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Abstract 
A disease transmission model of SEIR type is discussed in a stochastic point of view. 
We start by formulating the SEIR epidemic model in form of a system of nonlinear 
differential equations and then change it to a system of nonlinear stochastic differen-
tial equations (SDEs). The numerical simulation of the resulting SDEs is done by Eu-
ler-Maruyama scheme and the parameters are estimated by adaptive Markov chain 
Monte Carlo and extended Kalman filter methods. The stochastic results are dis-
cussed and it is observed that with the SDE type of modeling, the parameters are also 
identifiable. 
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1. Introduction 

The mathematical modeling of different diseases continues to be an area of active re-
search. The aim of epidemic modeling is to understand and, if possible, to control the 
spread of the disease. To do this, epidemic modeling tries to relate disease dynamics at 
the population level to basic properties of the host and pathogen populations and of the 
infection process. In order to model the progress of an epidemic in a large population, 
comprising many different individuals in various fields, the population diversity must 
be reduced to a few key characteristics which are relevant to the infection under con-
sideration. For example, for most common childhood diseases that confer long-lasting 
immunity it makes sense to divide the population into those who are susceptible to the 
disease, those who are infected and those who have recovered and are immune (SIR 
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epidemic model). These subdivisions of the population are called compartments. This 
idea has been extended to SEIR epidemic model where the population can be parti-
tioned into four compartments: susceptible (S), latent or exposed (E), infectious (I), and 
recovered (R). 

The mathematical modeling of SEIR diseases is largely done deterministically [1] [2] 
[3] [4]. For instance, dynamical biological processes are better modeled by means of 
systems of deterministic ordinary differential equations (ODE), partial differential equ-
ation (PDE), or delay differential equation (DDE) [5]. The ODEs explain how a system 
changes or evolves, when the change occurs and the effect of the starting point to the 
initial solution and so forth. However, such modeling does not take into consideration 
some of uncertainties. It is this reason that has forced us to model the SEIR with Ito 
stochastic differential equation. Our main concern is to incorporate uncertainties into a 
mathematical model which are modeled using probabilities. 

The main advantage of deterministic modeling over stochastic modeling lay on the 
simplicity to analyze. Generally, the deterministic models are simple to analyze. How-
ever, stochastic models are to be used if their analysis is possible. As pointed out in [6] 
the stochastic modeling should be preferred over deterministic modeling because: 
• Most natural way of studying the spread of disease is stochastic because it defines 

the probability of transmission of disease between individuals. Stochastic modeling 
converges to deterministic modeling when the population size becomes large [7]. 

• Some phenomena are genuinely stochastic and do not satisfy the law of large 
number [8]. 

• The deterministic models are not the most relevant for modeling the start of an 
epidemic because the number of infectious individuals is small [5]. 

• Extinction of endemic diseases can only be analyzed by stochastic model because the 
extinction occurs when the epidemic process deviates from expected level [9]. 

• Estimation of parameters and states require the knowledge about uncertainty in 
estimates. Stochastic modeling enables estimation of parameters from disease 
outbreak data to be equipped with standard errors [10]. 

• Stochastic models are, in general, more realistic since the spread of diseases is 
stochastic in nature [11]. 

One of the advantages, over some of the other stochastic formulations, of modeling 
using the SDEs is that the SDEs can be derived directly from the deterministic system of 
ordinary differential equations and have a relatively simple form [9] [12] [13]. However, 
sometimes the results from SDEs are similar to those corresponding to discrete and 
continuous-time Markov chain models [5] [8]. 

As mentioned above, to use stochastic modeling we need to be able to analyze the 
phenomena stochastically, otherwise deterministic modeling should be used. In this 
paper, we model by Itȏ SDEs which are relatively simple and they can be easily derived 
directly from the deterministic system of ODEs [14]. In short, we convert the given 
deterministic model into SDE and then use the Bayesian sampling technique to analyze 
the resulting SDE. The conversion to SDEs for epidemic models has been discussed in 
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[7]-[12] [14]. 
In this paper, we provide a brief introduction to the Itô SDEs in Section 2 and the 

conversion of SEIR ODE to SDE is done in Section 3. In Section 4, the adaptive Markov 
chain Monte Carlo (MCMC) with the likelihood function computed by extended Kal- 
man filter is discussed. The numerical simulation and conclusion are found in Sections 
5 and 6 respectively. 

