On the Increments of Stable Subordinators

Abdelkader Bahram¹², Bader Almohaimeed²

¹Department of Mathematics, Djillali Liabes University, Sidi-Bel-Abbes, Algeria
²Department of Mathematics, Faculty of Science, Qassim University, Saudi Arabia
Email: menaouar_1926@yahoo.fr, bsmhiemied@qu.edu.sa

Abstract

Let \(\{X(t), t \geq 0\} \) be a stable subordinator defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and let \(a_t \) for \(t > 0 \) be a non-negative valued function. In this paper, it is shown that under varying conditions on \(a_t \), there exists a function \(\lambda_p(t) \) such that

\[
\liminf_{t \to \infty} \frac{X(t + a_t) - X(t)}{\lambda_p(t)} = 1 \quad \text{a.s.},
\]

where \(\lambda_p(t) = \theta_a a_t^{\frac{1}{\alpha}} \left(\log \frac{t}{a_t} + \beta \log \log t + (1 - \beta) \log \log a_t \right)^{\frac{\alpha - 1}{\alpha}} \), \(0 \leq \beta \leq 1 \),

\[
\theta_{\alpha} = \left(B(\alpha) \right)^{\frac{1 - \alpha}{\alpha}} \quad \text{and} \quad B(\alpha) = (1 - \alpha) a^{\frac{\alpha}{1 - \alpha}} \left(\cos \left(\frac{\pi \alpha}{2} \right) \right)^{\frac{1}{\alpha - 1}}.
\]

Keywords

Increments, Stable Subordinators, Iterated Logarithm Laws

1. Introduction

Let \(\{X(t), t \geq 0\} \) be a stableordinator with exponent \(\alpha \) with \(0 < \alpha < 1 \), defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Let \(a_t \) for \(t > 0 \) be a non-negative valued function and \(Y(t) = X(t + a_t) - X(t), t > 0 \). Define

\[
\lambda_p(t) = \theta_a a_t^{\frac{1}{\alpha}} \left(\log \frac{t}{a_t} + \beta \log \log t + (1 - \beta) \log \log a_t \right)^{\frac{\alpha - 1}{\alpha}},
\]

where \(0 \leq \beta \leq 1 \),

\[
\theta_{\alpha} = \left(B(\alpha) \right)^{\frac{1 - \alpha}{\alpha}} \quad \text{and} \quad B(\alpha) = (1 - \alpha) a^{\frac{\alpha}{1 - \alpha}} \left(\cos \left(\frac{\pi \alpha}{2} \right) \right)^{\frac{1}{\alpha - 1}}.
\]
For any value of t, the characteristic function of $X(t)$ is of the form

$$E(e^{iuX(t)}) = \exp\left(-\frac{1}{2} - \frac{u}{\tan \left(\frac{\pi \alpha}{2}\right)}\right), \quad 0 < \alpha < 1.$$

Limit theorems on the increments of stable subordinators have been investigated in various directions by many authors [1]-[6]. Among the above many results, we are interested in Fristedt [4] and Vasudeva and Divanji [3] whose results are the following limit theorems on the increments of stable subordinators.

Theorem 1 ([4])

$$\liminf_{t \to \infty} \frac{1}{t} \left(\log \log t\right)^{-1/\alpha} \frac{X(t)}{t} = 1 \quad \text{almost surely (a.s.).}$$

Theorem 2 ([3]) Let $0 < a$, for $t > 0$, be a non-decreasing function of t such that

(i) $0 < a \leq t$ for $t > 0$,

(ii) $a \to \infty$ as $t \to \infty$, and

(iii) a/t is non-increasing. Then

$$\liminf_{t \to \infty} \frac{X(t + a) - X(t)}{\xi(t)} = 1 \quad \text{a.s.,}$$

where $\xi(t) = \theta_a a^{-\alpha} \left(\log \frac{t}{a} + \log \log t\right)^{-\alpha/\alpha}.$

In this paper, our aim is to investigate Liminf behaviors of the increments of Y. We establish that, under certain conditions on a,

$$\liminf_{t \to \infty} \frac{Y(t)}{\lambda_\beta(t)} = 1 \quad \text{a.s.,}$$

where $Y(t) = X(t + a) - X(t)$.

Throughout the paper c and k (integer), with or without suffix, stand for positive constants. i.o. means infinitely often. We shall define for each $u \geq 0$ the functions $\log u = \log (\max(u, 1))$ and $\log \log u = \log \log (\max(u, 3))$.

2. Main Result

In this section, we reformulate the result obtained in Theorem 2 and establish our main result using $\lambda_\beta(t)$ with $0 \leq \beta \leq 1$ instead of $\xi(t)$.

