ≥ − = >n nx x x x x x a  

Consequently ( )∈ nw B t  for all ( )≥n n w  and hence ( ) ( )lim inf
→∞

⊂ nn
B t B t . 

Now, by Fatou’s lemma 

( )( ) ( )( ) ( )( ) ( )( )
0 0 0 0

d liminf d liminf d liminf d .n n nn b n b n b
p B t t p B t t B t t p B t t

∞ ∞ ∞ ∞

→ → →
≤ ≤ ≤∫ ∫ ∫ ∫  (12) 

Since sample paths are continuous, then ( ) ( )φτ= >
nnB t t  and  

( ) ( )φτ= >B t t . It is known that a lower semi-continuous function over the se-
quentially compact space attains its minimum. 

5. Application 
Let a target moves according to a one-dimensional truncated Brownian motion. 
In addition, we have a searcher starts the searching from the origin of the line. 
The searcher moves continuously along its line in both directions of the starting 
point .We want to calculate ( )φτE  which is given by:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

1 1 d d , , , ,φτ λ θ θ υ υ λ θ
  

≤ − + + + = Ω  
   

∫ ∫
b

a

E g M x x B x x g a b  

Case 1: if: 

( ) ( )( ) ( ) ( )( )
2 2

2 2 1
1 2 1 2 1

1 1
,θ ψ θ ψ+

+
= =

= < − = > −∑ ∑

i i
i i

i i
M x p G x B x p G x

 

( ) ( ) ( )( ) ( )2
1 1

0

0 d .φ φτ θ τ θ ψ υ= > + > + > −∫
b

g p p G p G x x        (13) 

Let 0 =X x  be a random variable of initial position of target has a truncated 
normal distribution, ( ) σ µ′ ′= +W t t X t . 
where X  is a random variable has a truncated normal, in order to calculate  

( ) ( )( )
2

2
1 2

1
.θ ψ

=

= < −∑ 

i
i

i
M x p G x                  (14). 

Since ( ) ( )2 2 2ψ = + i i iG W G cG  ( )( )2 2+ < −i ip W G cG x  = ( )( )2ψ < − ip G x   

( )( )2 2< − −i ip x W G cG                      (15) 

Since ( )2
2 1λ θ= −i

iG , ( )
( )

1
1

θ
θ

−
=

+
v

c , ( )2 2 2σ µ′ ′= +i i iW G G x G  

Then we get 

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( )( ) ( ) ( )

( ) ( )
( )( )

( )[ ]

( )( )

2 2 2

2 2 2

2 2 2

2 2 2

2 2

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

i i i

i i i

i i i

i i i

i i

p x x c

p x x c

p x c

c c
p x p x

σ λ θ µ λ θ λ θ

σ λ θ µ λ θ λ θ

σ λ θ µ λ θ λ θ

µ λ θ λ θ λ θ µ

σ λ θ σ λ θ

′ ′< − − − − − −

′ ′= + − < − − − −

 ′ ′= + − < − − − − 
 
   

′ ′− − − − − − −   
= < = <   

′ ′+ − + −   
   

  (16) 
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Put 3λ = , 2θ = , 10ν = , 2µ′ = , 30σ ′ = , 3.33=c . By subsisting in Eq-
uation (16) 

( )[ ]( )
( )( )

2

2

3 2 1 2 3.33
.

1 30 3 2 1

 
× − − − 

< 
  + × −    

i

i
p x                   (17) 

By subsisting (17) in (14) we get: 

( )
( )[ ]

( )( )
( )[ ]

( )( )
( )[ ]

( )( )
( ) ( )

22
2

1
21

2 4
2 4

2 4

2 4

2

3 2 1 2 3.33
2

1 30 3 2 1

3 2 1 2 3.33 3 2 1 2 3.33
2 2

1 30 3 2 1 1 30 3 2 1

2 0.5271 2 1.186

0.5271 22
30

µ
σ

=

 
− − − 

= < 
  + × −    

   
− − − − − −   

= < + <   
      + × − + × −            

= < − + < −

′− − − = < ′

∑
i

i

ii
M x p x

p x p x

p x p x

xp

( ) ( ) ( )

4

2 4

1.186 22
30

2 0.08 2 0.1062 9.168, where ~ 0,1

µ
σ

′− − − + <  ′  
= < − + < − =

xp

p z p z z n

 (18) 

To calculate ( )1B x  by the same way we can get: 

( ) ( )( )
2

2 1
1 2 1

1
θ ψ+

+
=

= > −∑ i
i

i
B x p G x , since ( ) ( )2 2 2ψ = −i i iG W G cG . 

