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Abstract 
In this paper, we present a new approach for solving boundary value problem in partial differen-
tial equation arising in financial market by means of the Laplace transform. The result shows that 
the Laplace transform for the price of the European call option which pays dividend yield reduces 
to the Black-Scholes-Merton model. 
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1. Introduction 
An option is a contract that gives the right (not an obligation) to its holder to buy or sell some amount of the un-
derlying asset at a future date for a prescribed price. The underlying assets include stocks, stock indices, debt in-
struments, commodities and foreign currency. A call option gives its holder the right to buy the underlying asset, 
whereas a put option gives its holder the right to sell. Vanilla options are actively traded on organized exchanges. 
They are also subject to certain regularity and standardization conditions. Vanilla options can be classified as 
American options and European options. An American option gives a financial agent the right, but not obliga-
tion to buy or to sell the underlying assets on or prior to the expiry date at the specified price called the exercise 
price. European option is an option that can be exercised only at the expiry date with linear payoff. European 
option comes in two forms namely European call and put options.  
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A European call option is an option that can be exercised only at expiry and has a linear payoff given by the 
difference between underlying asset price at maturity and the exercise price. The payoff for the European call 
option is given by 

( ) ( ),T TC S T S K
+

= − .                                  (1) 

A European put option is an option that can be exercised only at expiry and has a linear payoff given by the 
difference between the exercise price and underlying asset price at maturity. The payoff for the European put 
option is given by 

( ) ( ),T TP S T K S
+

= − .                                  (2) 

The revolution on derivative securities both in exchange markets and in academic communities began in the 
early 1970’s. How to rationally price an option was not clear until 1973, when Black and Scholes published their 
seminal work on option pricing in which they described a mathematical frame work for finding the fair price of 
a European option (see [1]).  

Moreover, in the same year, [2] extended the Black-Scholes model in several important ways. Since its inven-
tion, the Black-Scholes formula has been widely used by traders to determine the price of an option. However 
this famous formula has been questioned after the 1987 crash. 

One of the main concerns about financial options is what the exact values of options are. For the simplest 
model in the case of constant coefficients, an exact pricing formula was derived by Black and Scholes, known as 
the Black-Scholes formula. However, in the general case of time and space dependent coefficients the exact 
pricing formula is not yet established, and thus numerical solutions have been used (see [3]). 

There are many exhaustive texts and literatures in this subject area such as [4]-[10], just to mention a few.  
In this paper, we present a new approach for solving boundary value problem in partial differential equation 

arising in financial market via the Laplace transform. The rest of the paper is organized as follows: Section 2 
presents the Black-Scholes-Merton partial differential equation for the price of European call option which pays 
a dividend yield. In Section 3, we consider the Laplace transform and some of its fundamental properties. Sec-
tion 4 presents the Laplace transform for solving boundary value problem in partial differential equation arising 
in financial market. We also show that our result reduces to Black-Scholes-Merton like formula. Section 5 con-
cludes the paper. 

2. The Black-Scholes-Merton Partial Differential Equation 
We consider a market where the underlying asset price , 0tS t T≤ ≤  is governed by the stochastic differential 
equation of the form 

( )d d d ,  0t t t t tS r d S t S W Sσ= − + < < ∞                           (3) 

where σ  is the volatility, r is the riskless interest rate, d is the dividend yield and tW  is a one-dimensional 
Wiener process. Standard arbitrage arguments show that any derivative ( ),tu S t  written on tS  must satisfy 
the partial differential equation of the form 

( ) ( ) ( ) ( ) ( )
2

2 2
2

, , ,1 ,
2

t t t
t t t

t t

u S t u S t u S t
r d S S ru S t

t S S
σ

∂ ∂ ∂
+ − + =

∂ ∂ ∂
.                (4) 

Setting ( ) ( ), ,t tu S t C S t=  in (4), then we have the Black-Scholes-Merton partial differential equation for 
the price of European call option given by  

( ) ( ) ( ) ( ) ( )
2

2 2
2

, , ,1 ,
2

t t t
t t t

t t

C S t C S t C S t
r d S S rC S t

t S S
σ

∂ ∂ ∂
+ − + =

∂ ∂ ∂
               (5) 

with boundary conditions 

( ) [ ),  as on 0,t tC S t S T→∞ →∞                           (6) 

( ) [ ), 0 as 0 on 0,t tC S t S T→ →                            (7) 



F. S. Emmanuel, E. H. Oluyemisi 
 

 
842 

and final time condition given by 

( ) ( ) ( ) [ ), on 0,T T TC S T S K f S
+

= − = ∞ .                          (8) 

Equation (7) states that the option is worthless when the stock price is zero. 