Theorem 3 Let $a, \ t > 0$, be a non-decreasing function of t such that

(i) $0 < a \leq t$ for $t > 0$,

(ii) $a \to \infty$ as $t \to \infty$, and

(iii) a/t is non-increasing. Then

$$\liminf_{t \to \infty} \frac{Y(t)}{\lambda_\beta(t)} = 1 \quad \text{a.s.}$$

Remark 1 Let us mention some particular cases

1. For $a = t$ we obtain Fristedt’s iterated logarithm laws (see Theorem 1).
2. If $\beta = 1$ we have Vasudeva and Divanji theorem (see Theorem 2).
3. If $\beta = 0$ under assumptions (i), (ii) and (iii) of Theorem 3 we also have

$$\liminf_{t \to \infty} \frac{Y(t)}{\lambda_{\beta}(t)} = 1 \quad \text{a.s.}$$

In order to prove Theorem 3, we need the following Lemma

Lemma 1 (see [3] or [7]) Let X be a positive stable random variable with characteristic function

$$E\left(\exp \{iuX\} \right) = \exp \left\{ -\left|\mu\right|^\alpha \left(1 - \frac{iu}{|\mu|} \tan \left(\frac{\pi\alpha}{2} \right) \right) \right\}, \quad 0 < \alpha < 1.$$

Then, as $x \to 0$,

$$P\left(X \leq x\right) = \frac{\chi_{\alpha(1-\alpha)}}{\sqrt{2\pi B}\left(\alpha\right)} \exp \left\{ -B\left(\alpha\right) \frac{x^\alpha}{\alpha-1}\right\}$$

where

$$B\left(\alpha\right) = (1-\alpha)\alpha^{-\alpha} \left(\cos \left(\frac{\pi\alpha}{2} \right) \right)^{1-\alpha}.$$

Proof of Theorem 3. Firstly, we show that for any given $\varepsilon > 0$, as $t \to \infty$,

$$P\left(Y(t) \leq (1+\varepsilon)\lambda_{\beta}(t) \ i\alpha\right) = 1. \quad (3)$$

Let u_k be a number such that $a_{u_k} > 1$. Define a sequence (u_k) through $u_{k+1} = u_k + a_{u_k}$, for $k = 1, 2, \cdots$. Now we show that

$$P\left(Y(u_k) \leq (1+\varepsilon)\lambda_{\beta}(u_k) \ i\alpha\right) = 1.$$

From Mijhneer [8], we have

$$P\left(Y(u_k) \leq (1+\varepsilon)\lambda_{\beta}(u_k) \right) = P\left(X(1) \leq \frac{(1+\varepsilon)\lambda_{\beta}(u_k)}{a_{u_k}^{\alpha-1}} \right). \quad (4)$$

But

$$\frac{\lambda_{\beta}(u_k)}{a_{u_k}^{\alpha-1}} = \theta_x \left(\log \frac{u_k}{a_{u_k}} + \beta \log\log u_k + (1-\beta) \log\log a_{u_k} \right)^{\frac{\alpha-1}{\alpha}}.$$

Applying Lemma 1 with

$$x = (1+\varepsilon)\theta_x \left(\log \frac{u_k}{a_{u_k}} + \beta \log\log u_k + (1-\beta) \log\log a_{u_k} \right)^{\frac{\alpha-1}{\alpha}},$$

one can find a k_0 such that, for all $k \geq k_0$,.
\[P \left(X(1) \leq \frac{(1+\varepsilon)\lambda_\beta(u_k)}{a_{n_k}} \right) \]

\[\geq \frac{c_0}{2 \left(\log \left(\frac{u_k}{a_{n_k}} \right) \left(\log a_{n_k} \right)^{1-\beta} \right)^{1/2}} \]

\[\times \exp \left\{ -(1+\varepsilon)^{(a-1)} \log \left(\frac{u_k}{a_{n_k}} \right) \left(\log a_{n_k} \right)^{1-\beta} \right\}, \]

where \(c_0 \) is some positive constant. Notice that

\[(1+\varepsilon)^{\frac{\alpha}{a-1}} = (1-\varepsilon_1) < 1 \] for some \(\varepsilon_1 > 0. \)

Hence

\[P \left(X(1) \leq \frac{(1+\varepsilon)\lambda_\beta(u_k)}{a_{n_k}} \right) \]

\[\geq \frac{c_0}{2 \left(\log \left(\frac{u_k}{a_{n_k}} \right) \left(\log a_{n_k} \right)^{1-\beta} \right)^{1/2}} \left(\frac{a_{n_k}}{u_k} \right) \]

\[\times \left(\frac{u_k}{a_{n_k}} \right)^{\varepsilon_k} \frac{1}{\left(\log u_k \right)^{\beta} \left(\log a_{n_k} \right)^{1-\beta}^{(1-\varepsilon)}} \]

\[= \frac{c_0}{2 \left(\log \left(\frac{u_k}{a_{n_k}} \right) \left(\log a_{n_k} \right)^{1-\beta} \right)^{1/2}} \left(\frac{u_{k+1} - u_k}{u_k} \right) \]

\[\times \left(\frac{u_k}{a_{n_k}} \right)^{\varepsilon_k} \frac{1}{\left(\log u_k \right)^{\beta} \left(\log a_{n_k} \right)^{1-\beta}^{(1-\varepsilon)}}. \]