( )2 2 2σ µ′ ′= +i i iW G G x G , ( )2
2 1λ θ= −i

iG , ( )
( )

1
1

θ
θ

−
=

+
v

c  

Then: ( )( ) ( )( ) ( )( )2 2 2 2 2ψ > − = − > − = > − +i i i i ip G x p W G cG x p x W G cG  

( )
( ) ( )

( )( )
( )[ ]

( )( )
( )[ ]

( )( )
( )[ ]

( )( )

2 1 2 12
2 1

1
2 11

2 12
2 1

2 11

3 5
3 5

3 5

1 1

1 1

1

1 1

3 2 1 3.33 2 3 2 1 3.33 2
2 2

1 30 3 2 1 1 30 3 2 1

2

µ λ θ λ θ
θ

σ λ θ

λ θ µ
θ

σ λ θ

+ +
+

+=

+
+

+=

 
′− − + − 

= > 
′+ − 

 
 

′− − 
= > 

′+ − 
 

   
− − − −   

= < + <   
      + × − + × −            

=

∑

∑

i i
i

ii

i
i

ii

c
B x p x

c
p x

p x p x

( ) ( )3 5

3 5

0.202 2 0.426

0.202 2 0.426 22 2
30 30

20.8.

> + >

− −   = > + >   
   

=

p x p x

p z p z

 (19) 

Since ( ) ( ) ( ) ( ) ( ) ( )
0

0

1 d d .τ λ θ υ υΦ

 
≤ − + + 

 
∫ ∫

b

a

E g M x x B x x            (20) 

By subsisting of (18), (19) in Equation (20) we can get 
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( )
0

1
0

3 9.168d 20.8d .τΦ
 

≤ + + 
 

∫ ∫
b

a

E g x x                (21) 

Let 2= −a , 2=b . 

Since ( ) ( ) ( )( ) ( )2
1 1

0

0 dτ θ τ θ ψ υΦ Φ= > + > + > −∫
b

g p p G p G x x  

( ) ( )( ) ( )

( )( ) ( )

0

2 1 0 2 2 0

0 2 1 2 1 0
0

/ d

/ d .

τ υ

υ

Φ +

+ +

> ≤ + < =

+ + > =

∫

∫

i i i
a

b

i i

p G p x W G H x x x

p x W G H x x x
    (22) 

Put 0=i  in Equation (22), then we can get 

( ) ( )( ) ( )

( )( ) ( )

0

1 0 0 0 0

0 1 1 0
0

/ d

/ d .

τ υ

υ

Φ > ≤ + < =

+ + > =

∫

∫

a
b

p G p x W G H x x x

p x W G H x x x
       (23) 

Since: ( ) ( )( )1 11 1 1+ += − + + −i i
i iH c G , ( ) σ µ′ ′= +i i iW G G x G ,  

( )1λ θ= −i
iG  
Then: ( ) ( )0 0 01 1 1 0= − + − = − =H c G CG , ( )0 0 0σ µ′ ′= +W G G x G . 
By subsisting of 0H , ( )0W G  in Equation (23) we can get 

( ) ( ) ( ) ( )( ) ( )
0

1 0 0 1 1 00 d / d .τ υ υΦ > ≤ < + > − =∫ ∫
b

a a

p G p x x p x H W G x x x  (24) 

Since ( ) ( )( ) ( ) ( )( )2 2
1 1 11 1 1 2 1 2λ θ= − + + − = + = − +H c G c G c , 1 16.65=H  

( )1 1 1 51.9615 6.σ µ′ ′= + = +W G G x G x  
By subsisting of 1H , ( )1W G  in Equation (24) we get 

( ) ( ) ( )( )

( ) ( )

( )

0

1
0

0

0
0

0

0 d 16.65 51.9615 6 d

0 d 51.9615 16.65 6 d

16.65 60 d
52.9615

τ υ

υ

Φ > ≤ < + > − +

≤ < + + > −

− ≤ < + > 
 

∫ ∫

∫ ∫

∫ ∫

b

a
b

a
b

a

p G p x x p x x x

p x x p x x x

p x p x x

   (25) 

Since ( ) ( )0 0.07 0.472< = < − =p x p z  

( ) ( )16.65 6 0.20 20.20 0.06 0.524.
52.9615 30

xp x p x p p zµ
σ

′− − −   > = > = > = > − =   ′   
 

By subsisting in Equation (25) we can get ( ) ( ) ( )1 0.472 0.524τΦ > ≤ − +p G a b . 

Since 2= −a , 2=b , ( )1 1.992τΦ > ≤p G .                         (26) 

To calculate ( )( )1ψ > −p G x , where ( ) ( )2 1 2 1 2 1ψ + + += −i i iG W G cG . 

