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Abstract 
This paper studies the problem of tensor principal component analysis (PCA). 
Usually the tensor PCA is viewed as a low-rank matrix completion problem 
via matrix factorization technique, and nuclear norm is used as a convex ap-
proximation of the rank operator under mild condition. However, most nuc-
lear norm minimization approaches are based on SVD operations. Given a 
matrix m n×∈X  , the time complexity of SVD operation is ( )2O mn , which 

brings prohibitive computational complexity in large-scale problems. In this 
paper, an efficient and scalable algorithm for tensor principal component 
analysis is proposed which is called Linearized Alternating Direction Method 
with Vectorized technique for Tensor Principal Component Analysis 
(LADMVTPCA). Different from traditional matrix factorization methods, 
LADMVTPCA utilizes the vectorized technique to formulate the tensor as an 
outer product of vectors, which greatly improves the computational efficacy 
compared to matrix factorization method. In the experiment part, synthetic 
tensor data with different orders are used to empirically evaluate the proposed 
algorithm LADMVTPCA. Results have shown that LADMVTPCA outper-
forms matrix factorization based method. 
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1. Introduction 

A tensor is a multidimensional array. For example, a first-order tensor is a vec-
tor, a second-order tensor is a matrix, and tensors with three or higher-order are 
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called higher-order tensors. Principal component analysis (PCA) finds a few li-
near combinations of the original variables. The PCA plays an important role in 
dimension reduction and data analysis related research areas [1]. Although the 
PCA and eigenvalue problem for the matrix has been well studied in the litera-
ture, little work has been done on the study of tensor PCA analysis. 

The tensor PCA is of great importance in practice and has many applications, 
such as computer vision [2], social network analysis [3], diffusion Magnetic Re-
sonance Imaging (MRI) [4] and so on. Similar to its matrix form, the problem of 
finding the PCs is related to the most variance of a tensor  , which can be 
specifically formulated as [5]: 
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where ⋅  denotes the inner product between two tensors, and the inner product 
of two tensors 1 2

1 2, mn n n× × ×∈ 
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And ⊗  denotes the outer product between vectors, i.e. [6] [7]: 
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The above solution is called the leading PC. Once the leading PC is found, the 
other PCs can be computed sequentially via the so-called deflation technique. 
For example, the second PC could be gotten in the following ways: 1) Generate 
the first leading PC of the tensor, 2) Subtract the first leading PC of the tensor 
from the original tensor, 3) Generate the leading PC of the rest tensor. This 
leading PC is noted as the second PC of the original Tensor. And the rest PCs 
could be obtained in a similar way [8] [9]. The deflation procedure is presented 
in Algorithm 1. Although theoretical analysis of deflation procedure for matrix 
is well established (see [10] and the references therein for more details), the ten-
sor counterpart has not been completely studied. However, the deflation process 
does provide an efficient heuristic way to compute multiple principal compo-
nents of a tensor. The time consumption of different scaled between full SVD 
and leading PC is shown in Table 1. When the size of matrix increases, the 
computational cost for leading PC is far less than that of full SVD. Therefore,  

 
Table 1. The comparison of running time (seconds) between full SVD and leading PC. 

Scale 100 × 100 1000 × 1000 1000 × 5000 5000 × 5000 5000 × 10,000 10,000 × 10,000 

Full SVD 1.70e−3 0.13 1.26 22.38 55.64 263.03 

Leading PC 4.13e−4 0.01 0.09 0.52 1.13 2.27 
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although more iterations are needed for greedy atom decomposition methods to 
reach convergence, their total computational costs are much less compared with 
SVD based matrix completion methods. Thus, in the rest of this paper, we focus 
on finding the leading PC of a tensor. 

If   is a super-symmetrical tensor, problem (2) can be reduced to [9]  

( )min ,

1.
x

x x x

st x

− ⋅ ⊗ ⊗ ⊗

=


                   (5) 

In fact, the algorithm for supersymmetric tensor PCA problem can be ex-
tended to tensors that are not super-symmetric [5]. Therefore, this paper focuses 
on the PCA analysis of super-symmetric tensors. Problem (5) is NP-hard and is 
known as the maximum Z-eigenvalue problem. Note that a variety of eigenva-
lues and eigenvectors of a real symmetric tensor were introduced by Lim [11] 
and Qi [9] independently in 2005. Since then, various methods have been pro-
posed to find the Z-eigenvalues, which however may correspond only to local 
optimums. 

