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Abstract 
The present paper introduces a new approach to simulate any stationary multivariate 
Gaussian random field whose cross-covariances are predefined continuous and in-
tegrable functions. Such a field is given by convolution of a vector of univariate ran-
dom fields and a functional matrix which is derived by Cholesky decomposition of 
the Fourier transform of the predefined cross-covariance matrix. In contrast to 
common methods, no restrictive model for the cross-covariance is needed. It is sta-
tionary and can also be reduced to the isotropic case. The computational effort is 
very low since fast Fourier transform can be used for simulation. As will be shown 
the algorithm is computationally faster than a recently published spectral turning 
bands model. The applicability is demonstrated using a common numerical example 
with varied spatial correlation structure. The model was developed to support simu-
lation algorithms for mineral microstructures in geoscience. 
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1. Introduction 

The theory of uni- and multivariate random fields has been used extensively in a broad 
range of science and engineering disciplines such as meteorology, astrophysics and 
geosciences ([1] [2]) over the last decades. The multivariate case is still topic of modern 
spatial statistics research ([3] [4] [5]). 

Of particular interest is the general case when the components of the multivariate 
vector are not independent. Numerous models of the resulting so-called cross- 
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covariance and methods for simulation of such fields have been given in the literature 
(see [6]). 

A common classification is to distinguish between algorithms giving realizations 
which are exactly Gaussian (autoregressive, moving-average, circulant-embedding, dis-
crete spectral simulation, see [7] [8] [9] [10] [11]) and those which produce approx-
imately Gaussian realizations. The later are based on the central limit theorem such as 
Poisson dilution, tessellation, continuous spectral and turning bands algorithms ([2] 
[12] [13] [14]). 

Another distinction is whether the approach is restricted to the simulation of the 
fields at regular grid locations (e.g. the ones mentioned for exactly Gaussian) or not (e.g. 
the ones for approx. Gaussian), the Cholesky decomposition approach ([15] [16]) and 
sequential algorithms ([17]). Unfortunately the later became computationally too costly 
when the number of locations exceeds a few thousands. 

Many models are also limited to certain parametric models for the cross-covariances. 
Such as the methods based on convolution, e.g., the so-called kernel convolution and 
covariance convolution approach ([6], p. 739). Both are suitable for the isotropic case 
but the number of parameters is limited to N (or 1N − ) functions, while a cross-  

covariance has 
( )1

2
N N −

 functional parameters in general. 

Recently, a very interesting ansatz without this limitation was given in [3]. Similar to 
a kind of spectral turning-bands algorithm it is available for non-grid positions but it 
creates only approximately Gaussian fields. 

The spectrum convolution approach proposed in this paper creates exact stationary 
Gaussian random fields. Such a multivariate field with values in N  is given by con- 
volution of a N dimensional vector of univariate Gaussian random fields and a 
functional N N×  matrix. Note that this model is completely different from the 
Cholesky decomposition approach ([15] [16]) and requires only decomposition of 
N N×  matrices. The functional matrix is derived by Cholesky decomposition of the 
Fourier transform of the predefined cross-covariance matrix (with some normalization). 
It will turn out that this approach allows fast generation of large samples since only 
Fourier transform and matrix multiplication of the initial vector of univariate Gaussian 
fields is required. Unfortunately, in the present form, the method seems only appro- 
priate for grid locations. Relevant for many research fields, the new model will be used 
in our research group in a geostatistical framework. It serves as a basis for models of 
mineral microstructure. For that a very fast algorithm is required since the grids 
contain several million locations. 

In a certain sense it is similar to coregionalization ([18]), which may also be defined 
for a functional transformation matrix but unfortunately this approach cannot be made 
stationary (besides trivial cases). 

The outline of the present paper is as follows. Section two introduces notation and 
provides the theoretical frameworks and results for multivariate random fields as well 
as a closer look at two other approaches. This is followed by a description of the new 
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model in section three, which contains the proof of validity. Example simulation and a 
comparison of the computation effort to another model is done in the second last 
section. The paper is topped off with a conclusion section. 

2. Theory 

This section is intended to make the reader familiar with notation, the mathematical 
objects used in this paper and some theoretical results. 

