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Abstract 
The improvements of high-throughput experimental devices such as microarray and 
mass spectrometry have allowed an effective acquisition of biological comprehensive 
data which include genome, transcriptome, proteome, and metabolome (multi- 
layered omics data). In Systems Biology, we try to elucidate various dynamical cha-
racteristics of biological functions with applying the omics data to detailed mathe-
matical model based on the central dogma. However, such mathematical models 
possess multi-time-scale properties which are often accompanied by time-scale dif-
ferences seen among biological layers. The differences cause time stiff problem, and 
have a grave influence on numerical calculation stability. In the present conventional 
method, the time stiff problem remained because the calculation of all layers was im-
plemented by adaptive time step sizes of the smallest time-scale layer to ensure sta-
bility and maintain calculation accuracy. In this paper, we designed and developed 
an effective numerical calculation method to improve the time stiff problem. This 
method consisted of ahead, backward, and cumulative algorithms. Both ahead and 
cumulative algorithms enhanced calculation efficiency of numerical calculations via 
adjustments of step sizes of each layer, and reduced the number of numerical calcu-
lations required for multi-time-scale models with the time stiff problem. Backward 
algorithm ensured calculation accuracy in the multi-time-scale models. In case stu-
dies which were focused on three layers system with 60 times difference in time-scale 
order in between layers, a proposed method had almost the same calculation accura-
cy compared with the conventional method in spite of a reduction of the total 
amount of the number of numerical calculations. Accordingly, the proposed method 
is useful in a numerical analysis of multi-time-scale models with time stiff problem. 
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1. Introduction 

Recent improvements in high-throughput biotechnologies such as microarray [1] and 
mass spectrometry [2] have led to various omics data showing gene expression, protein 
synthesis, metabolome flux, and cell-cell interactions [3] [4] [5]. The ensuing accumu-
lation of omics data has contributed significantly to mathematical models that indicate 
dynamic characteristics of biological systems, including interactions between genes, 
proteins, cells, and tissues [6] [7] (Figure 1). Systems biology approaches such as ma-
thematical modeling of multiple layers have revealed complex relationships among bi-
ological phenomena of varying spatiotemporal scales, and have elucidated mechanisms 
with high order functions in biological systems [8] [9] [10] [11] [12]. In particular, 
multi-time-scale models have been applied to analyses of intracellular signal transduc-
tion systems such as cell cycle control, cell fate determination, and immune system 
mechanisms [13] [14] [15] [16]. Moreover, mathematical analyses of varying (layer) 
gene (seconds), metabolism (minutes), and cell (hours) transition rates in biological 
systems define differences between biological systems and offer important discoveries 
of disease mechanisms. However, efficient techniques for numerical calculations re-
main elusive in practical applications of multi-time-scale mathematical models. 

Multi-time-scale models comprise multiple layers that differ in rates of state change. 
During conventional numerical calculations of multi-time-scale models, time step sizes 
that are suitable for the smallest time-scale layer have been adopted for all layers to en-
sure stability and maintain calculation accuracy. Thus, dynamic behaviors of entire 
layers are numerically analyzed using excessively reduced time step sizes, leading to 
 

 
Figure 1. Overview of the multi-time-scale model; This model has three layers 
and has reactions across layers. The parameters , ,X Y Z  indicate concentra-
tions; xyU  indicates the control variables from layer x to layer y; nnk  indi-

cates the matrix of rate constants in layer n. 
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significant increases in computational demands (time stiff problem) [17] [18] [19]. 
Numerous implicit methods such as the Radau method [19] and Gear method [20] 
have been proposed as candidate solutions to the time stiff problem. These methods 
generate numerical solutions based on calculation sensitivities and stabilities of com-
ponents in 1 layer. Furthermore, the numerical solutions of these methods are calcu-
lated using non-linear simultaneous equations with n unknowns based on n compo-
nents in the model. In calculating multi-time-scale model using the implicit method, 
larger time step sizes than those for the smallest time-scale layer can be applied to nu-
merical calculations of all layers because the calculation stability of the implicit method 
is very high. However, because multi-time-scale models comprise large numbers of 
components, non-linear simultaneous equations that are calculated using implicit me-
thods become very large. Specifically, although implicit methods suppress increases in 
computational loads due to excessive reductions in adaptive step sizes, significant in-
creases in volumes of numerical calculations for non-linear simultaneous equations 
cause failure to eliminate the time stiff problem. Parallel computing with reduced 
computational cost has been applied to numerical calculations of multi-time-scale 
models [21] [22] [23]. In contrast, contributions of parallel computing have been li-
mited because analyses of dynamic behaviors of biological systems include numerous 
sequential calculations. These observations imply that the efficiency of numerical cal-
culations in multi-time-scale models is highly dependent on reduced computational 
loads. Therefore, application of suitable step sizes to numerical calculations for each 
time scale layer will likely reduce computational loads significantly. Currently, few me-
thods are available for determining suitable step sizes for numerical calculations of each 
layer in multi-time-scale models with interactions among layers, and solutions to this 
problem are essential for practical applications of multi-time-scale models to biological 
systems. 

In this study, we developed a method for dynamically determining appropriate step 
sizes for the largest time-scale layer based on state changes of the smallest time-scale 
layer in numerical analysis of multi-time-scale models with interactions among layers. 
Subsequently, we proposed a numerical method for reducing computational loads of 
multi-time-scale models (proposed method) and verified the effectiveness of the pro-
posed method using the follow steps: 

1) Construction of multi-time-scale model (benchmark model) with interactions 
among layers that are universally observed in biological systems; 

2) Numerical calculation of benchmark models using the conventional method 
(Control); 

3) Numerical calculation of a benchmark model using the proposed method; 
4) Comparison of computational loads for proposed and conventional methods; 
5) Comparison of numerical solutions for proposed and conventional methods; 
6) Discussion of the validity of the proposed method. 
Using these procedures, we demonstrated the utility of the proposed method for im-

proving computational efficiency without increasing computational costs of multi- 
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time-scale models with interactions among layers. By reducing computational loads, 
the proposed method enhances the feasibility of mathematical analyses and accommo-
dates greater scales of mathematical models, representing a significant contribution to 
systems biology methods. 