Let \(l_k = \frac{u_k}{a_{n_k}} \) and \(m_k = \left(\log u_k \right)^{\beta} \left(\log a_{n_k} \right)^{1-\beta} \). Note that \(l_k \) is non-decreasing and \(m_k \rightarrow \infty \) as \(k \rightarrow \infty \). In turn one finds a \(k_i \geq k_{n_i} \) such that

\[\frac{l_{k_i}^{m_{k_i}}}{\left(\log l_{k_i} m_{k_i} \right)^{1/2}} \geq 1, \] whenever \(k \geq k_i. \)

Therefore, for all \(k \geq k_i \), we have
Observe that

\[
\int_{t_i}^\infty \frac{dr}{r \log t} \leq \sum_{k=i}^\infty \frac{(u_{k+1} - u_k)}{u_k \log u_k}.
\]

(6)

From the fact that \(\int_{t_i}^\infty \frac{dr}{r \log t} = \infty \) and from (4), (5), and (6) one gets

\[
\sum_{k=1}^\infty P(Y(u_k) \leq (1 + \varepsilon) \lambda_\beta(u_k)) = \infty.
\]

Observe that \(\{Y(u_k)\} \) is a sequence of mutually independent random variables (for, \(u_{k+1} = u_k + a_{u_k} \)) and by applying Borel-Cantelli lemma, we get

\[
P(Y(u_k) \leq (1 + \varepsilon) \lambda_\beta(u_k) \ i.o. = 1
\]

which establishes (3).

Now we complete the proof by showing that, for any \(\varepsilon \in (0, 1) \),

\[
P(Y(t) \leq (1 - \varepsilon) \lambda_\beta(t) \ i.o. = 0.
\]

(7)

Define a subsequence \(\{t_k\} \), such that

\[
a_{u_k} = (t_{k+1} - t_k) \left(\frac{(1 - \beta)(1 + \varepsilon)}{\log t_k} \right)^{1-\beta}, \quad k = 1, 2, \ldots
\]

(8)

and the events \(A_k \) and \(B_k \) as

\[
A_k = \{Y(t) \leq (1 - \varepsilon) \lambda_\beta(t)\}
\]

and

\[
B_k = \left\{ \inf_{t_k \leq t \leq t_{k+1}} Y(t) \leq (1 - \varepsilon) \lambda_\beta(t_{k+1}) \right\}, \quad k = 1, 2, \ldots
\]

Note that

\[
(A_k \ i.o., t \to \infty) \subset (B_k \ i.o., k \to \infty).
\]

Further, define

\[
C_k = \left\{ X(t_k + a_{u_k}) - X(t_{k+1}) \leq (1 - \varepsilon) \lambda_\beta(t_{k+1}) \right\}
\]

and observe that

\[
(B_k \ i.o., k \to \infty) \subset \left(C_k \ i.o., k \to \infty \right)
\]

Hence in order to prove (7) it is enough to show that

\[
P(C_k \ i.o.) = 0.
\]

(9)

We have
\[P\left(X(t_k + a_k) - X(t_{k+1})\right) \leq (1 - \epsilon) \lambda_p(t_{k+1}) = P\left(X(1) \leq \frac{(1 - \epsilon) \lambda_p(t_{k+1})}{(a_k + t_k - t_{k+1})^{\alpha/\alpha}}\right) \]

and

\[\frac{(1 - \epsilon) \lambda_p(t_{k+1})}{(a_k + t_k - t_{k+1})^{\alpha/\alpha}} = (1 - \epsilon) \theta_a \left(\frac{a_{k+1}}{a_k} \right)^{1/\alpha} \left(\log \left(\frac{t_{k+1} \left(\log t_{k+1} \right)^{\beta} \left(\log a_k \right)^{1 - \beta}}{a_k} \right) \right)^{(\alpha - 1)/\alpha}. \]

The fact that \(a_k t_k \) is non-increasing as \(t \to \infty \) implies that

\[\frac{a_{k+1}}{t_{k+1}} \leq \frac{a_k}{t_k} \quad \text{or} \quad \frac{a_{k+1}}{a_k} \leq \frac{t_{k+1}}{t_k}. \]