2.1. Multivariate Random Fields 

A N-variate second-order random field : d NZ T⊇ →   is a collection of real- 
valued random vectors ( ) ( ) ( )( )1 , , NZ x Z x Z x=   indexed by x T∈  with existing 
second moments. 

Common first and second-order characteristics are the field ( ) ( )Em x Z x=  called 
trend of Z and the matrix ( ), 1 ,i j i j N

ρ ρ
≤ ≤

=  of functions 

( ) ( ) ( )( ), , cov , , ,i j i jx y Z x Z y x y Tρ = ∈  

which is called cross-covariance function of Z. This function satisfies positive semi- 
definiteness in the sense that 

( )
1 1

, 0
n n

t
p q

p q
a x y aρ

= =

≥∑∑  

for all n N∈ , 1, , d
nx x ∈   and 1, , N

na a ∈  . If the cross-covariance function 
depends on x and y only through the distance vector h x y= − , then Z is called 
stationary. 

Without loss of generality, throughout the rest of the paper, the trend m of the 
random fields is assumed to be constant equal to ( )0, , 0o =  . 

In contrast to the univariate case, isotropy has different interpretations in the multi- 
variate case (see [4]). In this paper Z is called isotropic if ( ),x yρ  does only depend 
on the lag r x y= − , where ⋅  denotes the euclidean norm. 

A multivariate Gaussian field is a random field where all finite dimensional distri- 
butions are normal distributions. Similar to the univariate case it is fully described by 
the aforementioned characteristics m and ρ . 

The main theorem of this paper makes use of the famous Kolmogorov-Chentsov 
theorem. See [19] (thm 2.2.3) or [20] (thm 1) for the proof. It provides a useful cri- 
terion for establishing the existence of versions of stochastic processes or fields with 
continuous sample paths. 

Theorem 1 (Kolmogorov continuity) Suppose that the random field ( )t t T
X X

∈
=  

on an open domain dT ⊆   satisfies the following condition: There exist positive 
constants , , Dα β  such that 

E , , .d
t sX X D t s s t Tα β+− ≤ − ∈  

Then there exists a version of X on the closure of T with a.s. continuous paths. 
Immediately one can deduce the following result. 
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Corollary 1 A stationary random field ( )t t T
X X

∈
=  on dT ⊆   with continuous 

and integrable covariance function ρ  has a version with a.s. continuous paths on T. 
Proof. On the one hand, by continuity, ρ  is bounded on every bounded subset of T. 

On the other hand, it holds ( )lim 0h hρ→∞ =  since it is integrable. Overall, this implies 

( ) ( )( )2E 2 , , .t sX X o t s D s t Tρ ρ− = − − ≤ ∈  

From Theorem 1 follows the statement. 
The following theorem from [21] is required for the proof of Lemma 2. 
Lemma 1 Suppose ( )n n

X
∈

 is a sequence of normal distributed vectors and  
limn nX X→∞ = , almost surely. If 

: lim E and : lim covn nn n
b X C X

→∞ →∞
= =  

exist then X is normal with mean vector b and covariance matrix C. 
Also important for our main result is the next lemma. 
Lemma 2 Suppose ( )n n

Z
∈

 is a sequence of Gaussian random fields and  
limn nZ Z→∞ = , almost surely. If 

: lim E and : lim cross-covn nn n
m Z Zρ

→∞ →∞
= =  

exist then Z is Gaussian with trend m and covariance function ρ . 
Proof. The finite dimensional distributions of nZ  are all normal. Mean vectors and 

covariance functions of the finite dimensional distributions converge since E nZ  and 
cov nZ  do by assumption. From Lemma 1 and since almost sure convergence 
implies convergence in distribution it follows that the finite dimensional distributions 
of Z are also normal, which gives that Z is Gaussian. 

Also required in what follows is the following easy to prove result from linear 
algebra. 