3. The Laplace Transform and Its Fundamental Properties 

Let ( )h x  be a piece-wise continuous function on every closed interval [ ] [ ){ }, 0,x a b x∈ ⊂ ∈ ∞  there exists 

[ ){ } ( ): 0, , :h x h x h x∈ ∞ → →  such that 0 and w w∈ ∈  . Then ( )( ) ( ) , for wL h x H w w= ∈  is called 

the Laplace transform of ( )h x  and is defined as 

( )( ) ( ) ( ) 0
0

e d , ,wx
wL h x H w h x x w w w

∞
−= = ∀ ∈ >∫                        (9) 

whenever the integral exists. Conversely, the inverse Laplace transform of ( )H w  is defined as 

( )( ) ( ) ( )1
0

1 e d ,
2π

c i
wx

w
c i

L H w h x H w w c w
i

+ ∞
−

− ∞

= = >∫ .                      (10) 

Let ( )h x  be a piece-wise continuous with the Laplace transform ( )( )wL h x . The fundamental properties of 
the Laplace transform hold. 

1) Linearity of the Laplace Transform 

( )( ) ( )( ) ( ) ( ) ( ) ( )( )
0

e dwx
w wL ah x L bg x aH w bG w ah x bg x x

∞
−+ = + = +∫ .              (11) 

Equation (11) is intermediate from the definition and the linearity of the definite integral. 
2) Scaling Property 

( ) ( )
0

1e d , 0wx
w

wL ax h ax x H a
a a

∞
−  = = > 

 ∫                          (12) 

3) Shifting Property 

( ) ( )
0

e e e dax ax wx
wL x H w a

∞
−= = −∫                              (13) 

4) Commutativity Property 
The Laplace transform is commutative. i.e. 

( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( )
0

0

* * d

d * *

x

w w

x

w w

L g x L h x G w H w g x t h t t

h x t g t t H w G w L h x L g x

= = −

= − = =

∫

∫
         (14) 

5) The Laplace Transforms on Differentiation 

Let ( ) , for 0h x x >  be a differentiable function with the derivative ( )d
d
h x

x
 being continuous. Suppose that  

there exist constant M and X such that ( ) e , ,xh x M x Xα≤ ∀ ≥  then  

( )( ) ( ) ( ) ( ) ( ) ( )
0 0

d d
e d lim e d 0 0

d d

b
wx wx

w b

h x h x
L h x H w x x wH h

x x

∞
− −

→∞
= = = = −∫ ∫ .           (15) 

Note that the condition  

( ) ( )e , lim e 0,  for x wb

b
h x M x X h b wα α−

→∞
≤ ∀ ≤ ⇒ = > .                    (16) 

6) Convolution Property 



F. S. Emmanuel, E. H. Oluyemisi 
 

 
843 

Theorem 1: Convolution Theorem 
Let ( )( ) ( )( ) and w wL g x L h x  denote the Laplace transforms of ( ) ( ) and g x h x , respectively. Then the  

product given by ( )( ) ( ) ( )( )w wL f x L g x h x=  is the Laplace transform of the convolution of ( ) ( ) and g x h x   

is denoted by ( ) ( ) ( )*f x g h x=  and the integral representation  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

* d

* d

x

x

f x g h x g x h x s s

f x h g x h x g x s s


= = − 



= = − 

∫

∫
                           (17) 

We present some of the results on the existence and uniqueness of the Laplace transform below. 
Theorem 2: Existence of Laplace Transform 
Let ( )h x  be a piecewise continuous function on [ ]0, R  (for every 0R > ) and have an exponential order  

at infinity with ( ) eaxh x M≤ . Then, the Laplace transform ( )( )wL h x  is defined for w β> , i.e.  

