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Abstract 
In this paper, a discretized SIR model with pulse vaccination and time delay is proposed. We in-
troduce two thresholds R* and R*, and further prove that the disease-free periodic solution is glo-
bally attractive if R* is less than unit and the disease can invade if R* is larger than unit. The nu-
merical simulations not only illustrate the validity of our main results, but also exhibit bifurcation 
phenomenon. Our result shows that decreasing infection rate can put off the disease outbreak and 
reduce the number of infected individuals. 
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1. Introduction 
Infectious diseases have a great influence on the human life and socio-economy, which lead many scientists to 
implement more effective measures and preparedness programs. Pulse vaccination strategy (PVS) is the one of 
important methods to control disease, such as hepatitis B, parotitis and encephalitis B. From the theoretical 
results we can know that the PVS can be distinguished from the conventional strategies in leading to disease 
eradication at relatively low values of vaccination [1]. And one investigates under what conditions given agent 
can invade partially vaccinated population, i.e., how large a fraction of the population do we have to keep 
vaccinated in order to prevent the agent from establishing. Then a number of epidemic models in ecology can be 
formulated as dynamical systems of differential equation with pulse vaccination [2]-[6], of which the SIR 
infectious disease model is an important biologic model. 

A model for the spread of an infectious disease (involving only susceptible and infective individuals) trans- 
mitted by a vector after an incubation time was proposed by Cook [7]. This is called the phenomena of time 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2016.71010
http://dx.doi.org/10.4236/am.2016.71010
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


Y. J. Liu et al. 
 

 
109 

delay which has very important biologic meaning in epidemic models. But for the system, many authors don’t 
put to use the distributed delay. Because the distributed delay allows infectivity to be a function of the duration 
since infection up to some maximum duration. Comparing with the time be a fixed time, the distributed delay is 
more appropriate form and more realistic. Beretta and Takeuchi [3] did study the following continuous SIR 
model with distributed delay, without considering the pulse vaccination strategy:  
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where the infectiousness is assumed to vary over time from the initial time of infection until a duration h has 
passed and the function means the fraction of vector population in which the time taken to become infectious is t. 
For simplicity, they let ( )f t  be nonnegative and continuous on [ ]0,h  and assume that ( )

0
d 1

h
f τ τ =∫ . 

In the decade years, many authors have directly studied the delay SIR epidemic models with time delays and 
pulse vaccination [8]-[11]. In 2010, Yanke Du and his co-workers [9] have studied an SIR epidemic model with 
nonlinear incidence rate and pulse vaccination: 
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where all coefficients are positive constants. A represents the recruitment rate assuming all newborns to be 
susceptible. 1 2, ,µ µ  and 3µ  represent the death rates of susceptible, infectious, and recovered, respectively. 
θ  ( 0 1θ< < ) is the proportion of those vaccinated successfully, which is called impulsive vaccination rate. 

0T >  is the period of pulsing. Considering the nonlinear incidence rate ( ) ( ) ( )( )1S t I t I tβ α+ , they have 
found the basic reproduction 0R  and obtain an infection-free periodic solution ( )( ),0S t  for the system. More 
importantly, they certified that if 0 1R < , it is globally attractive, and if 0 1R > , the system is permanent. But 
they did not study the the distributed delay. This is partly because the system is with nonlinear incidence rate 
and pulse vaccination, then investigation of global behavior for with the effect of saturation incidence and 
distributed time delay on the SIR epidemic model with a pulse vaccination is challenging. 

The incidence rate plays an important role in the epidemic models. In many epidemic models, the Bilinear 
incidence SIβ  is based on the law of mass action. This contact law is more appropriate for communicable 
diseases such as influenza, but not for sexually transmitted diseases. For standard incidence SI Nβ , it may be 
a good approximation if the number of available partners is large enough and everybody could not make more 
contacts than practically feasible. In [12], Capasso and Serio introduced a saturated incidence rate  