2. Material and Methods 
2.1. Benchmark Models with Multi-Time-Scales 

To design and develop a method that is suitable for multi-time-scale models, we con-
structed 2 benchmark models (model A and model B) with the time stiff problem 
(Figure 2) and evaluated the calculation performance of the proposed method. The 
time stiff problem occurred due to differences in time-scales of each layer by interac-
tions among layers. Thus, these benchmark models satisfied the following conditions: 1) 
Models included interactions across layers; 2) Models had different time-scales of each 
layer. Models A and B comprised lower, middle, and upper layers with time scales of 
seconds, minutes, and hours, respectively. Model A contained inhibition effects such as 
suppressed expression of anabolic enzymes by metabolic products [24] and negative 
control of gene expression by the lac repressor protein [25], and these inhibition effects 
from upper to lower layers induced the time stiff problem with differences in time- 
scales of each layer caused by the largest time-scale layer (Figure 2(a)). Model B con-
tained activation effects such as the transcriptional control by RNA polymerase [26] 
and the control of metabolic flux by enzymes [27], and these activation effects from 
lower to upper layers induced the time stiff problem with differences in time-scales of 
each layer caused by the smallest time-scale layer (Figure 2(b)). Furthermore, these ef-
fects of activation and inhibition were expressed using the Hill equation [28], which 
empirically explains cooperative effects of oxygen binding to hemoglobin. Equations 
(1)-(9) show mass balance equations of model A as follows: 

[ ]0d
0.0

d
X
t

=                                  (1) 

 

 
Figure 2. Case studies of multi-time-scale models; We verified the utility of the proposed method 
using two case studies. Both models have three layers with 60 time differences in time-scale order 
and were constructed using the Hill equation. 
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Here, Equations (1)-(3), (4)-(6), and (7)-(9) show magnitudes of change in lower, 
middle, and upper layers of model A, respectively. Table 1 shows kinetic parameters of 
Equations (1)-(9), and Equations (10)-(18) show mass balance equations of model B as 
follows: 
 
Table 1. Constants and parameters in model A. 

Parameter Value Description 

[ ] [ ] [ ]0 0 0,,X Y Z  5.0 Constant initial concentration (mM) 

[ ]( )1,2, ,5iX i =   0.0 Initial concentration (mM) 

( )1,2, ,5jY j =     0.0 Initial concentration (mM) 

[ ]( )1, 2, ,5kZ k =   0.0 Initial concentration (mM) 

( )0,1, ,5ik i =   1.0 Static rate constant (second scale) 

( )0,1, ,5jl j =   1.0/60 Static rate constant (minute scale) 

( )0,1, ,5km k =   1.0/3600 Static rate constant (hour scale) 

,x yK K  2.5 Repression coefficient 

, ,x y zB B B  5.0 Maximal expression 

,x yn n  4.0 Hill coefficient 
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Here, Equations (10)-(12), (13)-(15), and (16)-(18) show magnitudes of change in 
lower, middle, and upper layers of model B. Table 2 shows kinetic parameters of Equa-
tions (10)-(18). Normally, the time stiff problem occurs due to differences in time- 
scales of each component by dynamically changing reaction rates ( ), ,i j kk l m  in model 
A and B. In this paper, reaction rates were constant in entire time, to focus on the time 
difference between layers. 

2.2. Numerical Solutions of the Benchmark Model Based on the  
Conventional Method 

We obtained numerical solutions of benchmark models (Model A, Model B) shown in 
Figure 2 using the explicit 4 stage 4th-order Runge-Kutta method [29] as the conven-
tional method. The simulation time was set at 36000 s because the dynamic behavior of 
the upper layer reached steady state at this time. The adaptive time step size dt  of the 
conventional method was set to 1.00E−03 s. Figures 3(a)-(c) and Figures 3(d)-(f) 
show time-dependent changes of component concentrations in models A and B, re-
spectively. Moreover, Figure 3(a) and Figure 3(d), Figure 3(b) and Figure 3(e), and 
Figures 3(c) and Figure 3(f) show time-dependent changes in component concentra-
tions for simulation times of 0 - 36,000 s (0 - 10 h), 0 - 600 s (0 - 10 min), and 0 - 10 s, 
respectively. Thus, dynamic behaviors of dependent variables of lower, middle, and  
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Table 2. Constants and parameters in model B. 

Parameter Value Description 

[ ] [ ] [ ]0 0 0,,X Y Z  5.0 Constant initial concentration (mM) 

[ ]( )1,2, ,5iX i =   0.0 Initial concentration (mM) 

( )1, 2, ,5jY j =     0.0 Initial concentration (mM) 

[ ]( )1, 2, ,5kZ k =   0.0 Initial concentration (mM) 

( )0,1, ,5ik i =   1.0 Static rate constant (second scale) 

( )0,1, ,5jl j =   1.0/60 Static rate constant (minute scale) 

( )0,1, ,5km k =   1.0/3600 Static rate constant (hour scale) 

xK  0.1 Repression coefficient 

yK  0.5 Activation coefficient 

zK  1.5 Activation coefficient 

, ,x y zB B B  5.0 Maximal expression 

,x yn n  4.0 Hill coefficient 

 
upper layers were observed in time-scales of seconds, minutes, and hours, respectively. 
To verify calculation performance of the proposed method, we defined the results of 
these calculations as controls. 

2.3. Design and Development of Proposed Method 

In numerical calculations of the conventional method in multi-time-scale models, the 
adaptive time step size of the smallest time-scale layer (lower layer) was adopted in cal-
culations for all layers. Hence, numbers of calculation steps of middle and upper layers 
were equal to that of the lower layer in the conventional method. Here we defined the 
process of calculating the concentration ( )S t t+ ∆  of component S at the time t t+ ∆  
from the concentration ( )S t  of component S at time t as 1 unit of the calculation (1 
step), and t∆  was the adaptive time step size. Adaptive time step sizes of middle and 
upper layers in the conventional method were generally much smaller than suitable for 
these layers. Use of optimal step sizes for middle and upper layers in numerical calcula-
tions reduced the numbers of calculation steps for middle and upper layers. Therefore, 
we developed effective numerical calculation algorithms (proposed method) that opti-
mally controlled adaptive time step sizes for each layer based on variations of differen-
tial component values. 