{ } ( )( ){ }Domain ww L h xβ> ⊂ . 

Theorem 3: Uniqueness of Laplace Transform Let ( ) ( ) and g x h x  be two piecewise continuous func-  
tions with an exponential order at infinity. Assume that ( )( ) ( )( )w wL g x L h x= , then ( ) ( ) [ ], 0, ,g x h x x P= ∈   
for every 0P > , except may be for a finite set of points. 

Relation to the Mellin and the Fourier Transformations 
Laplace transformation is closely related to an extended form of other popular transforms, particularly Mellin 
and Fourier. Both can be obtained through a change of variables. By setting 

e ,d e dz zx x z− −= = − .                                  (18) 
The Laplace transform (9) yields 

( )( ) ( )( ) ( )( )e , e , ,z z
wM h w F h iw L h x w− −= − =                        (19) 

where ( ) ( ) ( ). , .  and .wM F L  denote the Mellin transform, the Fourier transform and the Laplace transform re-
spectively 

4. Laplace Transform for Solving Boundary Value Problems in Partial Differential  
Equation Arising in Financial Market 

By change of variables T tτ = − , (5) becomes 

( ) ( ) ( ) ( ) ( )
2

2 2
2

, , ,1 ,
2

C S C S C S
r d S S rC S

t S S
τ τ τ

τ τ τ
τ τ

τ τ τ
σ τ

∂ ∂ ∂
− + − + =

∂ ∂ ∂
              (20) 

with boundary conditions 
( ) [ ),  as on 0,C S S Tτ ττ → ∞ →∞                             (21) 

( ) [ ), 0 as 0 on 0,C S S Tτ ττ → →                             (22) 

and final time condition given by 

( ) ( ) [ ), on 0,C S S Kτ ττ
+

= − ∞ .                              (23) 

Let the Laplace transform for the price of the European call option be defined as 

( )( ) ( ),wL C S f Sτ ττ =                                  (24) 

and the inverse Laplace transform for the price of the European call option be given by 

( )( ) ( )1 ,wL f S C Sτ τ τ
− =                                   (25) 
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where wL  is the Laplace operator and ( )f Sτ  is the Laplace transform with parameter w. 
Taking the Laplace transform of (5) using (24) we have that 

( ) ( ) ( ) ( ) ( )( )
2

2 2
2

, , ,1 ,
2w w t

C S C S C S
L r d S S L rC S

S S
τ τ τ

τ τ
τ τ

τ τ τ
σ τ

τ
 ∂ ∂ ∂
− + − + =  ∂ ∂ ∂ 

            (26) 

where 

( ) ( ) ( )( ) ( ) ( ),
0,w

C S
L wf S C wf S S Kτ

τ τ τ

τ
τ

τ
+ ∂

− = − − = − + − ∂ 
                (27) 

( ) ( ) ( ) ( ),
w

C S f S
L r q S r d S

S S
τ τ

τ τ
τ τ

τ ∂ ∂
− = − ∂ ∂ 

                        (28) 

( ) ( )2 2
2 2 2 2

2 2

,1 1
2 2w

C S f S
L S S

S S
τ τ

τ τ
τ τ

τ
σ σ

 ∂ ∂
=  ∂ ∂ 

                        (29) 

( )( ) ( ),wL rC S rf Sτ ττ = .                                (30) 

Substituting (27), (28), (29) and (30) into (26) yields 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2
2

1
2

f S f S
wf S S K r d S S rf S

S S
τ τ

τ τ τ τ τ
τ τ

σ+ ∂ ∂
− + − + − + =

∂ ∂
.             (31) 

Simplifying further and rearranging terms in (31) we have that  

( ) ( ) ( ) ( ) ( ) ( )
2

2 2
2

1
2

f S f S
S r d S r w f S S K

SS
τ τ

τ τ τ τ
ττ

σ +∂ ∂
+ − − + = − −

∂∂
.              (32) 

We consider the following two cases as follows. 
CASE I 
For K Sτ≤ , (32) becomes 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2
2

1
2

f S f S
S r d S r w f S S K

SS
τ τ

τ τ τ τ
ττ

σ
∂ ∂

+ − − + = − −
∂∂

.               (33) 