2. Itô Stochastic Differential Equation 

The inclusion of random effects in differential equations can lead to either random dif-
ferential equation whose solutions have differentiable sample paths or stochastic diffe-
rential equations whose solutions have non-differentiable [5]. The stochastic differen-
tial equations (SDEs) are attracting much attention due to physical processes in real life 
systems experience random forcing and stochastic inputs that cannot be captured by 
ordinary differential equations. Therefore, our concern in this article is the SDEs which 
can be expressed in terms of It or Stratonovich SDE [5] [13]. The Ito SDE, where global 
Lipschitz and growth conditions are satisfied to ensure the existence and uniqueness of 
strong solutions, can be written as [5] [13] [15]. 

( ) ( )( ) ( )( ) ( )d , , d , , d .t t t t t t t= +x f x L x Bθ θ                 (1) 

Here, is the set of SDE, is the drift vector function, dθ ∈ ⊆ Φ  is the vector of 
parameters to be estimated, [ ]: 0,n n m×× ∞ × →L  Φ  is a diffusion function, and is 
m-dimension Brownian motion with diffusion matrix m m

c
×∈Q  . If ( ) 0t =B , the 

SDE becomes the normal ordinary differential equation. 
The analysis of stochastic differential equations including their numerical treatment 

is nowadays of crucial importance for applications in finance, modeling of particle sys-
tems for solving non-linear kinetic equations, epidemiology and other areas in applied 
mathematics. However due to non-differentiability character of realizations of the 
Brownian processes, it is difficult to simulate the SDEs. There exist numerical schemes 
for approximating the solution of SDE (1) [5]. In this paper, we use Euler-Maruyama 
scheme. The Euler-Maruyama discretization scheme is the simplest numerical scheme 
where the solution of the SDE (1) is approximated as [5] [16] [17] 

( ) ( ) ( )( )
( )( ) ( )
1 1 1

1 1 1

, ,

, , ,
k k k

k k k

t t t t t

t t t
− − −

− − −

= + ∆

+ ∆

x x f x

L x B

θ

θ
                      (2) 

where 1k kt t t −∆ = − . For detail treatment of stochastic calculus and SDE theories a 
reader is referred to [5] [13] [18]. 

3. Model Framework 

In this section, there is a description of a simple SEIR epidemic model for the transmis-
sion of infectious diseases where the population is assumed to be closed (the population 
does not contain the demographic changes) [4]. Hence, the assumption is that during 
the outbreak of the epidemic no births or natural deaths occur. 
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3.1. A SEIR Deterministic Model 

Suppose the total effective population size N is divided in four compartments namely 
Susceptible individuals in class S, after being contacted with the virus enter the exposed 
class E at the per-capita rate I Nβ , where β  is the transmission rate per person per 
day, I N  is the probability that a contact is made with an infectious individual. 
Exposed individuals undergo an average incubation period of 1 k  days before 
progressing to the infectious class I. Infectious individuals move to the R class (death or 
recovered) at the per-capita rate γ . This can be explained by the following transfer 
diagram in Figure 1. 

The transition process in modeled by the following system of nonlinear ordinary 
differential equations 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

d
,

d
d

,
d

d
,

d
d

,
d

S t S t I t
t N

E t S t I t
kE t

t N
I t

kE t I t
t

R t
I t

t

β

β

γ

γ

= −

= −

= −

=

                        (3) 

where ( ) ( ) ( ), , ,S t E t I t  and ( ) ,R t  denote the number of susceptible, exposed, 
infected and removed at time t, respectively. It is seen that ( ) ,N t  the population size  

is constant because ( )S t , and ( ) ( ) ( ) d 0.
d
NS t I t R t N
t

+ + = ⇒ =  From (3) it is possible  

to express R in other variables R N S I E= − − −  because N S E I R= + + +  [4]. 
Hence, (3) becomes 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

d
,

d
d

,
d

d
.

d

S t S t I t
t N

E t S t I t
kE t

t N
I t

kE t I t
t

β

β

γ

= −

= −

= −

 

We solve the system (3), using Runge-Kutta numerical method and get the results 
represented by the two plots in Figure 2. 