Lemma 3 For all integers n∈ , vectors nv∈  and matrices , n nA B ×∈  it holds 

( ) .
tt t t tAv Bv Av vB=  

2.2. Previous Simulation Approaches 

As introduced in the beginning there are several procedures to construct and sample 
random fields with predefined cross-covariance ([5] and [18] section 28.9). Two pro- 
mising ways are given in detail below. 

a) A common method to correlate several random fields is called coregionalization 
(see [4] section four). For this, let ( ) ( ){ }1 , , NY Y Y=   be a vector of independent 
stationary and isotropic Gaussian random fields. For a matrix M define the vector of 
random fields Z by 

.tZ M Y=  

The cross-correlation of Z is now given by the positive semi-definite matrix ([4]) 

( ), 1 ,
,t

i j i j N
MCMρ

≤ ≤
=  
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where ( ) ( )( )1diag cov , , cov NY Y
C =   is the diagonal matrix of covariances. To get 

EZ o≡  it is sufficient to assume E 0Y ≡ . 
b) Recently, an improved spectral turning-bands algorithm for simulating stationary 

multivariate Gaussian random fields was presented in [3]. Using this one can simulate 
any multivariate Gaussian field whose cross-covariance function is continuous and 
absolutely integrable for each entry. 

The approach reformulated and reduced in what follows for the stationary isotropic 
case in 2  which makes the cross-covariance symmetric such that the imaginary part 
in the model vanishes. In general it is also available for the anisotropic case. 

Extending the very famous result of Bochner for the multivariate case the isotropic 
cross-covariance at lag :r h=  can be written as (see [22]) 

( ) ( ) ( )2 cos , dr h u F u uρ = ∫  

where [ [: 0,F H +∞ →  is called the matrix of spectral densities ( H +  denotes the set 
of symmetric positive semi-definite matrices). It is given by 

( ) ( ) ( )2 cos , d , : ,F s u h h h s uρ= =∫  

which can be rewritten using Hankel transform (see [23]) as 

( ) ( ) ( )00
2π d ,F s r J sr r rρ

∞
= ∫  

where 0J  is the 0-th order Bessel function of the first kind. 
Fix an arbitrary probability density [ [ [ [: 0, 0,h ∞ → ∞  with infinite and positive 

support. For ( ) 2sin , cosx xx x θ θ= ∈  define the random vector 

( ) ( )( ) ( ), , , ,
1 1

1: cos cos ,
L N

l n x l n l n l n n
l n

Z x x X A X e
L

θ θ φ
= =

= − +∑∑          (1) 

where 1L , ,l nX  are mutually independent non-negative random reals with density 
h and , ,,l n l nθ φ  are mutually independent random variables uniformly distributed over 
the interval [ [0, 2π  and independent of the ,l nX . Note that ( )0, , 0,1,0, , 0ne =    
with 1 at position n. The deterministic “lower triangular matrix”-valued function A is 
uniquely given by Cholesky decomposition such that 

( ) ( ) ( )
( )

4πt sF s
A s A s

h s
=  

for all 0s ≥ . 
As shown in [3] the random field Z is approximately multivariate Gaussian (for large 

L) with trend o and cross-covariance ρ . 

3. Spectrum Convolution Approach 

The main part of the paper is given in what follows. The following model can be seen as 
a spectral variant of coregionalization (Section 2.2) but also bears analogy to the 
spectral turning bands method. 

Let ( )1, , NY Y Y=   be a stationary multivariate Gaussian random field on d  with 



J. Teichmann, K.-G. van den Boogaart 
 

2188 

mean EY o≡ , covariance functions cov
iY R=  and spectrum functions R̂ , 1 i N≤ ≤ . 

Furthermore, let R  be continuous and integrable and : d N NA ×→   be a mapping 
such that ( ) ( )A h A h= −  and ,i jA  are integrable functions. 

Theorem 2 The random vector field Z on d  with values in N  defined by 

tZ A Y= ∗  

is multivariate Gaussian with trend EZ o≡  and stationary cross-covariance 

.t
NA RI Aρ = ∗ ∗  

For the spectrum it holds 

( ) ( ) ( ) ( )ˆ ˆˆˆ .tR A Aρ ξ ξ ξ ξ=  

Proof. 
• Let d  be the d-dimensional hypertorus, the product space of d circles 

1 1

times
: .d

d
S S= × ×


  

Equivalently, the d-torus is obtained from the d-dimensional hypercube by gluing 
the opposite faces together giving a cubic domain with periodic boundaries. Because of 
periodicity for a continuous function : df →   and for every da∈  it holds 

( ) ( )d d .d df x a x f x x+ =∫ ∫ 
                      (2) 

