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Abstract 
In this paper, we propose a numerical method based on semi-Lagrangian approach 
for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity 
and stream-function as prognostic variables, two-order centered difference is sug-
gested on the latitude-longitude grid. In our proposed numerical scheme, advection 
terms are expressed in a Lagrangian frame of reference to circumvent the CFL re-
striction. The pole singularity associated with the latitude-longitude grid is eliminat-
ed by a smoothing technique for the initial flow. Error analysis is provided for the 
numerical scheme.  
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1. Introduction 

The quasi-geostrophic (QG) equations on a sphere are the major system of interest in 
weather forecasting and climate prediction [1], where the horizontal velocities are ap-
proximately geostrophic for extratropical synoptic-scale motions. It is important to in-
vestigate the QG equations because of both its intrinsic mathematical interest and its po-
tential applications in dynamic meteorology and oceanography. The two-dimensional 
QG equations are originally established in modeling rotating fluids on the earth surface 
[2]. Over the years, the study of two-dimensional QG equations has been an active re-
search field; see, e.g., [3] [4]. However, in spite of quite a number of contributions 
dealing with two-dimensional QG equations, there is little research on the evolution of 
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two-dimensional QG equations on a sphere. 
Analytic solutions are rarely available due to the relatively complex nature of QG 

equations on a sphere; numerical simulations play an important role in the exploration 
of the QG equations, for example, [5] [6] [7]. The accuracy of numerical investigation 
on QG models depends on many factors, including the knowledge of the initial state, 
the numerical methods employed, the resolution and so on. Some numerical methods 
based on finite difference methods can be applied to solve the QG equations on a 
spherical coordinate that may suffer from the pole singularity. 

Some efforts have made to alleviate the difficulties of the pole singularity. Kurihara 
[8] proposed a spherical grid system whose grid density on the globe is almost homo-
geneous, and the number of grid points per line of latitude near the poles is reduced. If 
the equations written in such coordinates are directly transformed into finite differenc-
es, excessive errors are committed in grids [9] [10]. Some slight alteration was made in 
Kurihara’s grid which alleviated the troubles [10] [11]. On the other hand, in many 
global atmospheric applications, spatial discretization schemes are based on the spectral 
transform methods, in which solution fields are expressed as spherical harmonic ex-
pansions. Since the spherical harmonics are the natural representation of a two-dimen- 
sional field on the surface of a sphere, the spectral approach may provide better accu-
racy for the pole problem. The spectral transform method seems ideal for the spherical 
domain; however, it is too expensive for long time simulations. Especially at high spa-
tial resolutions, since it requires associated Legendre transforms.  

A framework of semi-Lagrangian semi-implicit methods was developed by Robert 
[12]. It offers another possibility of developing fast numerical schemes for weather 
forecast models in complex systems. Over the years, researchers have devoted much at-
tention to the further development and application of semi-Lagrangian methods. In [13] 
[14], Robert combined the semi-implicit integration scheme with a semi-Lagrangian 
treatment of the advection terms in a barotropic model. Robert et al. [15] extended this 
scheme to a multilevel model. They found that the time step could be increased by a 
further factor over an Eulerian semi-implicit scheme. For improving accuracy, McDo-
nald [16] has incorporated a semi-Lagrangian treatment of advection in an efficient 
two-time-level integration scheme. The accuracy and stability of the semi-Lagrangian 
semi-implicit methods were investigated by McDonald [17]. They showed that there is 
no restriction on the time step when considering the linear advection and following 
certain rules for the interpolation of functions at the trajectory points. Compared with 
Eulerian schemes, they have advantages of their own, such as high efficiency and easy 
to use in problems with nonuniform grids. In addition, semi-Lagrangian methods avoid 
the leading source of nonlinear instability in most wave-propagation problems since the 
nonlinear advection terms appearing in the Eulerian form of the momentum equations 
are eliminated when those equations are expressed in a Lagrangian approach [18]. 
Semi-Lagrangian methods and semi-implicit approach have become one of the most 
popular architectures used in numerical weather forecast and lots of other computa-
tional fluid dynamical applications; see e.g., [19] [20] [21]. 
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In this paper, we consider the following non-dimensional 2D QG equations on a sphere:  