Since the population is closed, no recruitment to susceptible population but there is 
recruitment on other compartments. An individual reaching the compartment R will 
never come back to the system. According to the Figure 2, it is seen that the variable S 
is decreasing exponentially, whereas E and I are increasing and decreasing after a 
period of time. This is due to recruitment and migrations from those compartments. 
The compartment R is increasing exponentially because all individuals reaching this 
state are supposed to remain within it. The system of nonlinear ODE equations (4) will 
be used for all further studies and analysis. For numerical solutions of nonlinear ODEs 
see [19] for further information. 
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Figure 1. SEIR transfer diagram: recruitment and immigration among compartments. 

 

  
Figure 2. SEIR epidemic model numerical simulation. The susceptible variable is decreasing since some of its candidates are immigrating 
to E. By this time, E and I are increasing and decrease after a given period. R is increasing exponentially. SEIR epidemic model numerical 
solutions are also fitted to simulated daily data. With these synthetic data we see that the model really fit them. 

 
The deterministic dynamical processes in physics, engineering and epidemiology 

among other applications, changes in the system are studied over a small time interval 
and a differential equation is obtained as the time interval approaches zero. The dy-
namical system is carefully studied to determine all of the different independent ran-
dom changes that occur in the system. Appropriate terms are determined for these 
changes in developing a discrete-time stochastic model which is then approximated by 
a system of stochastic differential equations [20]. 

As it has been mentioned above, noises have crucial effects in epidemic models 
which motivates researchers to change the system of SEIR ODEs into a system of SEIR 
SDEs. 

3.2. Equivalent SEIR Stochastic Model 

SDEs of the Ito type are derived from a system of ordinary differential Equation (3). 

The SEIR transfer diagram where the population is supposed to be closed,
the death and birth are ignored during that period of disease outbreak

In this transfer diagram S stands for susceptible population, E for people in latent
period,  I for infectious population whereas R is for Removed population.
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This will be done using method found in [9] [10] [11]. Let , 1, 2,3ix i =  denote the 
random variables for SEI respectively. There are three possibilities in changes in the 
vector [ ]T1 2 3, ,x x x=X  for a small time interval t∆ , assuming at most one change 
can occur. There is a method for evaluating the transition probability density for the 
process which is the solution of one stochastic differential equation. This method is not 
used to find the solution of the system of nonlinear SDEs. It is highly nontrivial task to 
get an analytical solution of Equation (4). 

The transition probabilities are represented by the following equation: 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

, , , 1,1,0

, , , 0, 1,1

, , , , , 0,0, 1

1 , , , 0,0,0

0,  otherwise

SI t k j m
N

kE t k j m

P s k i j l m f x I t k j m

SI kE I t k j m
N

β

γ

β γ


∆ = −


∆ = −


+ + + = = ∆ = −


  − + + ∆ =   




 

Note that i, j, l and m are integers defined in [1] [2] [4]. To form the SDE model (5) 
using the procedure developed by [9], ( )E ∆x  and ( ) ( )( )E ∆ ∆x x  need to be com- 
puted and preliminaries of calculation are found in Table 1. 

The ODE system (4) will be converted into the SDE in the form [11] 

( ) ( )( ) ( )( ) ( )d , d , d ,t F t t t G t t W t= +x x x                   (5) 

where iW  are white noises and Winner processes, a stochastic processes, a stochastic 
process such that d dt tB t W= , and tB  is the famous Brownian motion. Then before 
doing so, the following computations will be needed. 

( ) ( ) ( ) ( ) ( )

3

3

1 1 2 2 3 3
1

1 2 3

1 3

21 3

32

1 3

1 3
2

2

1 0 0
1 1 0
0 1 1

0 0
0

0

i i
i

x

E p p p p

p p p

x x
N

kxt t tx x
N xkx

x x
N

x x t F xkx
N
kx γ

β

β
γ

β

β

=

−

∆ = ∆ = ∆ + ∆ + ∆

−     
     = + +−     
     −     

− 
     
     −= ∆ + ∆ + ∆     
     −   
 

− 
 
 

= ∆ = − 
  
 

∑x x x x x

( )1 2 3, , .x x t∆

 

Let u compute the covariance matrix as follows 



D. Ndanguza et al. 
 

2201 

Table 1. Compartment changes in a small time period t∆ . 