The general solution to (33) can be obtained as  

( ) ( ) ( )1 1 1c pf S f S f Sτ τ τ= +                               (34) 

where ( ) ( )1 1 andc pf S f Sτ τ  are the complementary solution to the homogeneous part of (33) which is of the 
form 

( ) ( ) ( ) ( ) ( )
2

2 2
2

1 0
2

f S f S
S r d S r w f S

SS
τ τ

τ τ τ
ττ

σ
∂ ∂

+ − − + =
∂∂

                  (35) 

and the particular solution respectively.  
We assume that the solution to (33) is of the form 

( )f S BSα
τ τ= .                                     (36) 

The first and the second derivatives of (36) are obtained as  

( ) 1f S
BS

S
τ α

τ
τ

α −∂
=

∂
                                   (37) 

and 

( ) ( )
2

2
2 1

f S
BS

S
τ α

τ
τ

α α −∂
= −

∂
.                               (38) 

Substituting (36), (37) and (38) into (35), and simplifying further, we have that 
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( )2 2 21 1 0
2 2

BS r d r wα σ α σ α  + − − − + =    
.                      (39) 

Solving (39), we obtain the following roots 

( )

( )

2
2 2 2

1 2

2
2 2 2

2 2

1 1 2
2 2

1 1 2
2 2

r d r d r w

r d r d r w

   − − − + − − + +   
   =

   − − − − − − + +   
   =

σ σ σ
α

σ

σ σ σ
α

σ

                   (40) 

Hence the complementary solution to the homogeneous part of (33) is obtained as 

( ) 1 2
1 1 2 2 1, 0cf S B S B Sα α

τ τ τ α α= + ≤ ≤                            (41) 

where 1 2 and α α  are given by (40). 
For the particular solution of (33), we assume that 

( ) ( ) ( )2
1 1

1 2 and 0p p
p

f S f S
f S jS l j

S S
τ τ

τ τ
τ τ

∂ ∂
= + ⇒ = =

∂ ∂
.                    (42) 

Using (42) and (33), and equating the coefficients of terms, we obtain 

( )
1j

w d
=

+
                                       (43) 

( )
Kl

r w
−

=
+

.                                       (44) 

Substituting (43) and (44) into the particular solution, we have that 

( ) ( ) ( )1p
S Kf S

w d r w
τ

τ = −
+ +

.                                 (45) 

Substituting (41) and (45) into (34) 

( ) ( ) ( )
1 2

1 1 2 2 1, 0S Kf S B S B S
w d r w

α α τ
τ τ τ α α= + + − ≤ ≤

+ +
.                    (46) 

Equation (46) is the general solution to (33) for K Sτ≤ . 
CASE II 
For K Sτ≥ , (33) becomes 

( ) ( ) ( ) ( ) ( )
2

2 2
2

1 0
2

f S f S
S r d S r w f S

SS
τ τ

τ τ τ
ττ

σ
∂ ∂

+ − − + =
∂∂

. 

Following the above procedures, the general solution to the last equation is obtained as 

( ) 1 2
2 1 2 2 1, 0f S B S B Sα α

τ τ τ α α= + ≤ ≤                             (47) 

with 

( )

( )

2
2 2 2

1 2

2
2 2 2

2 2

1 1 2
2 2

1 1 2
2 2

r d r d r w

r d r d r w

   − − − + − − + +   
   =

   − − − − − − + +   
   =

σ σ σ
α

σ

σ σ σ
α

σ
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Equation (47) coincides with the complementary solution of (33) given by (41).  