Another research line, like CANDECOMP (canonical decomposition) and 
PARAFAC (parallel factors) propose imposing rank-one constraint of tensor to 
realize the tensor decomposition:  
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The difficulty of problem (6) lies in the dealing of the rank constraint 
( )rank 1= . Not only the rank function itself is difficult to deal with, but also 

determining the rank of a specific given tensor is already a difficult task, which is 
NP-hard in general. One way to deal with the difficulty is to convert the tensor 
optimization problem into a matrix optimization problem. [5] proved that if the 
tensor is rank-one, then the embedded matrix must be rank-one too, and vice 
versa. The tensor PCA problem can thus be solved by means of matrix optimiza-
tion under a rank-one constraint. For low-rank matrix optimization problem, a 
nuclear norm penalty is often adopted to enforce a low-rank solution. However, 
most nuclear norm minimization approaches are based on SVD operations. 
Given a matrix m n×∈X  , the time complexity of SVD operation is ( )2O mn , 
which will bring prohibitive computational complexity in large problems (refer 
to Table 1). 

To avoid the matrix SVD operation, we reformulate the problem (5) with 
vectorized technique, and consider the following optimization problem: 



H. Y. Fan et al. 
 

80 

( ) ( )1 2

1 2

, , ,

1 2

min Vec Vec ,

1, 1, 2, , ,

m

m

x x x

i

m

x x x

st x i m

x x x

− ⋅ ⊗ ⊗ ⊗

= =

= = =











             (7) 

where ( )Vec   is the vectorized form of tensor  . Related stream of algo-
rithms to solve problem (7) are the ADM-type algorithms [12] [13]. Such a kind 
of algorithms has recently been shown effective to handle some non-convex op-
timization problems [14] [15]. However, the results of [14] require a lot 
well-justified assumption. Besides, the subproblems in ADM are easily solvable 
only when the linear mappings in the constraints are identities. To address this 
issue, [16] proposed a linearized ADM (LADM) method by linearizing the qua-
dratic penalty term and adding a proximal term when solving the subproblems. 
In this paper, we adopt LADM algorithm for solving the optimization problem 
(7). 

The rest of this paper is organized as follows. In Section 2, a brief review of 
LADM algorithm is firstly given. And then, the detailed description of using 
LADM with vectorized technique to solve tensor principal component problem 
is presented. Section 3 is the experiment part, in which synthetic tensor data 
with different orders are used to empirically evaluate the proposed algorithm 
LADMVTPCA. The last section gives concluding remarks. 
 

Algorithm 1     Deflation Procedure 

Input: 0Σ = ∅ , 0V = ∅ , 0 =   
Output: Σ , V  
Initialization: Setup parameters 
while (True) do 

Update 1kλ +  and 1kx +  by solving (7) 
Update 1 1k k kx+ +Σ = Σ ∪ , 
Update 1 1k k kV V λ+ += ∪ , 
Update 1 1 1 1k k k k kx xλ+ + + += − ⊗  , 

1k k= + , 
if (stopping criteria satisfied) then 

Break. 
end if 

end while 

2. Linearized Alternating Direction Method (LADM) 

In this section, we first review the Linearized Alternating Direction Method of 
Multipliers (LADM) [16], and then we present the linearized ADM for solving 
tensor principal component problem. 

2.1. Algorithm 

Considering the convex optimization problem,  

( ) ( )
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where dx∈ , ly∈ , p dA ×∈ , p lB ×∈ , and pb∈ . It is well known 
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that problem (8) can be solved by the standard ADMM with typical iteration 
written as  

( )1 : arg min , , ,k k k

x
x x yβ λ+ =                     (9) 

( )1 1: ,k k k kAx Byλ λ β+ += − −                   (10) 

( )1 1 1: arg min , , ,k k k

y
y x yβ λ+ + +=                   (11) 

where the augmented Lagrangian function ( ), ,x yβ λ  is defined as  

( ) ( ) ( ) 2, , , .
2

x y l x r y Ax By Ax Byβ
βλ λ= + − − + −        (12) 

The penalty parameter 0β >  is a constant dual step-size. The inefficient of 
ADMM inspires a linearized ADMM algorithm [16] by linearizing ( )l x  in the 
x -subproblem. Specifically, it considers a modified augmented Lagrangian 
function:  
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Then the LADM algorithm solves problem (8) by generating a sequence  

{ }1 1 1, ,k k kx zλ+ + +  as follows:  

( )1 : arg min , , , ,k k k k

x
x x x yβ λ+ =                   (14) 

( )1 1: ,k k k kAx Byλ λ β+ += − −                    (15) 

( )1 1 1: arg min , , , .k k k k

y
y x x yβ λ+ + +=                  (16) 

The framework of linearized ADMM is given in Algorithm 2. 
 