Transition Probability 

( ) [ ]T

1
1,1,0∆ = −x  1 3

1

x x
p t

N
β 

 
 

= ∆  

( ) [ ]T

2
0, 1,1∆ = −x  1 2p kx t= ∆  

( ) [ ]T

2
0,0, 1∆ = −x  1 3p x tγ= ∆  

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3
T T T T

1 2 31 1 2 2 3 3
1

1 2 3

1 2 3

1 1

1 1 2

1 0 0
1 1 0 0 1 1 0 0 11 1 0

0 1 1

1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0

0 0 0 0 1 1 0 0 1

0

i i i
i

E p p p p

p p p

p p p

p p
p p p p

=

∆ ∆ = ∆ ∆ = ∆ ∆ + ∆ ∆ + ∆ ∆

−     
     = − + − + −−     
     −     

−     
     = − + − +     
     −     

−
= − + −

∑x x x x x x x x x x

( )

1 3 1 3

1 3 1 3
2 2 2

2 2 3
2 2 3

1 2 3

0

0 0

, , .

x x x x
N N
x x x x kx kx t
N N

p p p kx kx x

V x x x t

β β

β β

γ

 − 
   
   = − + − ∆   
   − +  − +  

 
= ∆

 

It follows that the SDE model for this problem has the form: 

( ) ( ) ( )( ) ( )1 2
d , d , d .t t X t= +X f X V Wθ θ                    (6) 

4. Parameters Estimation of Stochastic Differential Equation 

It is easy to form the stochastic differential equation (SDE), however, in practice the 
parameters of the resulting SDE model remain uncertain or completely unknown. 
There are many methods for estimating such parameters; generalized moment methods, 
the efficient moment methods, exact likelihood inference methods, pseudo likelihood 
methods, simulated likelihood methods indirect inference methods, filtering based 
methods, least square methods sequential Monte Carlo, maximum likelihood, quasi 
maximum likelihood, kernel density method, local linearization, least squares, gene- 
ralized method of moments, minimum 2χ  and MCMC methods [21]-[25]. 

Recently [26] developed a new method of estimating parameters of SDEs using non- 
linear Kalman filter and Markov chain Monte Carlo (MCMC). In their method, [26] 
compute the energy and energy derivative functions using linear Kalman filter and 
extended Kalman filter for linear and nonlinear SDEs respectively. Having energy 
function and its derivative, once can estimate SDE parameters using gradient free and 
gradient based methods. For our case, we use the filtering method developed in [26] to 
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estimate the unknown parameters β , k  and γ  in the nonlinear SDE (6). One 
advantage of this method is that the states Xt and the parameters θ are simultaneously 
estimated. Also, the application of nonlinear Kalman filter in the field of SEIR has not 
been widely used. 

4.1. Continuous-Discrete Extended Kalman Filter 

In filtering based approximation methods, the idea is to use measurement model (8) in 
a recursive way to estimate the states and compute sufficient statistics of the dynamic 
model (7). For linear SDE, one can use Kalman filter [27] to compute the posterior dis-
tribution of states, where the predictive differential equations are analytically solved by 
matrix fraction decomposition [26]. This idea of computing sufficient statistics using 
Kalman filter cannot be used in our nonlinear SDE (6) because Kalman filter is only for 
linear dynamic model [28] [29]. 

For the case of nonlinear SDE, [26] uses extended Kalman filter (EKF) to compute 
the (unnormalized) negative logarithm-posterior function and it’s derivative used in 
MCMC samplers. The continuous-discrete EKF is a Taylor series expansion based ap-
proximation of the general Bayesian continuous-discrete filter [28]. In our resulting 
SDE (6) numerical simulations, we choose measurement noises which are additive 
hence the non-linear continuous discrete filtering problem can be stated as 

( ) ( )( ) ( )( ) ( )d , , d , , d ,t t t t t t t= +x f x L x Bθ θ                 (7) 

( )( ) ,t k kt= +y h x r                                       (8) 

where ( )ktx  is the state at time kt , dθ ∈ ⊆ Φ  is the vector of parameters to be es-
timated, [ ]: 0,n n× ∞ × →f  Φ  is the dynamic model function,  