The proposed method comprised ahead, backward, and cumulative algorithms. 
Ahead and cumulative algorithms reduced the numbers of calculation steps, whereas 
the backward algorithm ensured calculation accuracy. Initially, the ahead algorithm 
adopted the arbitrary conventional method for the calculation of the smallest time-scale 
layer (lower layer) and implemented the iterative numerical integration in the interval  
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Figure 3. Time course of numerical solutions by the conventional method; The calculation step 
size dt of the conventional method was set to 1.00E−03 s. (a), (b), and (c) show results of the 
models A, (d), and (e), and (f) shows the result of model B. Simulation times of (a) and (d) were 
set to 36,000 s (10 h), those of (b) and (e) were set to 600 s (10 min), and those of (c) and (f) were 
set to 10 s. 
 
of the arbitrary number of the xN  step, which was set to a predetermined calculation 
interval. Secondly, the backward algorithm was used to define a predetermined calcula-
tion interval in which the differential value was less than a certain value according to 
the determined calculation interval. Here, the adaptive time step size of the middle 
layer and the representative value for the lower layer were set to determine the calcula-
tion interval and its average integral value of the numerical solution for the lower layer. 
Subsequently, the cumulative algorithm was used to calculate the dynamics of the 1st 
step of the middle layer using these values. The proposed method repeated these 3 algo-
rithms until the numerical solution of the upper layer was achieved. Thus, the adaptive 
time step sizes of middle and upper layers of the proposed method were much larger 
than those of the conventional method. Moreover, calculation steps of the proposed 
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method were fewer than those of the conventional method, reflecting differing step siz-
es of proposed and conventional methods. In addition, adaptive time step sizes of mid-
dle and upper layers of the proposed method were controlled by the backward algo-
rithm to maintain calculation accuracy. Accordingly, the computational volume of the 
proposed method was less than that of the conventional method and the calculation 
accuracies of proposed and conventional methods were comparable. Numerical calcu-
lations of the proposed method in the multi-time-scale models comprising the 3 layers 
of models A and B are described by Equations (19)-(21), which are mass balance equa-
tions and targets of the proposed method as follows: 

( )d , , ,
d

k
k

Z h X Y Z t
t
=                             (19) 
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d

, , ,
d

j
j

Y
g X Y Z t

t
=                             (20) 

( )d , , ,
d

i
i

X f X Y Z t
t
=                             (21) 

Equations (22) and (23) describe initial conditions as follows: 

( ) ( ) ( ) ( )( )0 0 0 0, , , , , ,X Y Z t X t t Y t t Z t t t= = = =                (22) 

0 0 0t Tτ= =                                     (23) 

Here, the parameters , ,X Y Z  indicate concentration of components , ,i j k  identi-
fied in each layer , ,t Tτ  of lower, middle and upper layer. 

2.3.1. Ahead Algorithm 
Initially, numbers of predetermined calculation steps ( ), ,x y zN N N  were set to 60 
(Table 3). In the ahead algorithm, the arbitrary conventional method was adopted (Eu-
ler method [29], Runge-Kutta method [29], Runge-Kutta-Fehlberg method [30] etc.) 
with the numerical calculation of the smallest time-scale layer (lower layer), and the 
iterative numerical integration in the interval of the number of xN  steps (predeter-
mined calculation interval) was implemented. The numerical calculation from the ini-
tial state to the xN  step was explicitly calculated based on Equations (24) and (25) as 
 
Table 3. Parameters of the proposed method. 

Parameter Value Description 

xN  60.0 Initial number of predetermined calculation step in lower layer 

yN  60.0 Initial number of predetermined calculation step in middle layer 

zN  60.0 Initial number of predetermined calculation step in upper layer 

xA  5.0 Control variable of number of predetermined calculation step in lower layer 

yA  5.0 Control variable of number of predetermined calculation step in middle layer 

zA  5.0 Control variable of number of predetermined calculation step in upper layer 
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follows: 

( ) ( ) ( ) ( ) ( )( )
( )

1 0 0, , , d

0,1, 2, , 1

p p p p p

x

X t t X t t f X t t Y t t Z t t t t

p N
+= = = + = = = ⋅

= −

       (24) 

( )1 d 0,1, 2, , 1p p p xt t t p N+ = + = −                         (25) 

Here, d pt  indicates the adaptive time step size per step in the lower layer, equations 
for middle and upper layers were shown in Equation (36) and (46), respectively. 

2.3.2. Backward Algorithm 
The backward algorithm was used to explore the predetermined calculation interval in 
which the differential value was less than a certain value according to the determined 
calculation interval. Here, the number of calculation steps was set to the number of de-
termined calculation steps xG . Consequently, the backward algorithm could be used to 
monitor magnitudes of change in the numerical solution of dependent variables in the 
predetermined calculation interval. Subsequently, the backward algorithm narrowed 
the determined calculation interval for large changes in numerical solutions of the de-
pendent variable in the predetermined calculation interval and widened that when 
changes were small. To measure magnitudes of change of all components in the layer, 
we compared the final differential value _ 2xD  of each component at the time 

xNt  
with the average integral value f  of the differential value in the predetermined calcu-
lation interval using Equation (26) as follows: 

_ 2 xE f D= −                                 (26) 

Here, E is evaluation value of each component in the predetermined calculation in-
terval and this evaluation value shows the magnitude of change in the differential value 
of each component during the predetermined calculation interval. Using Simpson’s 
numerical integration method [29] to the coordinate points ( ),C D  of time and the 
differential value, we determined the average integral value f  of the differential value 
in the predetermined calculation interval. Equations (27)-(29) show the coordinate 
points ( ),C D  of time and the differential value as follows: 

( ) ( ) ( ) ( )( )( )_ 0 _ 0 0 0 0 0 0, , , , ,x xC D t f X t t Y t t Z t t t= = = =             (27) 

( ) ( ) ( ) ( )( )( )_1 _1 1 1 0 0 1, , , , ,x xC D t f X t t Y t t Z t t t= = = =              (28) 

( ) ( ) ( ) ( )( )( )_ 2 _ 2 0 0, , , , ,
x x xx x N N NC D t f X t t Y t t Z t t t= = = =          (29) 

We obtained differential values _x MD  at the midpoint of the predetermined calcu-
lation interval ( )_ _ 2 _ 0 2x M x xC C C= −  using the Lagrange interpolation [29] as 
shown in Equations (30) and (31) as follows: 