( )1SI Iβ α+  into epidemic models after studying the cholera epidemic spread in Bari in 1973, where Iβ  
measures the infection force of the disease and ( )1 1 Iα+  measures the inhibition effect from the behavioral 
change of the susceptible individuals when their number increases. That is to say,the saturated incidence rate 
tends to a saturation level when I gets large. Comparing with bilinear and standard incidence, saturation in- 
cidence may be more suitable for our real world. 
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On the other hand, numerical simulation is usually used to assess all kinds of continuous models and check 
our theoretical results. But, the statistical data of epidemic is collected and reported in discrete time, such as 
daily, weekly, monthly or yearly. Sometimes, they may fail generating oscillations, bifurcations, chaos and false 
steady states [13]. In order to be more in line with the actual, many authors are hoping to discuss discretized 
models, which always exhibit richer and more complicated dynamical behaviors than continuous models. For 
example, Masaki and Emiko [14] have used the nonstandard finite difference scheme to study the dynamics of a 
discretized SIR epidemic model with pulse vaccination and time delay: 
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where ,n nS I  and nR  ( 0,1, 2,n =  ) are susceptible, infective and recovered with permanent immunity classes 
at nth step individually. 0h >  is a positive step size. The constant 0Λ >  represents the immigration rate, 
assuming all newborns to be susceptible. r is the recovery rate. Note that the delay ω  and the period of pulsing 
τ  are positive integers, and the parameter 0 1θ< <  is the proportion of those vaccinated successfully. 

To prevent these classes of numerical instabilities, as one of numerical schemes, the nonstandard finite- 
difference scheme, developed by Mickens [15]-[17], has been applied to various problems in science [18]-[21]. 
By using this kind of scheme [16], it leads to asymptotic dynamics and numerical results are always qualita- 
tively the same as the corresponding solutions of several ordinary differential equations for any positive step 
size. More importantly, This scheme has brought the creation of new numerical schemes that preserve the pro- 
perties of the continuous model [2] [3] [6] [8] [10] [13] [22]. 

Motivated by the work of [3] [9] [14], in this paper, we are considered with the effect of saturation incidence 
and distributed time delay on the dynamics of a discrete SIR epidemic model with pulse vaccination: 
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where all coefficients are positive constants. ,n nS I  and nR  ( 0,1, 2,n =  ) are also susceptible, infective and 
recovered with permanent immunity classes at nth step individually. 0ω >  is a constant integer, and hω  is  
the infected period, ( )0,1, ,ip i ω=   are weighting coefficients and 0 1ii pω

=
=∑ . The notations of other para- 

meters are the same as system (3). 
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In this paper, the structure of the layout is as follows. In the next section, we mainly obtain the positivity and 
boundedness of the solution of the system. Furthermore, we give some important conclusions so as to make 
matting for the Section 3. In Section 3, we analyzed the existence and global behavior of the infection-free 
periodic solution of the system. The permanence of our model is discussed in Section 4. Our results are the same 
to Theorems 1 and 2 in system (2). In Section 5, we show some numerical experiments which have verified our 
theoretical results. 

2. Basic Properties and Preliminaries 
Noting that the variable R does not appear in the first two equations of system (4), it is sufficient to consider the 
following 2-dimensional system. 
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Let ( ) ( )1 2and for , 1, 2, , 0.n n n nS I nφ φ ω ω ω= = = − − + − +   The initial conditions of the system (5) are given 
by 
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For the reduced system (5), at first, we show that the solution has positivity for 0n > , and bounded above for 
sufficiently large n. 

Lemma 1. Let ( ),n nS I  be a solution of system (5), with the initial conditions (6), then 0nS >  and 0nI >  
for all 0n > . And any solution ( ),n nS I  of system (5) satisfies ( )limsup n nn S I µ→+∞ + < Λ , where 

{ }1 2min ,µ µ µ γ= + . 
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Let ( )1x S= . It follows from (7) that x satisfies the following equation 
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Since ( )xφ  is monotonically increasing with respect to x, and ( ) 00 0S hφ = − − Λ < , ( )limx xφ→+∞ = +∞ . 
Therefore, there exists a unique 0x >  such that ( ) 0xφ = . This shows that 1 0S x= > . 

From (8), we can directly obtain 1 0I > . 
From the above discussions, we finally have 1 0S >  and 1 0I > . 
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When 1n = , from model (5) we have  

2 1
0

2 1 1 2
21

i i
i

S p I
S S h S

S

ω

β
µ

α

−
=

 
 
 = + Λ − −

+ 
 
 

∑
 

and 

( )

( ) ( )( )
0 2 2 2 1

0
2

2 2 2

1
.