Algorithm 2     LADM 

Choose the parameter β  such that Equation (9) is satisfied; 

Initialize an iteration counter 0k ←  and a bounded starting point ( )0 0 0, ,x yλ ; 

repeat 
Update 1kx +  according to Equation (14); 

( )1 1k k k kAx Byλ λ β+ +← − − ; 

Update 1ky +  according to Equation (16); 
if some stopping criterion is satisfied; then 

Break; 
else 

1k k← + ; 
end if 

until exceed the maximum number of outer loop. 

2.2. Linearized ADM with Vectorized Technique 

In the following of this section, we present the linearized ADM method to solve 
the leading principal component problem. Without loss of generality, we con-
sider a 4-th order tensor in this section for the leading principal component 
problem with rank-one constraint, we formulated the original problem as prob-
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lem (17). 
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where , , ,x y z w  are variables updated from iteration to iteration, the constraints 
, ,x y y z z w= = =  limite the variables are close to each other and finally overlap, 

and the constraints 2

2 2 2 21,  1,  1,  1x y z w= = = =  make the solution ro-
bust to the scaling. After adding the constraints into the loss function, the prob-
lem (17) is equivalently reformed as  
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where { }2 1x x= =  is a unit ball and ρ  is a parameter to balance the ob-
ject loss and the smooth terms. It should be noted that tensors with different or-
ders could be deduced in a similarly way. The augmented Lagrangian function 
( )1 2 3 4, , , , , , , ,x y z w λ λ λ λ ρ  is defined as  
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where , , ,x y z w∈ . In the k -th iteration, we denote the variables by  
, , ,k k k kx y z w , and kρ . Given , , , ,k k k k kx y z w ρ , iterates as follows  

 
Algorithm 3     Algorithm for solving program (18) 

Input: 0x , 0y , 0z , 0w , 0ρ  
Output: x , y , z , w  
Initialization: Setup parameters 
while (Stop == False) do 

Update 1kx +  by solving (20a) 
Update 1ky +  by solving (20b), 
Update 1kz +  by solving (20c), 
Update 1kw +  by solving (20d), 
Update 1 2 3 4, , ,λ λ λ λ , 

Update 1kρ +  by (20f), 
1k k= + , 

if Stopping condition satisfied 
then 

Stop = True 
end if 

end while 
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In the following part, we show how to solve these subproblems in the algo-
rithm through a linearized way with vectorized technique. After all these sub-
problems solved, we will give the framework of the algorithm that summarize 
our algorithm for solving (18) in Algorithm 3. In order to achieve the saddle fast 
and improve the quality of the solution, we adjust the parameter ρ  adaptively 
to balance the decrease speed of these two parts. 

In a traditional way, 1kx +  is obtained by minimizing   with respect to va-
riable x  while , , ,y z w ρ  are fixed with the value , , ,k k k ky y w ρ  respectively, 
and the Lagrange function is put forward as follow: 
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We slightly modify the above LADM algorithm by imposing a proximal term  
2

2
kx xδ

−  on the subproblem of x  and update 1kx +  via 
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The minimum value will be obtained while the derivative of   with respect 
to x  setting to zero, and utilize this condition, we obtain an equation which 
implies the solution of the subproblem  

( ) ( )
( ) ( )

1 40 Vec Vec ,

      2 .

k k k

k k k k

y z w x

x x x y w

λ λ

δ ρ

∈ ⋅ ⊗ ⊗ + −

+ − + − −


           (23) 

where ( )Vec   is the vectorized form of tensor  , after solving the above 
equation, we get the 1kx + . For parsimony purpose, we just present the solving of 
the first subproblem here. 