( )
2

_ _ _
0

x M u x M x u
u

D L C D
=

= ⋅∑                            (30) 
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The average integral value f  was calculated using the coordinate points ( ),C D  
and the differential value _ 2xD  (Equation (32)) as follows: 
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                 (32) 

Evaluation value E (Equation (26)) was calculated as the average integral value f  
and the differential value _ 2xD . We determined the dependent variable of the lower 
layer when evaluation value E of all components in the lower layer were less than or 
equal to the threshold value (α) (E ≤ α). However, we updated the coordinate points 

( )_ 2 _ 2,x xC D  to Equation (33) and calculated the _x MD , f  and evaluation value E 
when at least one of E were greater than the threshold value (α) (E > α) as follows: 

( ) ( ) ( ) ( )( )( )
( )

_ 2 _ 2 0 0

x

, , , , ,

1, 2,3, , 2
x x x x x xx x N S N S N S

x

C D t f X t t Y t t Z t t t

S N

− − −= = = =

= −

      (33) 

Thereafter, we sequentially increased the number of discarded calculation steps xS  
until E of all components in the lower layer were less than or equal to the threshold 
value (α) (E ≤ α) and determined the dependent variable of the lower layer. The num-
ber of determined calculation steps xG  was set to x xN S−  when the all evaluation 
values E were less than or equal to the threshold value (α) (Equation (34)) as follows: 

x x xG N S= −                                  (34) 

If E was more than the threshold value (α) at 2x xS N= − , we set it to 2xG = . Equ-
ation (35) shows the coordinate points ( )_ 2 _ 2,x xC D  after the number of determined 
calculation steps xG  was decided as follows: 

( ) ( ) ( ) ( )( )( )_ 2 _ 2 0 0, , , , ,
x x xx x G G GC D t f X t t Y t t Z t t t= = = =         (35) 

2.3.3. Cumulative Algorithm 
After determining the calculation interval of the lower layer with the backward algo-
rithm, the cumulative algorithm was used to implement the numerical calculation of 
the 1st step in the middle layer using Equations (36)-(39) as follows: 

( ) ( ) ( ) ( )( )1 0 0 0 0 0, , , dY t Y t g X Y t Z tτ τ τ τ τ τ= = = + = = ⋅               (36) 
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1

0 _ 2 _ 0
0

d d
xG

x x j
j

C C tτ
−

=

= − = ∑                                         (38) 

( )1 d , 0,1, 2, , 1q q q yq Nτ τ τ+ = + = −                                 (39) 

Here, 0dτ  was equal to the interval from time _ 0xC  to time _ 2xC  and X  was 
the time-averaged concentration of the numerical solution of the lower layer in the in-
terval from time _ 0xC  to time _ 2xC . In addition, ( )_x MX t C=  was calculated using 
Lagrange interpolation [29]. We applied the conventional method shown in the ahead 
algorithm to the numerical calculation of the middle layer. 

2.3.4. Integration of Whole Algorithms 
Calculations of these algorithms gave numerical solutions of lower and middle layers at 
time 1τ . Subsequently, the numerical solution of the concentration of the component 
in the interval from the ( )1xG +  step to the ( )x xG N+  step in the lower layer (the 
predetermined calculation interval) was calculated using the ahead algorithm with the 
values ( )1X t τ=  and ( )1Y t τ=  as shown in Equation (40) as follows: 

( )

( ) ( ) ( ) ( )( )
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1 1

1 1 1 0 1, , , d

 0,1, 2, , 1
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p p p p

x

X t t

X t t f X t t Y t Z t t t t

p N

τ

τ τ τ τ

+= +

= = + + = + = = + ⋅

= −

      (40) 

Thereafter, the backward algorithm was used to define the number of determined 
calculation steps xG  and the number of discarded calculation steps xS  in this pre-
determined calculation interval, and the cumulative algorithm was used to calculate 
( )2Y t τ=  of the middle layer. We repeated the procedures in Equations (26)-(40), and 

the numerical solution of the component concentration of the middle layer was calcu-
lated until the yN  step (the predetermined calculation interval in the middle layer) 
using the following Equations (41) and (42): 

( )
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             (41) 
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Here, X ′  denotes the time-averaged concentration of the numerical solution of the 
lower layer in the interval from time qτ  to 1qτ + . The number of determined calcula-
tion steps yG  was then decided and the number of discarded calculation steps yS  in 
middle layer was generated using the backward algorithm. Equations (43)-(45) show 
the coordinate points of the differential value and the time of the middle layer that is 
necessary for the corresponding calculation of E (Equation (26)) as follows: 

( ) ( ) ( ) ( )( )( )_ 0 _ 0 0 0 0 0 0, , , , ,y yC D g X t Y t Z tτ τ τ τ τ= = = =             (43) 

( ) ( ) ( ) ( )( )( )_1 _1 1 1 1 0 1, , , , ,y yC D g X t Y t Z tτ τ τ τ τ= = = =              (44) 

( ) ( ) ( ) ( )( )( )_ 2 _ 2 0, , , , ,
y y y yy y G G G GC D g X t Y t Z tτ τ τ τ τ= = = =          (45) 

The cumulative algorithm was used to implement the calculation of the 1st step of 
the upper layer with numerical solutions of lower and middle layers using Equations 
(46)-(50) as follows: 

( ) ( ) ( )( )1 0 0 0 0, , , dZ t T Z t T h X Y Z t T T T′′= = = + = ⋅                     (46) 
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−

=

= − = ∑                                        (49) 

( )1 d 0,1, 2, , 1r r r zT T T r N+ = + = −                                 (50) 

Here, 0dT  was equal to the interval from the time _ 0yC  to the time _ 2yC , and 
X ′′  was the corresponding time-averaged concentration of the numerical solution of 

the lower layer. Y  was the time-averaged concentration of the numerical solution of 
the middle layer in the same time interval and ( )_y MX t C=  and ( )_y MY t C=  were 
calculated using Lagrange interpolation [29]. The numerical calculation of the upper 
layer shown in Equation (46) applied the same conventional method in the case of the 
ahead algorithm (Equation (24)). Subsequently, we repeated Equations (26)-(50) and 
found the numerical solution from 0t T=  to 

zNt T=  of the dependent variable in the 
upper layer. Finally, the backward algorithm was used to define the number of deter-
mined calculation steps zG  and the number of discarded calculation steps zS  in the 
upper layer. After completion of upper layer calculations, we calculated iterative nu-
merical integrations in the interval of xN  steps of the lower layer using the values 

( )zGX t T= , ( )zGY t T=  and ( )zGZ t T=  in Equation (51) as follows: 

( )

( ) ( ) ( ) ( )( )
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= = + + = + = = + ⋅

= −

      (51) 

Iterative calculations of component concentrations of all layers were calculated using 
Equations (26)-(51). 