1 1

i i
i

I S h S p I
I

S h

ω

α β

α µ γ

−
=

+ +
=

+ + +

∑
 

A similar argument as in the above proof for 1S  and 1I , we also can obtain that 2 0S >  and 2 0I > . By 
using the induction, we can finally obtain that 0nS >  and 0nI >  for n kτ≠ . Moreover, ( )1 ,nn
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where { }1 2min ,µ µ µ γ= + . Consider the following comparison system  
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Obviously, system (9) has a globally asymptotically stable equilibrium *U µ= Λ . Hence, according to the 
comparison principle of the difference equations, we have that 
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This shows that ( ),n nS I  is also ultimately bounded. This completes the proof.                       □ 
Lemma 2 [14]. Let us consider the following impulsive difference equations: 
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where 0, 0 1, 0 1a b θ> < < < < . Then system (11) has a unique positive periodic solution  
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which is globally asymptotically stable. 
Lemma 3. Consider the following equation  
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Proof. From (12), we have 
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By Mathematical induction, we can get for any 0n > , there exist k Z +∈ , i Z +∈  and 0 i ω< ≤  such that 
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By the similar arguments to above steps, we can obtain that for any 0n > , there exist k Z +∈ , i Z +∈  and 
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pleted.                                                                                   □ 

3. Global Attractivity of Infection-Free Periodic Solution 
In this section, we begin to analyze system (5) by first demonstrating the existence of an infection-free periodic 
solution, in which infectious individuals are entirely absent from the population permanently. 
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By Lemma 2, we know that periodic solution of system (13) 
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which is globally asymptotically stable. 
Theorem 4. If * 1R < , then the infection-free periodic solution ( ),0nS  of system (5) is globally attractive, 
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Then we consider the following comparison system with pulses: 
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From Lemma 2, we have that the periodic solution of (16) 
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is globally asymptotically stable. Let ( ),n nS I  be the solution of system (5) with initial value (6) and 0 0S S+ ∗= , 
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Further, from the second equation of system (5), we have 
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for 1,n k k nτ> ≥ . Then we consider the following comparison equation:  
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From (15) and Lemma 3, we have lim 0n ny→∞ = . 
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Let nz  be the solution of (21) with initial value (6) and 0 0S S+ ∗= , and nz  be the solution of system (16) 
with initial value 0 0z S+ ∗= . By the non-negativity of nS  and nz , there exists an integer 3 2n n>  such that 
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1

1
1 , 1 .

1 1 1

n k

n

h
S k n k

h

τ

τ

θ µ
τ τ

µ θ µ

− −

−

 +Λ  = − < ≤ + 
− − +  

  

is globally attractive. 
Hence, the infection-free periodic solution ( ),0nS  of system (5) is globally attractive. The proof is com- 

pleted.                                                                                   □ 

4. Permanence 
In this section, we obtain sufficient condition for permanence of system (5). Denote two quantities  

( )( )*
2 1

SR
S

β
µ γ α

=
+ +

 

and 
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( )( )2
1 2 ** 1

2

1
min , ,

4 8
R

I
µ µ γµ

β β
 + − =  

Λ  
                           (23) 

where ( )1S Sθ= − , and S  is defined in Theorem 4. Obviously, * 0I >  if * 1R > .  
Theorem 5. Suppose * 1R > . Then there is a positive constant q such that each solution ( ),n nS I  of system 

(5) satisfies  
, for large enough.nI q n≥  

Proof. Let ( ),n nS I  be any solution of system (5) with initial condition (6). We claim that for any 0 0m > , it 
is impossible that *

nI I<  for all 0n m> . Suppose that the claim is not valid. Then there is a 0 0m >  such 
that *

nI I<  for all 0n m> . 
It follows from the first equation of (5), that for 0n m ω> + , 

1 *
1

.
1

n
n

h S
S

h h Iµ β+

Λ +
>

+ +
                                   (24) 

Consider the following comparison impulsive system for 0n m ω> + , 

( )(

( )

1 * *
1 1

1 , , 1 ,
1 1
1 , .

n n

nn

hu u n k k
h h I h h I

u u n k

τ τ
µ β µ β
θ τ

+

+

Λ = + ∈ +  + + + +
 = − =

                (25) 

By Lemma 2, we know that the periodic solution of system (25)  

( ) ( )

( )( )
( )(

*
1

* *
1 1

1
1 , , 1 ,

1 1 1

n k

n

h h I
u n k k

I h h I

τ

τ

θ µ β
τ τ

µ β θ µ β

− −

−

 + +Λ  = − ∈ +  +  − − + + 

                 (26) 

which is globally asymptotically stable. 
From (26), we can get  

( ) ( )

( )( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )

*
1

* *
1 1

*
1

* *
1 1

1 1
* *

1 11

1
1

1 1 1

1 1 1

1 1 1

1 1 1
.