In the case of K Sτ≤ , we set 1 0B =  to ensure the boundedness of the derivative 
( )f S
S

τ

τ

∂
∂

. In the case of  

2, 0K S Bτ≥ =  to ensure that the option’s value approaches zero as the stock price goes to zero. The solutions 
for the two cases equations (46) and (47) become 

( ) ( ) ( )
2

1 2 2 1, 0S Kf S B S
w d r w

α τ
τ τ α α= + − ≤ ≤

+ +
                      (48) 

( ) 1
2 1 2 1, 0f S B Sα

τ τ α α= ≤ ≤ .                                (49) 

We want the option pricing function to be continuous and differentiable at the transition point K Sτ= , 
Therefore, the values of the function and their first derivatives from (48) and (49) must equal to each other. 
These conditions can be used to solve for 1B  and 2B . The function values and derivatives at K Sτ=  from 
(48) and (49) are given by 

( ) ( ) ( )
2

1 2K
K Kf S B K

d w r w
α

τ = + −
+ +

                           (50) 

( )
( )

2 1
2 2

1

K

f S
B K

S d w
τ α

τ

α −∂
= +

∂ +
                             (51)

 
( ) 1

2 1, Kf S B Kα
τ τ =                                   (52) 

( )
1 1

1 1
K

f S
B K

S
τ α

τ

α −∂
=

∂
.                                  (53)

 

Setting (50) = (52) and (51) = (53) and solving further, we obtain 

( )
( )
( ) ( )1

22
1 1

1 2

1 1B
r w d w Kα

αα
α α−

 −
= − + + − 

                          (54) 

and 

( )
( )
( ) ( )2

11
2 1

1 2

1 1B
r w d w Kα

αα
α α−

 −
= − + + − 

.                          (55)
 

Substituting (54) and (55) into (49) and (48), we have 

( ) ( )
( )
( ) ( ) ( ) ( )

2
2

11
1 2 11

1 2

1 1 , 0S Kf S S
r w d w w d r wK

α τ
τ τα

αα α α
α α−

 −
= − + − ≤ ≤ + + + +− 

          (56) 

and 

( ) ( )
( )
( ) ( )

1
1

22
2 2 11

1 2

1 1 , 0f S S
r w d w K

α
τ τα

αα α α
α α−

 −
= − ≤ ≤ + + − 

                  (57) 

respectively. Equations (56) and (57) can also be written as 

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )
( ) ( )

2
2

1
1

11
2 11

1 2

22
2 11

1 2

1 1 , 0 ,  for 

1 1 , 0 ,  for 

S KS K S
r w d w w d r wK

f S

S K S
r w d w K

α τ
τ τα

τ

α
τ τα

αα α α
α α

αα α α
α α

−

−

 −
− + − ≤ ≤ ≤ + + + +− = 

 − − ≤ ≤ ≥  + + − 

    (58) 

Equation (58) is the Laplace transform of the price of European call option which pays a dividend yield. 
Theorem 4 
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If 2 1, 0K Sτ α α≥ ≤ ≤ , then the Laplace transform of the price of European call option with dividend yield 
given by  

( ) ( ) ( )
( )
( ) ( )

1
1

22
1 1

1 2

1 1f S f S S
r w d w K

α
τ τ τα

αα
α α−

 −
= = − + + − 

                  (58a) 

reduces to the Black-Scholes-Merton valuation formula 

( ) ( ) ( )1 2, e ed r
BSMC S S N d K N dτ τ

τ ττ − −= −                         (58b) 

with 
2

1

2

2 1

ln
2

ln
2

S r d
K

d

S r d
K

d d

τ

τ

σ τ

σ τ
σ τ

σ τ
σ τ

   + − +   
    = 


   + − −       = = −



 

by means of the Laplace transform of the form 

( )
2

2 2

1 ee e
2

k w g a
g ak

w
m bL N
c w g a a w g a

τ τ
τ

− − +
− +  =  

   − + + − +
                (58c) 

where 

( )

( )

2
2 2 2

1 2

2
2 2 2

2 2

1 1 2
2 2 ,

1 1 2
2 2 ,

r d r d r w

r d r d r w

σ σ σ
α

σ

σ σ σ
α

σ

   − − − + − − + +   
   =

   − − − − − − + +   
   =

                  (58d)
 

2
ba

c
= −  and 2mk

c
= −  and , ,b c m  and g are arbitrary constants. 