2 2

2

2 2 22

1 1 π π, , π π,
2 2cos cos

1 1 cos 2 sin .
coscos

r

f
t r r

F
r r

θ λ
θ λ λ θθ θ

θ θ
θ θθ λ θ

∂Ψ ∂Φ ∂Ψ ∂Φ ∂Ψ − + = − < < − < < ∂ ∂ ∂ ∂ ∂
 ∂ Φ ∂ ∂Φ Ψ = + − Φ + Ω  ∂ ∂∂  

    (1) 

where Ψ  is the potential vorticity; Φ  is the stream-function; f is an external force; 
Ω  is the rotational speed; rF  is the planetary Froude number. r is the radius of 
sphere. It is challenging when initial flow is related to longitude, the discrete equation 
contains the 1 cosθ  terms. It gives rise to larger truncation errors and reducing the 
order of convergence by one near the poles when θ  approaches π 2± . As the sti-
mulation propagated, these larger errors propagated over the sphere and eventually 
contaminated the rest of the solution. We provide a smoothing technique for the initial 
flow to overcome the above difficulty. Numerical experiments demonstrate the perfor-
mance of our proposed method and investigate behaviors of QG model with geos-
trophic implications. 

The rest of paper is structured as follows. In Section 2, we present the semi-Lagrangian 
discrete scheme of QG equations on a sphere. In Section 3, we carry out the detailed 
accuracy analysis of the method and explain some details. The conclusions are summa-
rized in Section 4. 

2. Discretization Schemes 

In this section, we introduce the semi-Lagrangian scheme for QG equations. We will 
focus on the time discretization and ignore the space variable for the moment. The first 
equation of QG model is expressed as  

d ,
d

f
t
Ψ

=                               (2) 

where  

2 2
d 1 1 .
d cos cost t r rθ λθ θ

∂ ∂Φ ∂Φ
= − +
∂ ∂ ∂  

Then the semi-Lagrangian scheme for above equation is  

( )
1

11 .
2

n n
n na d

a df f
t

+
+Ψ −Ψ

= +
∆  

Here subscripts a and d refer to evaluation at an arrival and departure point, respec-
tively. We firstly iteratively calculate departure point using some first guess and an in-
terpolation formula, the order of the interpolation is much less important. So we use 
linear interpolation here. Secondly, an cubic interpolation formula is adopted to eva-
luate Ψ  at upstream point [22]. Finally, evaluate Ψ  at arrival points at time t t+ ∆ . 
By doing so, we have  

2

2

d 1 ,
d cos
d 1 .
d cos

t r

t r

λ
θθ

θ
λθ

∂Φ = − ∂
 ∂Φ =
 ∂

                        (3) 
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Using the two-stage trajectory calculation, Equation (3) can be computed as follows,  

( )
( )

1
2

1
2

, , 2,

, , 2,

, , ,

, , .

n
s i i j

n
s j i j

n

i s s

n

j s s

u t t

v t t

u t t

v t t

λ λ λ θ

θ θ λ θ

λ λ λ θ

θ θ λ θ

+

+

 = − ∆

 = − ∆

  
 = − ∆    


 
= − ∆   

 

                      (4) 

where 2 2

1 1, 
cos cos

u v
r rθ λθ θ

∂Φ ∂Φ
= − =

∂ ∂
. ,λ θ  denote the longitude and latitude of  

the departure point. Comparing to the classical Runge-Kutta midpoint method, a  
slight difference is that the first stage uses ( ) ( ), , , , ,n n

i j i ju t v tλ θ λ θ  rather than 
( ) ( )1 1, , , , ,n n

i j i ju t v tλ θ λ θ+ + ; the latter is more convenient if 1 1,n nu v+ +  is being pre-
dicted at the same time as 1n+Φ . After we located the grid cell containing the departure 
point of the characteristic, we adopt the four (eight) surrounding points in the interpo-
lation scheme ; for grid cells close to the poles this means that we resort to points lo-
cated across the pole. 