2.3.5. Control of Numbers of Predetermined Calculation Steps 
Numbers of predetermined calculation steps ( ), ,x y zN N N  indicated numbers of cal-
culations with the ahead algorithm. When numbers of predetermined calculation steps 

( ), ,x y zN N N  were excessively large, the backward algorithm discarded the calculation 
obtained by the ahead algorithm to maintain calculation accuracy. Therefore, the 
number of predetermined calculation steps ( ), ,x y zN N N  was closely related to the 
calculation efficiency of the proposed method, and the number of predetermined cal-
culation steps ( ), ,x y zN N N  was dynamically changed based on the number of deter-
mined calculation steps as shown in Equation (52) as follows: 

x x x

y y y

z z z

N G A
N G A
N G A

     
     = +     
     
     

                           (52) 

Here, , ,x y zA A A  were increments of the number of predetermined calculation steps 

( ), ,x y zN N N . Accordingly, Equation (52) implicitly controlled the number of prede-
termined calculation steps of each layer according to the rate of change of the depen-
dent variable. 
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2.4. Evaluation of Calculation Accuracy 

The calculation accuracy of the proposed method was evaluated using Equations (53) 
and (54). Firstly, we evaluated calculation accuracy according to the consistency of the 
numerical solution using Equation (53) as follows: 

_

1 _

1 num
a proposed method

ave
a a conventional method

Component
V

num Component=

= ∑                  (53) 

where _a proposed methodComponent  and _a conventional methodComponent  were corresponding 
to the numerical solution of specific ( )1, 2,3, ,a aComponent num=   in the layer of 
interest using the proposed and conventional method, respectively. The num 
represented the number of components in the layer of interest. The right side of Equa-
tion (53) was the average of proportion of the numerical solution from the proposed 
method ( )_a proposed methodComponent  to that of the conventional method 

( )_a conventional methodComponent . Secondly, we evaluated local calculation accuracy ac-
cording to the standard deviation of the value between the numerical solution of the 
proposed method and that of the conventional method using Equation (54) as follows: 

2

_

1 _

1 
num

a proposed method
SD ave

a a conventional method

Component
V V

num Component=

 
= −  

 
∑          (54) 

Hence, calculation accuracy was evaluated according to aveV  and SDV . 

3. Results 

In the multi-time-scale models (Model A, Model B) shown in Figure 2, we compared 
numerical solutions of the proposed method with those of the conventional method. In 
the conventional method, we adopted the explicit 4 stage 4th-order Runge-Kutta me-
thod [29] for numerical calculations of all layers. However, the numerical calculation of 
the lower layer of the proposed method allowed application of the arbitrary method for 
ordinary differential equations. We also adopted the explicit 4 stage 4th-order Runge- 
Kutta method [29] for the numerical calculations of the lower layer of the proposed 
method. Table 1 and Table 2 show kinetic parameters of models A and B, respectively, 
and the simulation time was set to 36000 s because the dynamic behavior of the upper 
layer reached steady state at this time. The step size dt of the adaptive time of the expli-
cit 4 stage 4th-order Runge-Kutta method [29] was used in the proposed method and 
the conventional method, and was set to 1.00E−03 s. 

3.1. Case Study 1 

As shown in Figure 2(a), model A comprises 18 components and has inhibition effects 
from upper to middle layers and from middle to lower layers. We compared numerical 
solutions of the proposed and conventional methods in model A and verified the utility 
of the proposed method in the multi-time-scale model in terms of calculation efficiency 
and accuracy. Table 3 shows parameters of initial numbers of predetermined calcula-
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tion steps ( ), ,x y zN N N  and parameters of control variables for numbers of predeter-
mined calculation steps ( ), ,x y zA A A  of the proposed method. The threshold value (α) 
of the evaluation value E of the backward algorithm was set to 1.00E−03, 5.00E−04, and 
1.00E−04. 

3.1.1. Calculation Efficiency of the Proposed Method in Numerical Analyses of  
Model A 

In numerical analyses of model A, the calculation efficiency of the proposed method 
was compared with that of the conventional method. Figures 4(a)-(c) show time-  
dependent changes in numbers of accumulated calculation steps for each layer in model 
A. Here, numbers of accumulated calculation steps for lower, middle, and upper layers 
were equal to the sum of xG  ( )xG∑ , yG  ( )yG∑  and zG  ( )zG∑  within the en-
tire simulation time for model A. We applied the same method to the numerical calcu-
lation for the lower layer of the proposed and conventional methods. Hence, numbers 
of accumulated calculation steps for the lower layer of the proposed method was equal 
to that of the conventional method (Figure 4(c)). Furthermore, we compared numbers 
of accumulated calculation steps in middle and upper layers of model A (Figure 4(a) 
and Figure 4(b)). Accumulated calculation steps in middle and upper layers of the 
proposed method at 36,000 s (Table 4) were far fewer than those of the conventional 
method in middle and upper layers of model A. Moreover, the threshold value (α) of 
the evaluation value E and the number of accumulated calculation steps of the pro-
posed method in middle and upper layers were negatively correlated. Figure 4(d) 
shows the sum of calculation steps that were discarded by the backward algorithm, 
which ensured calculation accuracy. In these analyses, the sum of discarded calculation 
steps was equal to x y zS S S+ +∑ ∑ ∑  within the entire simulation time for model A. 
Moreover, regardless of the threshold value (α), destruction of the calculation by the 
backward algorithm occurred during the early stages of the simulation. In addition, de-
struction of calculations had occurred at 12,000 s when the threshold value (α) was 
1.00E−3 or 5.00E−04. Figure 4(e) shows time-dependent changes in the sum of accu-
mulated calculation steps for all layers of model A. The proposed method included the 
 
Table 4. Calculation efficiency of the proposed method in middle and upper layers of model A at 
36000 s. 