Proof: From (57) and (58a) we can write that 

( ) ( ) ( ) ( )
( )
( ) ( )

1 1
1 1

22
2 1 1

1 2 1 2

11 1f S f S S S
r w d wK K

α α
τ τ τ τα α

αα
α α α α− −

−
= = −

+ +− −
.            (59) 

Setting  

( ) ( )
1

1

2
1 1

1 2

1A S
r w K

α
τα

α
α α−=

+ −
                               (60) 

( )
( ) ( )

1
1

2
2 1

1 2

1 1A S
d w K

α
τα

α
α α−

−
= −

+ −
.                              (61) 

Therefore, (59) becomes 

( ) ( )2 1 2f S f S A Aτ τ= = + .                                 (62) 

Let us first consider the term  

( ) ( )
1

1
1

2 2
1 1

1 21 2

1 1 SA S K
r w r w KK

α
α
τα

α α
α αα α−

    = =    + + −−    
.                 (63) 
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Using the values of 

( )
2

2 2 2

2 2

1 1 2
2 2

r d r d r wσ σ σ
α

σ

   − − − − − − + +   
   =  

and 

( )
( )

2
2 2

1 2 2

12 2
2

r d r wσ σ

α α
σ

   − − + +    − = .  

Therefore (63) yields 

( )

( )
( )

( )

( )

1

1

2
2 2 2

1 2 2
2 2 2

2
2 2 2 ln

2

2

1 1 2
2 2

12 2
2

1 1 2
2 2 e

2

S
K

Sr d r d r w
KA K

r w
r d r w

r d r d r w
K

r w
r d

τ

α
τ

α

σ σ σ

σ
σ σ σ

σ σ σ

σ
σ

 
 
 

         − − + − − + +             = −   +       − − + +          

     − − + − − + +       = −  +  − 
 

( )
2

2 21 2
2

r wσ σ

 
 
 
 
     − + +      

 

Thus, 

( )

( ) ( ) ( )

( )

1

1

2ln
2 2 2

1 2 2
2 2 2 2 2

ln

2
2 2

2

1 1 1e 2
2 2 2

1 1 12 2
2 2 2

1 e
2

1 1 2
22

S
K

S
K

r d r d r w
A K

r w r d r w r d r d r w

K

r d r q

τ

τ

α

α

σ σ σ

σ σ σ σ σ

σ σ
σ

 
 
 

 
 
 

      − − − + − − + +            = −
         + − − + + − − − + − − + +              

= −
 − − + + − 
 

( )
2

2 2 21 1 2
2 2

r d r d r wσ σ σ

 
 
 
 

       − − + − − + +          

 (64) 

Substituting the value of 1α  into (64) and simplifying further, we obtain 

( )

( ) ( )

2
2

2

2

1
1 ln 2

222 ln 22

1 2
2 2 2

2 2

1 e e
2

1 1 1
2 2 2

2 2 2

S r d r w
r d KS

K

A K

r d r d r d
r w r w

τ

τ

σ
σ

σ σσσ

σ σ σ

σ σ σ

 
   − − + +      − − −                    

   

 
 
 
 
 
 

= −         − − − − − −             + + − + + +       


         (65) 
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Comparing (65) with (58c), we have that 

2

2

1 , , ln ,
2

1
2, ,

2 2

ln 2
2 .

S
b r d c m

K

r d
bg r a

c
S

m Kk
c

  = − − = =       
  − −   = − = − = − 

     = − = − 


τ

τ

σ σ

σ

σ

σ

                          (66) 

Taking the inverse Laplace transform of (65), we obtain 

( ) ( )1 1 2e er rA K N d K N dτ τσ τ− −= − − = −                           (67) 

where 

2

2

1ln
2

S r d
Kd

τ σ τ

σ τ

   + − −     = .                             (68) 

We also consider the term 

( )
( ) ( )
( )
( ) ( )

1
1

1

2
2 1

1 2

1
2

1 2

1 1

1

A S
d w K

S S
d w K

−

−

−
= −

+ −

 −  = −    + −   

α
τα

α
τ τ

α
α α

α
α α

.                             (69) 

Substituting the values of 1 2 and α α  into (69) yields 

( )

( ) ( )

2
2 2

2

2
2

1 21
2 ln2 ln 2

2 2 2
2 2 2

2 2

1 e e
2

1 1 1
2 2 2

2 22

r d r w
r d SS

KK

A S

r d r d r d
r w r w

τ
τ

σ σ
σ

σσ

τ

σ σ σ

σ σσ

 
  − − + +     − − +                        

   