Hence for a given \(\epsilon > 0 \) satisfying \((1 - \epsilon)(1 + \epsilon)^{\alpha/\alpha} < 1 \), there exists a \(k_2 \) such that

\[a_{k+1}/a_k \leq (1 + \epsilon_k), \quad \text{for all } k \geq k_2. \]

Let \((1 - \epsilon)(1 + \epsilon)^{\alpha/\alpha} = (1 - \epsilon_2). \) Then, for \(k \geq k_2, \)

\[P(C_k) \leq P\left(X(1) \leq (1 - \epsilon_2) \theta_a \left(\frac{a_{k+1}}{a_k} \right)^{1/\alpha} \left(\log \left(\frac{t_{k+1} \left(\log t_{k+1} \right)^{\beta} \left(\log a_k \right)^{1 - \beta}}{a_k} \right) \right)^{(\alpha - 1)/\alpha}. \right) \]

From lemma 1, we can find a \(k_3 \geq k_2 \) such that for all \(k \geq k_3, \)

\[P(C_k) \leq c_1 \left(\log \left(\frac{t_{k+1} \left(\log t_{k+1} \right)^{\beta} \left(\log a_k \right)^{1 - \beta}}{a_k} \right)^{1/\alpha} \right)^{1/2} \times \exp \left((1 - \epsilon_2)^{\alpha/\alpha} \left(\log \left(\frac{t_{k+1} \left(\log t_{k+1} \right)^{\beta} \left(\log a_k \right)^{1 - \beta}}{a_k} \right)^{1/\alpha} \right) \right), \]

where \(c_1 \) is a positive constant.

Let \((1 - \epsilon_2)^{1/\alpha} = (1 + \epsilon_3), \quad \epsilon_3 > 0. \) Then, for all \(k \geq k_3, \)

\[P(C_k) \leq c_1 \left(\log \left(\frac{t_{k+1} \left(\log t_{k+1} \right)^{\beta} \left(\log a_k \right)^{1 - \beta}}{a_k} \right)^{1/\alpha} \right)^{1/2} \left(\frac{a_{k+1}}{a_k} \right)^{(1 + \epsilon_3)} \times \left(\left(\log t_{k+1} \right)^{\beta} \left(\log a_k \right)^{1 - \beta} \right)^{(1 + \epsilon_3)} \]

Since

\[\left(a_{k+1}/t_{k+1} \right)^{(1 + \epsilon_3)} \leq \left(a_k/t_k \right)^{(1 + \epsilon_3)} \leq a_k/t_k, \]

then from (8) and for all \(k \geq k_3, \) we have

\[P(C_k) \leq c_1 \left(\log \left(\frac{t_k \left(\log t_k \right)^{\beta} \left(\log a_k \right)^{1 - \beta}}{a_k} \right)^{1/\alpha} \right)^{1/2} \left(\frac{a_k}{t_k} \right)^{(1 + \epsilon_3)} \times \left(\left(\log t_k \right)^{\beta} \left(\log a_k \right)^{1 - \beta} \right)^{(1 + \epsilon_3)}. \]
\[
P(C_i) \leq c_i \left(\frac{t_{k+1} - t_k}{\log t_k} \right)^\beta \left(\frac{\log a_{k+1}}{\log a_k} \right)^{1/2} \left(\frac{t_{k+1} - t_k}{t_k} \right)
\]

\[
\leq c_i \left(\frac{t_{k+1} - t_k}{t_k} \right) \frac{1}{(\log t_k)^{1/\lambda}}.
\]

Observe that
\[
\int_{t_k}^\infty \frac{dr}{r^{1/\lambda}(\log r)^{1/\lambda}} \geq \sum_{k=0}^\infty \frac{(t_{k+1} - t_k)}{t_{k+1}(\log t_{k+1})^{1/\lambda}},
\]

and
\[
\frac{(t_{k+1} - t_k)}{t_{k+1}(\log t_{k+1})^{1/\lambda}} = \frac{(t_{k+1} - t_k)}{t_k (\log t_k)^{1/\lambda}}.
\]

Hence
\[
\sum_{k=0}^\infty \frac{(t_{k+1} - t_k)}{t_k (\log t_k)^{1/\lambda}} < \infty.
\]

Now we get \(\sum_{k=0}^\infty P(C_i) < \infty \), which in turn establishes (9) by applying to the Borel-Cantelli lemma. The proof of Theorem 3 is complete.

3. Conclusion

In this paper, we developed some limit theorems on increments of stable subordinators. We reformulated the result obtained by Vasudeva and Divanji [3], and established our result by using \(\lambda_P(t) \).

Acknowledgments

Our thanks to the experts who have contributed towards development of our paper.

References

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 24, 63-70.
https://doi.org/10.1007/BF00532463

https://doi.org/10.1007/BF02362699

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact am@scirp.org