Let us introduce, for example, cubic Lagrange interpolation. Set  
,i a ii q j b jj p− = + − = + , where ( ),ii jj  indicates the lower left corner of the cell 

containing the departure point and 0 , 1p q< < . We then define  

( )T
1 2 3 4, , , ,P p p p p=  

( ) ( )
1

1 2
,

6
p p p

p
− −

= −
 

( ) ( ) ( )
2

1 1 2
,

2
p p p

p
+ − −

=
 

( ) ( )
3

1 2
,

2
p p p

p
+ −

=
 

( )( )
4

1 1
6

p p p
p

− +
= −  

and similarly for q. When 1 1jj NY< < − , let ϕ  indicates the variable to be interpo-
lated, we denote  

1, 1 , 1 1, 1 2, 1

1, , 1, 2,

1, 1 , 1 1, 1 2, 1

1, 2 , 2 1, 2 2, 2

.

ii jj ii jj ii jj ii jj

ii jj ii jj ii jj ii jj

ii jj ii jj ii jj ii jj

ii jj ii jj ii jj ii jj

W

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

− − − + − + −

− + +

− + + + + + +

− + + + + + +

 
 
 =  
  
   

With the propositions above, we have  
T T

, ,ii q jj p Q P Wϕ + + =  

alternatively, it can be expanded as follows,  
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, 1 1 1, 1 2 , 1 3 1, 1 4 2, 1

2 1 1, 2 , 3 1, 4 2,

3 1 1, 1 2 , 1 3 1, 1 4 2, 1

4 1 1, 2 2 , 2 3

ii q jj p ii jj ii jj ii jj ii jj

ii jj ii jj ii jj ii jj

ii jj ii jj ii jj ii jj

ii jj ii jj

p q q q q

p q q q q

p q q q q

p q q q

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+ + − − − + − + −

− + +

− + + + + + +

− + +

 = + + + 
 + + + + 
 + + + + 

+ + + 1, 2 4 2, 2 .ii jj ii jjq ϕ+ + + + + 

         (5) 

In the case 1jj = , only the first term on the right hand side of Equation (5) needs to 
be changed as  

1 1 2 2, 2 2 1, 3 2, 4 2 1, .ii NX jj ii NX jj ii NX jj ii NX jjp q q q qϕ ϕ ϕ ϕ+ + + + + + − + + +   

When 1jj NY= − , a similar procedure can be adopted. When 0jj =  (and analo-
gously jj NY= ), the first two terms on the right hand side of Equation (5) should be 
substituted as  

1 1 2 2, 2 2 2 1, 2 3 2, 2 4 2 1, 2

2 1 2 2, 1 2 2 1, 1 3 2, 1 4 2 1, 1 ,

ii NX jj ii NX jj ii NX jj ii NX jj

ii NX jj ii NX jj ii NX jj ii NX jj

p q q q q

p q q q q

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+ + + + + + + + + − +

+ + + + + + + + + − +

 + + + 
 + + + +   

and similarly for the case jj NY= . 
For spatial approximation, we adopt unstaggered grid that is uniform in longitude 

and latitude. Stream-function Φ  and potential vorticity Ψ  are collocated on nodes 
( ), i j  that are the corners of grid cells with spatial increments ,i jx y∆ ∆ . In view of the 
spherical coordinates, the grid is nonuniform in , x y . The size of the cells reduces 
when we move toward the poles. No functional variables are collocated on the poles.  

More specifically, for fixed NX  and NY , we pose 2π π, .
NX NY

λ θ∆ = ∆ =  Note that 

the node ( ), i j  corresponds to spherical coordinates ( ),i jλ θ , where ( )1i iλ λ= − ∆  

( 1i =  corresponding to Greenwich meridian) and π 1
2 2j jθ θ = − + − ∆ 

 
 (

1
2

j =  the 

South Pole, 
1

2
NYj +

=  the Equator and 
1
2

j NY= +  the North Pole) [22]. From the 

second equation of (1) we have  

2
2 2 2

2

1cos cos cos 2 cos sin .
cos rr r F rθ θ θ θ θ

θ θ θλ
∂ Φ ∂ ∂Φ Ψ = + − Φ + Ω ∂ ∂∂  

    (6) 

For the second term of right hand side of Equation (6), we use the following ap-
proximation  

( ) ( )

( )

1 , 1 , 1 , , 1
2 2

2

cos cos
cos .