Layer 
The threshold value (α) 
of the evaluation value E 

Numbers of accumulated 
calculation steps of the  

conventional method (A) 

Numbers of accumulated 
calculation steps of the  
proposed method (B) 

Percentage 
((B/A) * 100%) 

Middle 1.00E−03 3.60E+07 1.13E+04 0.031 

 5.00E−04 3.60E+07 1.78E+04 0.049 

 1.00E−04 3.60E+07 6.22E+04 0.173 

Upper 1.00E−03 3.60E+07 1.86E+02 0.00052 

 5.00E−04 3.60E+07 2.97E+02 0.00082 

 1.00E−04 3.60E+07 8.02E+02 0.00222 
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Figure 4. Comparisons of numbers of accumulated calculation steps for the proposed and con-
ventional methods in model A; The calculation step size dt  was set at 1.00E−03 s. The thre-
shold value (α) of the evaluation value E of the backward algorithm was set at 1.00E−03, 5.00E−04, 
and 1.00E−04. (a), (b), and (c) show the sum of numbers of accumulated calculation steps for 
lower, middle, and upper layers in model A ( ), ,x y zG G G∑ ∑ ∑ . (d) shows the sum of calculation 

steps that were discarded by the backward algorithm in model A ( )x y zS S S+ +∑ ∑ ∑ . (e) shows 

the sum of accumulated calculation steps of all layers in model A  
( )x y z x y zG G G S S S+ + + + +∑ ∑ ∑ ∑ ∑ ∑ . 

 
sum of calculation step that were discarded by the backward algorithm as  

x y z x y zG G G S S S+ + + + +∑ ∑ ∑ ∑ ∑ ∑ . Accumulated calculation steps of the pro- 
posed method for all layers of model A at 36000 s are shown in Table 5 as a proportion 
of those for the conventional method. Because numbers of accumulated calculation 
steps of the proposed method in middle and upper layers (decreased numbers of calcu- 
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Table 5. Calculation efficiency of the proposed method in all layers of model A at 36000 s. 

The threshold value(α)of 
the evaluation value E 

Numbers of accumulated 
calculation steps of the  

conventional method (A) 

Numbers of accumulated 
calculation steps of the  
proposed method (B) 

Percentage 
((B/A)*100%) 

1.00E−03 1.08E+08 3.96E+07 36.7 

5.00E−04 1.08E+08 4.01E+07 37.1 

1.00E−04 1.08E+08 8.24E+07 76.3 

 
lation steps) were greater than those that were discarded by the backward algorithm 
(increased numbers of calculation steps), which was dependent on the threshold value 
(α), the sum of accumulated calculation steps for all layers of the proposed method was 
reduced. 

3.1.2. Calculation Accuracy of Proposed Method in Numerical Analysis of  
Model A 

The numerical solution of the proposed method was compared with that of the conven-
tional method in model A. Figures 5(a)-(c) show time-dependent changes of the eval-
uation value aveV  (Equation (53)), which represents consistency of the numerical solu-
tion. Figures 5(d)-(f) show time-dependent changes of the evaluation value SDV  (Eq-
uation (54)), which represents local calculation accuracy. In any layer, aveV  was within 
the range of 0.95 - 1.05 and SDV  was 0.01 or less at all times. Moreover, aveV  was 
asymptotic to 1.0 with decreases in thresholds (α) of the evaluation value E in all layers. 
Therefore, the calculation accuracy of the proposed method was almost the same as that 
of the conventional method in numerical analyses of model A. 

3.2. Case Study 2 

As shown in Figure 2(b), model B comprised 18 components and had activation effects 
from lower to middle layers and from middle to upper layers. In addition, the effect of 
negative feedback in the lower layer led to oscillating dynamics in model B. In the pre- 
sent study, we compared numerical solutions of the proposed and conventional me-
thods in model B and verified the utility of the proposed method in the multi- 
time-scale model in terms of calculation efficiencies and accuracies. Table 3 shows pa-
rameters of initial numbers of predetermined calculation steps ( ), ,x y zN N N  and pa-
rameters of control variables for numbers of predetermined calculation steps 

( ), ,x y zA A A  of the proposed method. Threshold values (α) of the evaluation value E of 
the backward algorithm were set at 1.00E−01, 5.00E−02, and 1.00E−02. 

3.2.1. Calculation Efficiency of the Proposed Method in Numerical Analyses of  
Model B 

In numerical analysis of model B, the calculation efficiency of the proposed method was 
compared with that of the conventional method. Figures 6(a)-(c) show time-depen- 
dent changes in numbers of accumulated calculation steps for each layer of model B.  
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Figure 5. Comparison of calculation accuracies of the proposed and conventional methods in 
model A; Vertical axes of (a), (b), and (c) show aveV  (Equation (53)). Vertical axes of (d), (e), 
and (f) show SDV  (Equation (54)). The threshold value (α) of the evaluation value E of the back- 
ward algorithm was set at 1.00E−03, 5.00E−04, and 1.00E−04. 
 
Here, numbers of accumulated calculation steps of lower, middle, and upper layers 
were equal to sums of xG  ( )xG∑ , yG  ( )yG∑  and zG  ( )zG∑ , respectively,  
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Figure 6. Comparison of numbers of accumulated calculation steps for proposed and conven-
tional methods in model B; The calculation step size dt was set at 1.00E−03. The threshold value 
(α) of the evaluation value E for the backward algorithm was set at 1.00E−01, 5.00E−02, and 
1.00E−02. (a), (b), and (c) show the sum of accumulated calculation steps for lower, middle, and 
upper layers in model B ( ), ,x y zG G G∑ ∑ ∑ . (d) shows the sum of calculation steps that were 

discarded by the backward algorithm in model B ( )x y zS S S+ +∑ ∑ ∑ . (e) shows the sum of 

accumulated calculation steps for all layers in model B  

( )x y z x y zG G G S S S+ + + + +∑ ∑ ∑ ∑ ∑ ∑ . 