[ ]: 0,n n s×× ∞ × →L  Φ  is the matrix valued function, ( )t tB  is s-dimension 
Brownian motion with diffusion matrix s s

c
×∈Q  , m

k ∈y   is the measurement at 
time kt , : n mh    is the measurement model function, ( )0,k k∼r R  is the 
Gaussian measurement noise with m m

k
×∈R   being the covariance matrix of the 

measurement error at kt . At time 0t  the state is assumed to have the prior distribu-
tion ( )( ) ( )( )0 0 0 0| ,p t t=x x m P , where 0m  is the predictive initial mean and 0P  is 
the predictive initial covariance. 

In continuous-discrete EKF approach there are two steps; prediction and update 
steps [26]: 

1. Prediction step: 

( ) ( )( )d
, , ,

d
k

k
t

t t
t

−
−=

m
f m θ                                             (9) 

( ) ( )( ) ( ) ( ) ( )( ) ( )( )Td
, , , , , , ,

d
k

x k k k x k k
t

t t t t t t t t
t

−
− − − − −= + +∑

P
F m P P F m mθ θ θ     (10) 

where ( )( ) ( )( ) ( )T, , , , , ,cm t t t t t=∑ L m Q L mθ θ θ  and ( ), ,x tF x θ  is the Jacobian 
matrix of ( ), , tf x θ  with respect to x . The initial conditions are ( )1 1k k kt m−

− −=m ,
( )1 1k k kt−

− −=P P , and the prediction result is given as ( ) ( ),k k k k k kt t− − − −m m P P  . The 
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predictive differential Equation (9) and (10) are solved by Runge-Kutta fourth order 
method [9]. 

2. Update step: 

( ), ,k k tµ −= h m                                         (11) 

( ) ( )T, , ,k k k k x k kS H t H t− − −= +m P m R                         (12) 

( )T 1, ,k k x k kK t− − −= P H m S                                  (13) 

( ) ,k k k k ky µ−= + −m m K                                 (14) 

T ,k k k k kP−= −P K S K                                     (15) 

where ( ),xH tx  is the Jacobian matrix of ( ), th x . 
Using the Gaussian approximation of the posterior distribution computed from the 

continuous-discrete EKF, the negative logarithm posterior function can be approx-
imated as follows [26]: 

( ) ( ) ( ) ( )T 1

1 1

1 1ln 2п ln .
2 2

N N

k k k k k k
k k

S y S y pϕ µ µ θ−

= =

= + − − −∑ ∑│ │θ           (16) 

4.2. Markov Chain Monte Carlo 

Markov chain Monte Carlo (CMC) methods (see, e.g., [30]) are numerical methods for 
computing multidimensional integrals of the above form by using Monte Carlo. The 
idea is to draw samples ( ) ( ) ( )1 2 3, , ,θ θ θ  from the posterior distribution  
( )1| , , Mp y yθ   and approximate the expectation as the sample average 

( ) ( )( )1
1

1, , .
N

i
M

i
E g y y g

N
θ θ

=

  ≈  ∑│                    (17) 

One difficult in drawing samples from the posterior distribution is that even for the 
evaluation of the posterior probability density; we would need to be able to evaluate the 
normalization constant integral. MCMC methods are a class of Monte Carlo methods, 
which can draw the samples without the knowledge of the normalization constant. 
These methods are based on simulating a multidimensional Markov chain, which has 
been constructed such that it has the posterior distribution as its stationary distribution. 
In the simulation of the Markov chain we only need to evaluate the ratios posterior 
probability densities and thus the evaluation of the normalization constant is not re-
quired. 

The most well-known MCMC methods are the Metropolis, Metropolis-Hastings and 
Gibbs sampler algorithms [30]. The Metropolis-Hastings MH algorithm works by sam-
pling a candidate point *θ  from a proposal distribution ( )* |q θ θ  and then accepting 
the point with an acceptance probability [30]. The following is the Metropolis-Hastings 
MH algorithm 

1. Draw a candidate point, ( )0θ , from an initial distribution ( )0p θ . 
2. For 0,1, 2,n =   

• Sample a candidate point *θ  from the asymmetric proposal distribution ( )* | nq θ θ . 
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• Accept the candidate point and set ( )1 *n+θ θ  with the probability 

( )( )
( )( )

( )( )
( )( ) ( )( )

*
* *

*

,
, min 1, exp .