3. Numerical Experiments 

In this subsection, we report the numerical experiments and results on Algorithm 
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3 to solve the tensor leading PC problem (18). As the ADMPCA [5] is one of 
these fastest methods based on matrix factorization and outperforms the SVD 
based methods, we will mainly focus on the comparison of our approach with 
ADMPCA proposed in [5]. The MATLAB codes of ADMPCA were downloaded 
from Professor Shiqian Ma’s [5] homepage. 

We apply our approach to synthetic datasets. The data is generated with uni-
form distributed eigen vectors ix  and eigen value iλ , and the tensor is gener-
ated through the summation 1

n
i i i ii v v vλ

=
= ∗ ⊗ ⊗∑  , in which the rank of 

tensor is controlled by the number of eigen vectors n , the order of tensor is 
controlled by number of iv  appear in the outer product, and the dimension of 
tensor is controlled by the dimension of the vector iv .  

We compare LADMVTPCA with ADMPCA for solving problem (18). In Ta-
ble 2, we report the results on randomly created tensor with order 4=  and 
dimension 4,8,16,32= . “objDiff” is used to denote the relative difference of the 
solutions obtained by ADMPCA and LADMVTPCA,  

{ }
LADMVTPCA ADMPCA

ADMPCA

objDiff
max 1,

F

F

−
=
 


. “objVal” is used to denote the relative dif-

ference of the objective eigen vectors, 
{ }

LADMVTPCA ADMPCA

ADMPCA

objVal
max 1,

F

F

v v
v
−

= . “Time” 

 
Table 2. Results of different algorithms for solving randomly generated tensor’s leading 
principal component. 

  ADMPCA LADMVTPCA 

Inst.# objDiff. objVal Time objVal Time 

Dimension n = 4 

1 2.92e−06 1.07e+02 6.62e-01 1.07e+02 2.00e−03 

2 7.29e−04 1.00e+02 6.57e-01 1.00e+02 3.01e−03 

3 3.73e−04 1.00e+02 7.02e-01 1.00e+02 1.01e−03 

4 4.57e−05 1.00e+02 6.85e-01 1.00e+02 1.92e−03 

Dimension n = 8 

1 2.64e−06 1.00e+02 4.55e+00 1.00e+02 3.01e−03 

2 1.66e−08 1.00e+02 4.48e+00 1.00e+02 3.00e−03 

3 1.58e−05 1.00e+02 4.16e+00 1.00e+02 3.00e−03 

4 1.32e−07 1.00e+02 4.42e+00 1.00e+02 3.00e−03 

Dimension n = 16 

1 2.89e−04 1.04e+02 4.45e+01 1.04e+02 1.10e−02 

2 2.13e−07 1.00e+02 4.65e+01 1.00e+02 7.00e−03 

3 1.29e−05 1.00e+02 4.61e+01 1.00e+02 1.30e−02 

4 2.63e−07 1.00e+02 4.64e+01 1.00e+02 1.18e−02 

Dimension n = 32 

1 3.40e−09 1.00e+02 2.48e+03 1.00e+02 6.77e−01 

2 8.57e−09 1.00e+02 2.40e+03 1.00e+02 7.19e−01 

3 4.69e−06 1.00e+02 2.38e+03 1.00e+02 6.26e−01 

3 2.85e−08 1.00e+02 2.43e+03 1.00e+02 6.80e−01 
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denote the CPU times (in seconds) of ADMPCA and LADMVTPCA, respec-
tively. From Table 2 we can see that, LADMVTPCA produced comparable solu-
tions compared to ADMPCA; however, LADMVTPCA was much faster than 
ADMPCA, especially for large-scale problem, i.e. n = 16, 32. Note that when n = 
16, LADMVTPCA was about 4000 times faster than ADMPCA. 

4. Conclusion 

Tensor PCA is an emerging area of research with many important applications 
in image processing, data analysis, statistical learning, and bio-informatics. In 
this paper, we propose a new efficient and scalable algorithm for tensor principal 
component analysis called LADMVTPCA. A vectorized technique is introduced 
in the processing procedure and linear alternating direction method is used to 
solve the optimization problem. LADMVTPCA provides an efficient way to com-
pute the leading PC. We empirically evaluate the proposed algorithm on synthetic 
tensor data with different orders. Results have shown that LADMVTPCA has 
much better computational cost beyond matrix factorization based method. Es-
pecially for large-scale problems, matrix factorization based method is much 
more time-consuming than our method. 
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