 
within the entire simulation time of model B. Differences between numbers of accu-
mulated calculation steps in the lower layer of the proposed and conventional methods 
are not demonstrated (Figure 6(c)) as well as in case study 1. However, in further ana-
lyses we compared numbers of accumulated calculation steps in middle and upper lay-
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ers of model B (Figure 6(a) and Figure 6(b)). Table 6 shows numbers of accumulated 
calculation steps in middle and upper layers of the proposed method at 36000 s in 
model B relative to those of the conventional method. Numbers of accumulated calcu-
lation steps for the proposed method were far fewer than those of conventional method 
in middle and upper layers of model B. Moreover, threshold values (α) of E from the 
backward algorithm were negatively correlated with numbers of accumulated calcula-
tion steps of the proposed method in middle and upper layers. Figure 6(d) shows the 
sum of calculation steps that were discarded by the backward algorithm, which was 
used to ensure calculation accuracy. In these analyses, the sum of discarded calculation 
steps was equal to x y zS S S+ +∑ ∑ ∑  within the entire simulation time for model B. 
In case study 2, the calculation was discarded at a constant rate with time. Figure 6(e) 
shows time-dependent changes of the sum of accumulated calculation steps for all lay-
ers in model B. The proposed method included the sum of calculation steps that were 
discarded by the backward algorithm as x y z x y zG G G S S S+ + + + +∑ ∑ ∑ ∑ ∑ ∑ . 
Table 7 shows the sum of accumulated calculation steps for all layers of proposed me-
thod at 36000 s in model B as a proportion of that for the conventional method. In case 
study 2, decreases in numbers of accumulated calculation steps in middle and upper 
layers of the proposed method were greater than the increases in numbers of calcula-
tion steps that were discarded by the backward algorithm, which was dependent on the 
threshold value (α). Thus, the sum of accumulated calculation steps of all layers of the 
proposed method was reduced. 
 
Table 6. Calculation efficiency of the proposed method in middle and upper layers of model B at 
36,000 s. 

Layer 
The threshold value 
(α) of the evaluation 

value E 

Numbers of accumulated 
calculation steps of the 

conventional method (A) 

Numbers of accumulated 
calculation steps of the 
proposed method (B) 

Percentage 
((B/A) * 100%) 

Middle 1.00E−01 3.60E+07 1.67E+05 0.464 

 5.00E−02 3.60E+07 2.31E+05 0.642 

 1.00E−02 3.60E+07 7.09E+05 1.970 

Upper 1.00E−01 3.60E+07 1.39E+03 0.0039 

 5.00E−02 3.60E+07 2.82E+03 0.0078 

 1.00E−02 3.60E+07 1.88E+04 0.0522 

 
Table 7. Calculation efficiency of the proposed method in all layers of model B at 36,000 s. 

The threshold value(α)of 
the evaluation value E 

Numbers of accumulated  
calculation steps of the  

conventional method (A) 

Numbers of accumulated 
calculation steps of the  
proposed method (B) 

Percentage 
((B/A) * 100%) 

1.00E−01 1.08E+08 3.86E+07 35.7 

5.00E−02 1.08E+08 3.96E+07 36.7 

1.00E−02 1.08E+08 5.00E+07 46.3 
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3.2.2. Calculation Accuracy of the Proposed Method for Numerical Analysis of  
Model B 

The numerical solution of proposed method was compared with that of the conven-
tional method in model B. Figures 7(a)-(c) show time-dependent changes in the eval-
uation value aveV  (Equation (53)), which represents consistency of the numerical solu-
tion, and Figures 7(d)-(f) show time-dependent changes of the evaluation value SDV  
(Equation (54)), which represents local calculation accuracy. In any layer, aveV  was 
within the range of 0.99 - 1.01, and SDV  was 0.01 or less at all times. Therefore, the 
calculation accuracy of the proposed method was almost the same as that of the con-
ventional method in numerical analyses of model B. 

4. Discussion 

The advent of high-throughput experimental devices that can accommodate large 
numbers of samples has allowed simultaneous computation of comprehensive data 
pertaining to genome, transcriptome, proteome, and metabolome analyses [1] [2] [3] [4] 
[5]. Consequently, the momentum of theoretical analyses of biological systems that use 
multi-time-scale models is growing [13] [14] [15] [16] (Figure 1). In theoretical ana-
lyses of multi-time-scale models with reactions between layers, the time stiff problem 
[17] [18] [19] occurs due to differences in time-scales of each layer, leading to signifi-
cant increases in computation times. In particular, the time stiff problem significantly 
influences the efficiency of numerical optimizations of system identifications and ana-
lyses. Optimization methods are generally used to search for optimum solutions using 
repeated calculations with varying kinetic parameters for different strategies. For ex-
ample, system identification by the Real-coded Genetic Algorithm (AREX + JGG) re-
quired about 2.0E+06 calculation iterations to estimation parameter values for 112 ele-
ments [31]. Calculation times for numerical optimization are generated by multiplying 
numbers of calculations by the time taken for 1 calculation. Because the time taken for 
1 calculation is greatly increased by time stiff problems, calculation times for numerical 
optimizations also increase linearly. Hence, solutions for the time stiff problem will 
likely contribute to the efficiency of numerical optimizations. The time stiff problem 
also occurs in theoretical analyses of natural phenomena, such as the movements of the 
local clouds and typhoons in simulations of weather conditions [32] and motions and 
binding of compounds in simulations of chemical reactions [33]. Hence, solutions to 
the time stiff problem are applicable to varied mathematical analyses, including those of 
biological systems. In the present conventional method, the time stiff problem re-
mained because the calculation of all layers was implemented by adaptive time step siz-
es of the smallest time-scale layer. Therefore, the present alternative method reduced 
computation times by controlling adaptive time step sizes for each layer based on varia-
tions of differential values of the components. 