,

n
n n

n

q
A

A
ϕ ϕ

 
 = − 
  

θ θ
θ θ θ θ

θ θ
           (18) 

• Generate ( )~ 1,0u   from Uniform distribution. 
• Accept *θ  if ( )( )*,nu A≤ θ θ . 

If the proposal distribution is symmetric we have Metropolis algorithm whose ac-
ceptance probability (18) reduces to 

( )( ) ( )( ) ( )( ){ }* *, min 1, exp .n nA ϕ ϕ= −θ θ θ θ                  (19) 

In general, the proposal distribution used in MCMC algorithm should result in well 
mixing of chains and in a suitable acceptance rate. Determining which proposal distri-
bution is the best one for a particular target distribution is a very important, but also a 
difficult task, because it involves much trial-and-error. The most used proposal distri-
bution is the Gaussian distribution; however, we do not know how to obtain a suitable 
covariance matrix. One way to overcome this problem is to use adaptive MCMC where 
the proposal distribution is automatically adapted during the MCMC run [31] [32] [33] 
[34]. We present below the adaptive MCMC developed by [13]. 

i. Initialization: start with the initial values 0θ  and 0∑  and then select ,λ ε  and 
an initial non-adapting period 0n . For 0 0n =  means the adaptation start as the algo-
rithm start. If the target density is Gaussian then 22.4 dλ = . 

ii. At each step, propose a new *θ  from the Gaussian distribution ( )1,n nθ − ∑ . 
iii. Accept/reject *θ  according to the MCMC accepting probability. 
iv. For 0n n≥  adapt the proposal covariance matrix using: 

( )( )0 1 1cov , , , ,n n dIλ θ θ θ ε−∑ = +                    (20) 

where dI  is the d d×  identity matrix, ε  is a small positive value whose role is to 
make sure that n∑  is not singular, and λ  is a covariance scaling factor which opti-
mizes the mixing property of the Metropolis algorithm. 

iv. Iterate from ii. Above until you get enough samples. 

5. Numerical Simulations 

In this section, we employ the continuous-discrete extended Kalman filter to estimate 
the parameters of our resulting SDE (6). For the case of measurement model, the 
measurement function is assumed to be linear with measurement covariance 30.01I  
where 3I  is a 3 3×  identity matrix. 

Running EKF result into state estimate and other sufficient statistics. Figure 3 shows 
the EKF estimates of the compartments with their corresponding true states. The 
Susceptible population is decreasing while the Exposed and Infected ones are increasing 
from the beginning till a certain time t where it starts decreasing to be zero. This means 
that the disease is controlled and is being eradicated to die out from the population. 
This numerical solution is in agreement with deterministic SEIR ODE equations. 
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Figure 3. Simulated compartments and EKF estimates: from the figure Sx, 
and Ix represent simulated data for susceptible, exposure and infected 
while Sekf, and Iekf represent estimated compartments data for susceptible, 
exposure and infected. 

 
To test if the extended Kalman filter likelihood based computation works, we use a 

grid based method where each parameter is estimated separately. For instance, if we 
want to identify β  we fix other parameters and then produce the range of values of 
β . If the β  value used to generate date was 2 then we form a range 1,1.040,1.0808,  

,5  of β  values and then compute the log-posterior for each β  value. Figure 4 
shows three log-posterior distributions together with the true parameter values and the 
Grid based method estimate. As the distributions look, the parameters are identifiable 
hence we next study the correlation of parameters using Markov chain Monte Carlo 
sampler. We specifically use adaptive MCMCM [7] [13] [14] [24]. 

The trend of generated samples can be studied using the trace plots Figure 5. It is 
seen that the contact rate β  is oscillating between 1.8 and 2.2, the infection rate k is 
between 0.16 and 0.17 corresponding to [5.9 - 6.25] days, whereas the recovery rate γ  
is oscillating between 0.13 to 0.155 corresponding to [6.5 - 7.7] days. 