• For n∈  define the random field 

( ) ( ) ( ) d , .d
t d

n n
Z x A x y Y y y x= − ∈∫ 

  

It can be written as 

( ) ( ) ( ),
=1, ,

d ,dn i j jn
j i N

Z x A x y Y y y
 

= − 
 
∑∫




 

for dx∈ , showing that it is well-defined and Gaussian, since the sum and Riemann 
integral over a bounded domain of a Gaussian processes with a.s. continuous paths are 
Gaussian processes again [24] [25]. There is a version of jY  with a.s. continuous paths, 
since its correlation function was assumed to be continuous and integrable such that 
Corollary 1 can be applied. 
• For the trend it follows 

( ) ( ) ( )

( ) ( )

( ) ( )( )

E E

E d

E d

,

d

d

t
n

t

n
t

n

Z x A Y x

A x y Y y y

A x y Y y y

o

= ∗

= −

= −

≡

∫
∫





 

since E 0iY ≡  for 1 i d≤ ≤ . 
• For the cross-covariance function of nZ  one can obtain the formula 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

E E

E d d

E d d

E d d

d d

d d

d d

t tt t
n n

tt t

n n

tt t

n n

t t

n n

Z x Z y A Y x A Y y

A x s Y s s A y t Y t t

A x s Y s A y t Y t s t

A x s Y s Y t A y t s t

= ∗ ∗

= − −

= − −

= − −

∫ ∫

∫ ∫

∫ ∫

 

 

 

 

with Lemma 3 

( ) ( ) ( ) ( )

( ) ( ) ( )

E d d

d d

d d

d d

t t

n n
t

Nn n

A x s Y s Y t A y t s t

A x y u R u v I A v u v

= − −

= − − − −

∫ ∫
∫ ∫
 

 

 

using the transformation ,u s y v t y= − = −  and Equation (2). From that, one can 
deduce 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

E lim E

d d

d

d d

d

t t
n nn

t
N

t
N

t
N

Z x Z y Z x Z y

A x y u R u v I A v u v

A x y u RI A u u

A RI A x y

→∞
=

= − − −

= − − ∗

= ∗ ∗ −

∫ ∫
∫
 



         (3) 

which does exist since all components were assumed to be integrable. According to 
Lemma 2 the limit ( ) ( ) dd

tZ A x y Y y y= −∫  is well-defined and Gaussian. 
• Furthermore, from (3) it follows that Z is stationary and by the convolution theorem 

the spectrum becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆˆ .t t
YA E A R A Aρ ξ ξ ξ ξ ξ ξ ξ= =  

Modeling and simulation is based on the following corollary. 
Corollary 2 If a cross-covariance ρ  is previously defined, the matrix A is given by 

Fourier transform of Â , which can be deduced by 
ˆ ˆ ˆ
ˆ

tAA
R
ρ
=  

using Cholesky decomposition such that Z has cross-covariance ρ . 

4. Simulation 

This section is intended to describe and to demonstrate how simulation of the new 
model works by means of a popular example. The second part evaluates the compu- 
tational effort in comparison to the spectral turning bands approach. 

4.1. Simulation Procedure and Example 

Based on Theorem 2 and Corollary 2 one can describe a very simple simulation algorithm. 
Let functions ,i jA  and R be given. For simulation in a bounded domain do the 

following. 
• Discretize the domain by a grid  . 
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• For 1, ,i N=   create a univariate Gaussian field iY  on   with covariance R. 
• Calculate the discrete Fourier transform iY  of iY . 
• For each grid point g ∈  deduce the vector ( )Ẑ g  by multiplication of the 

matrix ( )Â g  and the vector  ( )  ( )( )1 , ,
t

dY g Y g . 
• Apply the inverse discrete Fourier transform to Ẑ  to obtain the field Z. 

The algorithm uses the same steps as the usual approach based on Fourier transform 
for an arbitrary Gaussian field ( [7] [10] [26]) with additional multiplication of ( )Â g . 

There are numerous models to obtain valid cross-covariance functions. The popular 
multivariate Matérn model ([3] [27]) extending the univariate case has only a finite 
number of real parameters for scale and shape of the field. 