The proposed method comprised ahead, backward, and cumulative algorithms. In-
itially, the ahead algorithm was applied using the conventional method for calculating 
the smallest time-scale layer (lower layer), and iterative numerical integrations were  
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Figure 7. Comparison of calculation accuracies of the proposed and conventional methods in 
model B; Vertical axes of (a), (b), and (c) show aveV  (Equation (53)). Vertical axes of (d), (e), 
and (f) show SDV  (Equation (54)). The threshold value (α) of the evaluation value E of the back- 
ward algorithm was set at 1.00E−03, 5.00E−04, and 1.00E−04. 
 
performed in predetermined calculation intervals. In this study, we used the explicit 4 
stage 4th-order Runge-Kutta method [29] to calculate the lower layer and then used the 
backward algorithm to determine the calculation interval according to the magnitude 
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of change in the differential value during the predetermined calculation interval. Sub-
sequently, the cumulative algorithm calculated the 1st step of the middle layer using the 
determined calculation interval of the lower layer and the time-averaged concentration 
in the determined calculation interval of the lower layer. The proposed method identi-
fied numerical solutions by repeating the three algorithms for the upper layer. In the 
conventional method, numbers of calculation steps for middle and upper layers were 
equal to that of the lower layer so that all layers were calculated according to the adap-
tive time step size of the lower layer. However, the adaptive time step size of middle and 
upper layers of the proposed method were much larger than those of the conventional 
method. In addition, the backward algorithm narrowed the calculation interval for 
large changes in the numerical solution of the predetermined calculation interval and 
widened that in the presence of small changes. Accordingly, the proposed method sig-
nificantly reduced the number of calculation steps for middle and upper layers and 
maintained calculation accuracy of the backward algorithm. Most current high-speed 
calculation methods utilize parallel computer resources [21] [22] [23], which are expe-
dited by dividing the processing of calculations of 1 step between multiple central 
processing units. In contrast, the proposed method accelerates analyses by reducing 
numbers of calculation steps. Therefore, the proposed method does not compete with 
conventional high-speed methods, and can be used in conjunction with various 
high-speed calculation methods as a calculation module. 

In the present study, we created multi-time-scale models as a benchmark (Figure 2) 
and verified the calculation performance of the proposed method. To this end, we in-
vestigated numbers of accumulated calculation steps for each layer of proposed and 
conventional methods. In case studies 1 and 2, numbers of accumulated calculation 
steps for the lower layer were comparable in proposed and conventional methods, 
whereas these were fewer for middle and upper layers of the proposed method than of 
the conventional method (Figures 4(a)-(c), Figures 6(a)-(c)). Therefore, calculations 
of middle and upper layers were performed using the proposed method with optimal 
adaptive time step sizes. 

In further analyses, we discarded calculation steps to maintain calculation accuracy 
in backward algorithm. In case study 1, the sum of discarded calculation steps rapidly 
increased between the early stages of the simulation and 12,000 s (Figure 4(d)). More-
over, increasing numbers of discarded calculation steps during early stages of the simu-
lation were greatly affected by initial setting values of , ,x y zN N N , which are parame-
ters of the proposed method. Accordingly, the ahead algorithm of the proposed method 
was used to calculate numerical solutions to initial setting values of , ,x y zN N N , and 
the backward algorithm was used to discard calculations and maintain calculation ac-
curacy. Therefore, the present backward algorithm significantly discarded significant 
numbers of calculations in the early stages of the simulation, because the initial setting 
values of , ,x y zN N N  were excessive. Moreover, increasing numbers of discarded cal-
culation steps in the first 12000 s were greatly affected by variations of the dependent 
variable of model A (Figure 3). These variations reflected decreased inhibition effects 
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of 5Y  based on increases of 5Z  and enhancements of the inhibitory effects of 5Z . To 
prevent the deterioration of calculation accuracy due to these variations, the backward 
algorithm was used to adjust the adaptive time step size for each layer to values that 
corresponded with magnitudes of change in numerical solutions of the dependent va-
riable. Hence, the backward algorithm significantly discarded calculations by 12,000 s 
in case study 2. The sum of discarded calculation steps also increased linearly with time 
(Figure 6(d)). Because model B was of the oscillation system, destruction by the back-
ward algorithm occurred in constant cycles. These analyses suggest that the backward 
algorithm facilitates calculation accuracy. 

Numbers of accumulated calculation steps of all layers of proposed and conventional 
methods were computed for case studies 1 and 2, and decreases by the proposed me-
thod for middle and upper layers (Figure 4(a) and Figure 4(b), Figure 6(a) and Figure 
6(b)) were greater than increases in those discarded by the calculation steps of the 
backward algorithm (Figure 4(d), Figure 6(d)). Hence, because reductions in compu-
tational volumes by the proposed method were more numerous than those required to 
maintain calculation accuracy, the proposed method achieved the calculation efficiency 
of the numerical calculation in case studies 1 and 2 (Figure 4(e), Figure 6(e)). 

In comparisons of calculation accuracies of proposed and conventional methods, 
that of the proposed method was controlled by the threshold (α) of the evaluation value 
E. The calculation interval that was determined by the backward algorithm was asymp-
totic to predetermined calculation intervals with the increase of the threshold (α). Time 
step sizes of middle and upper layers also became larger. Moreover, the numerical solu-
tion of the upper layer was reflected in lower and middle layers after 1 step of upper 
layer calculations. Thus, this reflection time was significantly delayed with excessive 
step sizes of the upper layer in the presence of high threshold (α) values. This delay 
caused calculation error in the numerical solution of the proposed method. Hence, 
threshold (α) values of models that contains reactions from upper to lower layers such 
as case study 1 need to be smaller than that in the model for case study 2. In this study, 
threshold (α) values of case study 1 (1.00E−03, 5.00E−04, and 1.00E−04) were set 
smaller than that of case study 2 (1.00E−01, 5.00E−02, 1.00E−02). Accordingly, at 
threshold (α) values of 1.00E−03 or 5.00E−04, calculation errors occurred in middle 
and upper layers for case study 1. However, at threshold (α) < 1.00E−04, calculation 
errors were avoided. Therefore, in case studies 1 and 2, the calculation accuracy of the 
conventional method was maintained by the proposed method by setting the optimal 
threshold (α) value depending on the model (Figure 5, Figure 7). 

5. Conclusion 

In summary, in the present benchmark model, ahead and cumulative algorithms of the 
proposed method led to calculation efficiency of numerical calculations with adjust-
ments of step sizes of each layer, and reduced the numbers of numerical calculations 
required for multi-time-scale models with the time stiff problem. Moreover, backward 
algorithms of the proposed method ensured calculation accuracy in the multi-time- 
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scale model. Accordingly, we suggest that the proposed method is an efficient numeri-
cal method for multi-time-scale models. 
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