That is, ( ) ( )1 1 1ψ = −G W G cG , since ( )1 51.9615 3.99ψ = −G x         (27) 

Then 

( )( ) ( )
( )
( )

1 51.9615 3.99

51.9615 3.99

0.06 0.524.

ψ > − = − > −

= + >

= > − =

p G x p x x

p x x

p z

                    (28) 



A. A. Teamah et al. 
 

797 

By subsisting (26), (28) in Equation (13), we get 

( )
2

2

0

1 2 1.992 2 0.524d 9.176= + + =∫g z               (29) 

By subsisting (29) in (21) we get  

( ) [ ]1 3 9.176 18.336 41.6 207.336τΦ ≤ + + =E . 

Case 2: if we take: ( ) ( )( )
3

2
2 2

1
θ ψ

=

= < −∑ 

i
i

i
M x p G x  and  

( ) ( )( )
3

2 1
2 2 1

1
θ ψ+

+
=

= > −∑ i
i

i
B x p G x . By the same way for chosen  

3λ = , 2θ = , 10=v , 2µ′ = , 30σ ′ = , 3.33=c . 

We can get: ( )2 37.42=M x , ( )2 85.10=B x . 
Then ( )2 762.69φτ ≤E . 

 

Table 1. The upper bound of ( )φτE
.
 

( ).Ω  ( )jB x  ( )jM x  g  σ ′  µ′  c  v  θ  λ  

200.6225 19.2158 9.729 

8.984 30 0.3 3.33 10 2 3 
729.4211 77.015 40.06 

2651.619 281.752 155.693 

8872.5896 901.032 573.24 

201.34 19.384 9.665 

9.016 30 0.5 3.33 10 2 3 
733.34 77.9632 39.7517 

2676.40 287.47 154.084 

9031.99 936.716 464.1078 

204.866 20.2276 9.347 

9.138 30 1.5 3.33 10 2 3 
752.93 82.72 38.199 

2802.6112 316.4488 146.084 

9883.365 1123.585 519.074 

206.56 20.8 9.168 

9.176 30 2 3.33 10 2 3 
762.69 85.10 37.426 

2866.71 331.082 142.11 

10,335.41 1220.95 497.02 

208.0213 21.0704 9.03086 

7.256 30 2.5 3.33 10 2 3 
772.247 88.704 36.6565 

2930.9624 352.896 138.174 

10,798.165 1385.088 475.329 

210.142 21.49 8.8739 

9.32 30 3 3.33 10 2 3 
782.45 89.859 35.889 

2995.97 360.407 134.26 

11,267.1 1419.155 454.034 
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Case 3: if we take: 

( ) ( )( )
4

2
3 2

1
θ ψ

=

= < −∑ 

i
i

i
M x p G x , ( ) ( )( )

4
2 1

3 2 1
1
θ ψ+

+
=

= > −∑ i
i

i
B x p G x . 

By the same way for chosen 3λ = , 2θ = , 10=v , 2µ′ = , 30σ ′ = , 
3.33=c . 

we can get: ( )3 142.12=M x , ( )3 331.082=B x . 
Then ( )3 2866.71φτ ≤E . 
Case 4: if we take: 

( ) ( )( )
5

2
4 2

1
θ ψ

=

= < −∑ 

i
i

i
M x p G x , ( ) ( )( )

5
2 1

4 2 1
1
θ ψ+

+
=

= > −∑ i
i

i
B x p G x . 

By the same way for chosen 3λ = , 2θ = , 10=v , 2µ′ = , 30σ ′ = , 
3.33=c . 

We can get: ( )4 497.02=M x , ( )4 1220.95=B x . 
Then ( )4 10335.41φτ ≤E . If we want to see the effect µ′  on the search plan, 

choose 3λ = , 2θ = , 10=v , 30σ ′ = , 3.33=c  as constants and give dif-
ferent values to µ′ , and for each chosen we calculate the values  

( ) ( ), , 1, 2,3, 4=j jB x M x j  and corresponding values of ( ).Ω , see Table 1, in 
this table we can determine a search plane which make the value of the upper 
bound of ( )φτE  is small. In future study we can do a program in order to get 
the search plan for different values of , , , , ,λ θ ν σ µ′ ′c . 

6. Conclusion 

In this paper, we investigated the search model for a lost target whose truncated 
Brownian motion is on a real line, and the expected value of the first meeting 
between the searcher and target is studied. Also the existence of the optimal 
search plan that minimizes this expected value is proved. The search model, 
when the lost target follows truncated Brownian motion on one of finite number 
of disjoint linear lines will be investigated in the future. 
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