=
       − − − − + − −           + + + + + 
 
  

.       (70) 

Simplifying (70) further, we obtain  
2

22

2

11 ln 2ln 2 22
22

2 2 2
2 2 2

2 2

1 e e
2

1 1 1
2 2 2

2 22

SS r dr d KK w

A S

r d r d r d
w w

ττ σσ

σ σσσ

τ

σ σ σ

σ σσ

         − +   − − +          +      
  
    

   

=
       − + − − + − +           + + + 
 
  

.            (71) 

Once again we compare (71) with (58c), we deduce that 
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2

2

1 , , ln ,
2

1
2, ,

2 2

ln 2
2

Sb r d c m
K

r d
bg d a

c
S

m Kk
c

τ

τ

σ σ

σ

σ

σ

  = − + = =        
 − +    = − = − = − 

 
 

  = − = −


                           (72) 

Taking the Laplace transform of (72), we have that 

( )2 1e dA S N dτ
τ

−=                                      (73) 

where 

2

1

1ln
2

S r d
Kd

τ σ τ

σ τ

   + − +     = .                                (74) 

The inverse Laplace transform of (62) is obtained as  

( ) ( )2 1 2, ,C S C S A Aτ ττ τ= = + .                                (75) 

Substituting (67), (68), (73) and (74) into (75) yields 

( ) ( ) ( ) ( ) ( )2 1 2

2

1

2

2 1

, , e e ,

1ln
2

1ln
2

d r
BSMC S C S S N d K N d C S

S r d
Kd

S r d
Kd d

τ τ
τ τ τ τ

τ

τ

τ τ τ

σ τ

σ τ

σ τ
σ τ

σ τ

− −= = − =

   + − +     =

   + − −     = = −

 

This completes the proof. 
Theorem 5 
If 2 1, 0K Sτ α α≤ ≤ ≤ , then the Laplace transform of the price of European call option with dividend yield 

given by  

( ) ( )
( )
( ) ( ) ( ) ( )

2
2

11
1

1 2

1 1, S KC S S
r w d w w d r wK

α τ
τ τα

αατ
α α−

 −
= − + − + + + +− 

             (76) 

reduces to the Black-Scholes-Merton valuation formula given by  

( ) ( ) ( )1 2, e ed r
BSMC S S N d K N dτ τ

τ ττ − −= −                          (76a) 

with 
2

1

2

2 1

ln
2

ln
2

S r d
K

d

S r d
K

d d

τ

τ

σ τ

σ τ
σ τ

σ τ
σ τ

   + − +   
    = 


   + − −       = = −



 

by means of the Laplace transform given by  
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( )
2

2 2

1 ee e
2

k w g a
g ak

w
m bL N
c w g a a w g a

τ τ
τ

− − +
− +  =  

   − + + − +
                (76b) 

where 

( )

( )

2
2 2 2

1 2

2
2 2 2

2 2

1 1 2
2 2 ,

1 1 2
2 2 ,

r d r d r w

r d r d r w

σ σ σ
α

σ

σ σ σ
α

σ

   − − − + − − + +   
   =

   − − − − − − + +   
   =

                 (76c) 

2
ba

c
= −  and 2mk

c
= −  and , ,b c m  and g are arbitrary constants. 

Remark 1 
1) The proof of Theorem 5 follows from Theorem 4, since (56) and (57) have the same inverse Laplace 

transforms. 
2 The above results show that the prices of European call option with dividend yield given by (56) and (57) 

coincide with the Black-Scholes-Merton model given by (58b) by means of (58c). 

5. Conclusion  
Finance is one of the fastest developing areas in the modern corporate and banking world. In this paper, we have 
considered the boundary value problem in partial differential equation arising in financial market. We used a 
new approach for solving the Black-Scholes-Merton partial differential equation for the price of European call 
option which pays a dividend yield by means of the Laplace transform. The same approach can be used for Eu-
ropean put option with dividend paying stock. The results show that the Laplace transform for the price of the 
European call option with dividend paying stock coincides with the Black-Scholes-Merton model; it is very ef-
fective and is a good tool for solving partial differential equations arising in financial market and other areas 
such as engineering and applied sciences. 
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