Define the isotropic Matérn covariance function, that is 

( ) ( )
12, , , .dh h

M h a K h
a a

νν

νν
ν

−    
= ∈   
Γ    

  

The spectrum is given by (see [3]) 

( ) ( )
( ) ( )2 222

2 1ˆ , , , .
π 1

d
d

d d

a d
M u a u

a u
ν

ν
ν

ν +

Γ +
= ∈

Γ +
  

Here Kν  is a modified Bessel function of the second kind and 0a >  is a spatial 
scale parameter referred to as a correlation length. The smoothness parameter 0ν >  
defines the Hausdorff dimension and the differentiability of the sample paths, since for 
a positive integer k, the sample paths are k times differentiable if and only if kν >  
([27]). 

For 2d =  and 2N =  the so-called full bivariate model can be derived by setting 
( ), , ,, ,i j i j i jM aρ ν= ⋅ . In [27] conditions on , ,,i j i ja ν  were derived such that ρ  is a 

valid cross-covariance. Following [3] 

( ) ( ) ( )
( ) ( )

, 20,1.5 0.5 ,100 3,1
0.5 ,100 3,1 ,100,0.5

M h M h
h

M h M h
ρ

 
=  
 

 

is a valid function. 
Let us consider the quadratic domain [ ] [ ]0,500 0,500×  discretized by a grid of 

500 500×  nodes. The model and simulation procedure was implemented using the 
commercial software Mathematica®. 

The components of ρ are shown in Figure 1. 
A realization of the initial univariate random fields 1Y  and 2Y  such as a sample of 

the resulting cross-correlated bivariate Gaussian field is illustrated in Figure 2. 

4.2. Computational Effort 

This short paragraph compares theoretical and practical computation times of spectral 
turning bands and spectrum convolution on the same machine for varying numbers of 
sample locations. 

For the spectral turning bands method it can be deduced that the computational cost 
are of ( )O LM , where M is the number of locations x to sample and L the number of  
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Figure 1. Left, covariance functions ρ1,1 (blue), ρ1,2 (red) and ρ2,2 (green). Right, corresponding 
Fourier transforms. 
 

 
Figure 2. Top, samples of the univariate Gaussian random fields. Bottom, resulting sample of the 
bivariate Gaussian field, x-component (left), y (right). 
 
summands. For a common choice of L M≈  it follows ( )3 2O M . An advantage 
over circulant-embedding techniques is the possibility to split the area of locations into 
small subsets allowing for a considerable reduction of memory storage requirements 
and for parallel computations. 

Considering the computational costs for our spectrum convolution approach, since d 
and N are small numbers, matrix multiplication and Fourier transform are the main 
operations to be considered. Both can be performed in ( )logO M M . Thus, the 
method is of the same scale than circulant-embedding (one of the fastest alternatives to 
date with ( )logO M M ). Again one can split the area of locations into smaller subsets  
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Figure 3. Computation time as a function of the number of sample locations for 
spectral turning bands with L M=  (red), 10logL M=  (green) and spectrum 
convolution approach (blue). 

 
and process these subsets consecutively and/or independently. 

Considering a practical example performed on a single core 2 ghz laptop cpu. Recall 
that all code was written in Mathematica software. In Figure 3 the computational time 
for 10 realizations and different numbers of sample locations M for each approach is 
shown. Spectrum convolution (blue) is much faster than spectral turning bands, which 
was computed for L M=  (red) and 10 logL M=  (green). If L scales logarithmic 
both implementations have the same asymptotic, which is also verified theoretically, 
but spectrum convolution is still more than 40 times faster. 

5. Conclusion 

As a contribution to the topic of stochastic processes in general and to random fields in 
particular, a new multivariate modeling approach was presented. It allows modeling 
and simulation of exact stationary multivariate Gaussian random fields where also the 
case of isotropy is covered. It is remarkable that any such a random field can be ob-
tained, provided the components of its cross-covariance are continuous and integrable 
functions. The model is easy to implement since only simulation of normal variables, 
matrix multiplication, Cholesky decomposition and Fourier transform are required 
tools. It is shown numerically that the algorithm is more than 40 times faster than spec-
tral turning bands and it can also be modified for parallel computing but, unfortunately, 
it is limited to sampling in locations on a regular grid. 
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