The basic reproduction number 0R , given as 0R β
γ

= , provides an index of trans- 

mission intensity and establishes threshold criteria [35]. It is known that if the basic re-
production number 0R  is greater than 1, the spread of the disease is high and many 
people can be contaminated at that period of outbreak if no measures are taken. Oth-
erwise, the disease will die out, i.e. 0 1R < . Figure 6 shows the histogram and density of 

0R  values. As expected, the distribution is Gaussian with mean around 12. hence the 
spread of disease is higher. 

The autocorrelation functions measure how well the MCMC sampler is performing 
by measuring the autocorrelation between iθ  and i pθ +  at lagp. The smaller the auto- 
correlation values, the better mixing the Markov chain. The autocorrelation values  
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Figure 4. Grid based estimation methods: The y axis shows the log-posterior values while the x axis shows the range of corresponding 
parameter values. The first plot shows the log-posterior distribution for β, keeping other parameters fixed. The same explanation applied 
to the second and third plots but this time for k and γ respectively. Generally, the method shows that the parameters of SEIR can be 
identifiable using any likelihood based methods. 
 

 
Figure 5. Trace plots. 

 
from Figure 7 are decreasing and stabilizing around zero, this indicates that the 
parameters are identifiable. 
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Figure 6. The histogram and probability density function of the basic reproductive number. 
 

 
Figure 7. Autocorrelation functions. 
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Figure 8. Marginal distribution of samples. 

 
the normal distribution. The kurtosis value for k samples was found to be less than 3, 
which indicates that the marginal distribution is not more peaked than normal 
distribution. 

6. Conclusions 

SEIR epidemic model has been studied by many scholars but in different approaches 
where all are almost focusing to the same results. The S-E-I-R model discussed in this 
paper assumes a closed community. In other words, all the n individuals in the com-
munity do not leave the system, and eventually all will be infected if no means of stop-
ping such outbreak are set out. Even in more sophisticated models, such an assumption 
is sometimes necessary in order to reach a solution. The question is not how many sus-
ceptible individuals will become infectious (since, according to the model, all will be 
infected), but perhaps how quickly the epidemic is spreading and when the spread will 
slow down. Many methods of the parameter estimation of systems of ODE models have 
been developed and are now being applied in different areas of research. Although 
these are useful instruments, they are essentially deterministic in nature, and are not 
capable of capturing uncertainties or noise into the model. Stochastic models are to be 
preferred when their analysis is possible; otherwise deterministic models should be used. 

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2
0

500

1000

1500

2000

2500

3000

3500

4000

 

 
Distribution

Mean
True

Median

0.138 0.14 0.142 0.144 0.146 0.148 0.15
0

500

1000

1500

2000

2500

3000

3500

4000

 

 
Distribution

Mean
True

Median

0.158 0.16 0.162 0.164 0.166 0.168 0.17 0.172
0

500

1000

1500

2000

2500

3000

3500

4000

 

 
Distribution

Mean
True

Median



D. Ndanguza et al. 
 

2209 

Deterministic models can also serve as introductory models when studying new phe-
nomena. We see that there is no conflict between the two approaches and believe that 
both types of models play an important role in better understanding the mechanisms of 
disease spread. 

On the side of SDEs epidemic models few approaches of estimating parameters have 
been developed. In this paper, we have used the adaptive Markov chain Monte Carlo 
with extended Kalman filter to estimate the parameters of nonlinear SDE. One can use 
other nonlinear filtering methods like Gaussian filter, or particle filters. The motivation 
of this research was to investigate if model parameters are also affected by random 
fluctuations after changing the deterministic ODEs to stochastic differential equations. 
The numerical simulations of epidemic SDEs are in agreement with deterministic SEIR 
epidemic model. It is not the intention of this paper to construct an accurate stochastic 
model for any disease outbreak but instead, through simulation runs of the MATLAB 
software programs, it serves to provide a way for readers to experiment with SDEs us-
ing a simple case of a disease outbreak. 

Last but not least, it will be unfair to not mention that there is a wide range of models, 
both stochastic and deterministic, for the spread of an epidemic. Usually, when the 
population is constituted of a large number of individuals, a deterministic model is 
useful as a first approximation, and random variations can be neglected. As an alterna-
tive, a stochastic model could be more appropriate for describing the epidemic, but it is 
less tractable and its mathematical analysis is usually possible only when the population 
size is very small. 
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