i j i j i j i jj j
θ θ

θ
θ θ θ

+ −
+ −

   
Φ −Φ − Φ −Φ      ∂ ∂Φ     = ∂ ∂  ∆

      (7) 

With the definition of the discrete operators above, the spatial discretization for (6) is 
defined as follows. When 2 1j NY≤ ≤ − , the second-order centered difference scheme 
for (6) is  
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( )
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,

cos ,
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θ θ θ
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  (8) 

When 1j = , the grid points corresponding to 1j −  located across the pole, the 
modified (8) is  

( )

( )
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1, , 1, 2 2

2 2

2 2
,

cos ,

cos cos
2
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r i j
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θ

θ θ

θ λ θ

θ θ θ

+ + +
+ −

+ −

Ψ

   
Φ −Φ − Φ −Φ      Φ − Φ +Φ    = +

∆ ∆

− Φ + Ω

 (9) 

Similarly when j NY= , the scheme is  

( )
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2
,

cos ,

cos cos
2

cos
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j
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j

j r i j j j

r i j

r F

θ
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θ λ θ

θ θ θ

+ + −
+ −

+ −

Ψ

   
Φ −Φ − Φ −Φ      Φ − Φ +Φ    = +

∆ ∆

− Φ + Ω

 (10) 

3. Error Analysis 

In this section, we will carry out the error estimate of our new algorithm. We let 0f =  
for simplicity. Suppose that ( ),i jλ θΦ  is the sufficiently smooth and continuous solu-
tion. The truncation error E satifies  

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )( )

( ) ( )

1 1
2

1 1 1 1
2 2

2

2 2 2

, 2 , ,

cos

cos , , cos , ,
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cos , 2 cos sin cos , .

i j i j i j

j

i j i j i j i jj j

j r i j j j j

E

r F r r i j

λ θ λ θ λ θ

θ λ

θ λ θ λ θ θ λ θ λ θ

θ

θ λ θ θ θ θ

+ −

+ −
+ −

Φ − Φ +Φ
=

∆

Φ −Φ − Φ −Φ
+

∆

− Φ + Ω − Ψ

   (11) 

Employ Taylor expansion for the terms in the above equation at ( ),i jλ θ , we have  

( ) ( ) ( )2 3 42 3 4

, 1 , 2 3 4 .
2 6 24i j i j

θ θ θφθ
θ θ θ θ+

∆ ∆ ∆∂Φ ∂ ∂ Φ ∂ Φ
Φ ≈ Φ + ∆ + + +

∂ ∂ ∂ ∂
       (12) 

( ) ( ) ( )2 3 42 3 4

, 1 , 2 3 4 .
2 6 24i j i j

θ θ θφθ
θ θ θ θ−

∆ ∆ ∆∂Φ ∂ ∂ Φ ∂ Φ
Φ ≈ Φ −∆ + − +

∂ ∂ ∂ ∂
       (13) 

( ) ( ) ( )2 3 42 3 4

1, , 2 3 4 .
2 6 24i j i j

λ λ λ
λ

λ λ λ λ+

∆ ∆ ∆∂Φ ∂ Φ ∂ Φ ∂ Φ
Φ ≈ Φ + ∆ + + +

∂ ∂ ∂ ∂
       (14) 
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( ) ( ) ( )2 3 42 3 4

1, , 2 3 4 .
2 6 24i j i j

λ λ λ
λ

λ λ λ λ−

∆ ∆ ∆∂Φ ∂ Φ ∂ Φ ∂ Φ
Φ ≈ Φ −∆ + − +

∂ ∂ ∂ ∂
       (15) 

( ) ( ) ( )( )
2

1
2

1 1cos cos sin cos .
2 2 2j j jj

θθ θ θ θ θ
+

   ≈ − ∆ + −       
          (16) 

( ) ( ) ( )( )
2

1
2

1 1cos cos sin cos .
2 2 2j j jj

θθ θ θ θ θ
−

   ≈ + ∆ + − −       
         (17) 

Substituting (12)-(17) into (11), notice that ,i jΦ  is the solution of the equation, it 
follows that  

( ) ( ) ( )
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( )
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22 4

2 2 4
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1 1 2 4
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θ
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∂Φ ∂ Φ∆
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∂ ∂

    ∆∂Φ ∂ Φ  + − ∆ +   ∂ ∂∆   
      ∆ ∆∂ Φ ∂ Φ  + + +         ∂ ∂      

− Φ + ( )

( ) ( ) ( ) ( ) ( )( )

2

4 3
2 2 2 2

4 3 2

sin cos ,

,1 1 1
12cos 6 12
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i j

j

r i j

o
r

θ θ θ

ξ θ
λ θ λ θ

θ λ θ

Ω − Ψ

∂ Φ  ∂ Φ
= − ∆ + + ∆ + ∆ + ∆ ∂ ∂   

Similarly, we consider the truncation error of the semi-Lagrangian discrete scheme. 
The semi-Lagrangian scheme of the first equation in (1) reads  

1

0.
n n
a d

t

+Ψ −Ψ
=

∆  

Here subscript d refers to evaluation at an departure point. By expanding ( ), , tλ θΨ  
in a Taylor series about the estimated departure point and evaluating an expression of 
the form  

( )1
, ,

,

1 1 ,
s

n n
i j d d k i q l j p k

k l r
T

t t
β+

− + − +
=−

 
= Ψ −Ψ + Ψ − Ψ ∆ ∆  

∑             (18) 

where ( ), , n
d tλ θΨ = Ψ  and the summation represents an ( )r s+ -order polynomial 

interpolation of nΨ . The first term of right hand side of Equation (18) is determined 
by the error in the trajectory calculation, and the second term of right hand side of eq-
uation (18) is determined by the error in the interpolation of nΨ  to the departure 
point.  

We first calculate the error of the Runge-Kutta discretization  
1
2, ,

2 2
n

i i j
u t v ttu tλ λ λ θ

+ ∆ ∆
= − ∆ − −  

 
                                (19) 

( )( )
1 1 1

21

2 2 2

n n n
n

i
t u t u t ut u u v O t

t
λ

λ θ

+ + +
+

 ∆ ∂ ∆ ∂ ∆ ∂     = − ∆ − − − + ∆      ∂ ∂ ∂         
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( )( )
1

31 d
2 d

n
n

i
t utu O t

t
λ

+
+ ∆  = − ∆ + + ∆ 

   

( ) ( )( )
121 2

3
2

d d .
d 2 d

nn

i

t
t O t

t t
λ λλ

++ ∆   = + ∆ + + ∆  
   

                      (20) 

Similarly  

( ) ( )( )
121 2

3
2

d d .
d 2 d

nn

i
t

t O t
t t
θ θθ θ

++ ∆   = + ∆ + + ∆  
     

Since the right hand side of Equation (20) matches the Taylor series expansion of 
( ),λ θ  about ( ),i jλ θ  with an error of ( )( )2O t∆ , the global truncation error in the 
back-trajectory calculation is ( )( )2O t∆ . 

Now consider the error that generated by Runge-Kutta scheme used to estimate the 
back-trajectory in semi-Lagrangian approach. The data are available only at discrete  

points on a space-time grid in many practical dynamics, 
1
2, ,

n

s su tλ θ
+ 

  
 

 in (4) will be  

evaluated by interpolation or extrapolation. Before examining the errors introduced by 
such interpolation and extrapolation, consider the cases where , u v  can be evaluated 
exactly. Under such circumstances, the only errors arising in the trajectory calculations 
are generated by the Runge-Kutta scheme itself. Denote 1 2,i js sλ λ θ θ= − = − , then 
(19) becomes  

( ) ( )
1
2

1 1 2, , , , , 2 , .
2

nn n
i j i j

ts tu s u t s v t t tλ λ θ θ λ θ
+ ∆

= ∆ + − + − ∆  
   

Noticing ( ) ( )2 2
1 2,d ds u t O t s v t O t   = ∆ + ∆ = ∆ + ∆    , which can be substituted into 

the right hand side of the preceding equation to yield  

( )

( ) ( ) ( )( )
( ) ( )( )

1 1

2
3

2

2
3

, ,
2

, ,
2 2

.
2

n
d i j

n
i j

d

d

t us u t t s u t

tt u ut s v t O t
t

t
u t u v u O t

t

λ θ
λ

λ θ
θ

λ θ

∆ ∂ = ∆ + ∆ −  ∂ 

∆∆ ∂ ∂ + ∆ − + + ∆  ∂ ∂ 

∆ ∂ ∂ ∂ = ∆ + + + + ∆ ∂ ∂ ∂ 

         (21) 

Similarly we can get  

( ) ( )( )
2

3
2 .

2d

d

t
s v t u v v O t

t θ θ
∆ ∂ ∂ ∂ = ∆ + + + + ∆ ∂ ∂ ∂ 

           (22) 

Employ Taylor expansions of 1
,

n
i j
+Ψ  about the departure, we have  

( )2 2 2
1

, 1 2 12

2 22 2 2
1 2

2 2 2

2

.
2 2

n n
i j d

d d d d d

d d d

t
t s s s t
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s ss t
t

λ θ λ

θ λ λ

+ ∆∂Ψ ∂Ψ ∂Ψ ∂ Ψ ∂ Ψ
Ψ = Ψ + ∆ + + + + ∆

∂ ∂ ∂ ∂ ∂∂

∂ Ψ ∂ Ψ ∂ Ψ
+ ∆ + + +

∂ ∂ ∂ ∂


     (23) 
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Substituting (22) into (23) gives  
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 ∆ ∆∂ ∂ ∂ ∂Ψ ∂ Ψ  + ∆ + + + + ∆ +  ∂ ∂ ∂ ∂ ∂   
  ∆ ∂ ∂ ∂ ∂ Ψ   + ∆ + + + + ∆ +   ∂ ∂ ∂ ∂ ∂    

= Ψ



( )

( ) ( )

2

2 2
3

2

.
2

d
d d

d

t
t u t u v

t t

t
u v O t

t

λ θ

λ θ

∆∂Ψ ∂ ∂ ∂ + ∆ + ∆ + + + Ψ ∂ ∂ ∂ ∂ 

∆ ∂ ∂ ∂   + + + Ψ + ∆   ∂ ∂ ∂ 
 

Which implies that the Runge-Kutta scheme (4) generates an ( )2O t ∆   contribu-
tion toward the total error in the semi-Lagrangian approximation.  

Now suppose that the velocity data ,u v  are available only at discrete locations on 

the space-time mesh. Ideally the velocity at time 
1
2

n
t

+
 would be computed by interpo- 

lation between times nt  and 1nt + . Such interpolation cannot, however, be performed 
when semi-Lagrangian methods are used to solve prognostic equations for the velocity 
itself, because the velocity at 1nt +  will be needed for the trajectory calculations before 
it has been computed. This problem is generally avoided by extrapolating the velocity 
field forward in time using data from the two previous time levels such that  

( ) ( )
1

12 3 1 .
2 2

n n nu t u t u t
+ − 

= −  
   

Suppose that the extrapolated velocity field 
1 1
2 2, , , , ,

n n

s s s su t v tλ θ λ θ
+ +   

      
   

 is then 

linearly interpolated to 
1
2

n
t

+
 using data at the nearest spatial nodes, and let ,s su v  

denote this interpolated and extrapolated velocity. Since linear interpolation and extra- 
polation are second-order accurate,  

( ) ( )
1 1

2 22 2, , , , , .
n n

s s s s s su t u O t v t v O tλ θ λ θ
+ +      = + ∆ = + ∆              

Substituting the preceding equation into (20) shows that the use of ,s su v  instead of 

the exact velocity adds an ( )( ) ( )2 3O t O tλ  ∆ ∆ + ∆   error to the back-trajectory calcu-

lation, and thereby contributes a term of ( )( ) ( )2 2O O tλ  ∆ + ∆   to the global error in 

the semi-Lagrangian solution.  

4. Conclusion 

In this paper, we present a numerical method which combines semi-Lagrangian me-
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thod with two-order centered difference scheme for solving two-dimensional quasi- 
geostrophic equations on a sphere. In our approach, potential vorticity and stream- 
function are used as prognostic variables. Advection terms are expressed in a Lagran-
gian frame of reference to avoid the necessity of stable constraint. The pole singularity 
is eliminated by means of employ a smoothing technique. An error analysis is pre-
sented.  
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