1 1 1

n k

n

h h I
u

I h h I

h h I

I h h I

h
S

I Ih

τ

τ

τ

τ

τ

τ

θ µ β

µ β θ µ β

θ µ β

µ β θ µ β

θ µ µ
µ β µ βθ µ

− −

−

−

−

−

−

 + +Λ  = − +  − − + + 

− − + +Λ
≥

+ − − + +

− − +Λ
≥ =

+ +− − +



                     (27) 

Let ( ),n nS I  be the solution of system (5) with initial values (6), nu  be the solution of system (25) with ini-  

tial value 0 0u S+ += . By comparison theorem, we know that, for 
*

*
1

I S
I

βε
µ β

=
+

, there exists ( )1 0m m ω> +  such  

that the following inequality holds for 1n m>  
.n nS u ε> −  

It follows from (27) that 
**

1 1
* *

11 1

2
,n n

II SS u S S
I I

µ µ ββε
µµ β µ β
−

> − ≥ − ≥
+ +

                    (28) 

for 1n m> . It follows from (23) and (28) that for 1 1n m> − , 
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( )

( ) ( )( ) ( )

*
1

1 1
* * *

1 1
*

11 1
* 2 *

2 * 2
1 1

*
2 * 2 * 2

2

1 2 2 41 11
2

4 4
1

11 1 ,
2 2

n

n

I S
S S S

S I I IS SS
I

S I IS R
S

RR R

µ ββ
β µ β β
α µ β β βα αα

µµ µ β

β β ββ µ γ
α µ µ

µ γ µ γ µ γ

+

+

−

> = ≥
+ −

+ + + ++
−

Λ
≥ − ≥ + −

+

+
≥ + − + − ≥ +

               (29) 

Set 

[ ]1 1,
min .l ii m m

I I
ω∈ +

=  

We will show that n lI I≥  for all 1n m≥ . Suppose the contrary. Then there is a 0 0M ≥  such that n lI I≥  
for 1 1 0m n m Mω≤ ≤ + +  and 

1 0m M lI Iω+ + < . 

( )

1 0 1 0
1 0

1 0

1 0

1 1
1

1

2

*
2

2

1
1
11

2 .
1

m M m M
m M

m M
m M

l l

S I
h I

S
I

h h
Rh

I I
h h

ω
ω

ω
ω

β
α

µ γ

µ γ

µ γ

+ + − + −
+ + −

+ + −
+ +

+
+

=
+ +

+ + + 
 ≥ ≥
+ +

                         (30) 

This is a contradiction. Thus, n lI I≥  for all 1n m≥ . 
Let us consider any positive solution ( ),n nS I  of system (5). According to this solution, we define  

,n n nV I hW= +                                      (31) 

and 

1

0 1

.
1

n
j k k

n j
j k n j j k

S I
W p

S

ω β
α
+ +

= = − + +

   =    +   
∑ ∑                               (32) 

Since 

1
1 1

1
0 1 01 1

2 1 1

0 2 1

1 1

1 1

n n
j k k j k k

n n j j
j k n j j k n jj k j k

j n n n n j
j

j j n n

S I S I
W W p p

S S

S I S I
p

S S

ω ω

ω

β β
α α

β β
α α

+
+ + + +

+
= = + − = = −+ + + +

+ + + + −

= + + +

         − = −         + +         
   = −   + +   

∑ ∑ ∑ ∑

∑
                (33) 

It follows from (29), we have that for 1n m> , 

( )

( )

( ) ( )

1
2 1 10

1 2 1
01 2 1

2 1
2 1

0 2

* *
2 1 2 1

1 1 1

1

1 1
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+ +
=+ + + +

+ + +
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       − = − + + −     + + +     
  
  = − + 

+  
+ −

≥ + − + ≥

∑
∑

∑

( )2 ,lIµ γ+

         (34) 
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which implies that as , nn V→∞ →∞ . This contradicts 
1 1

1nV hβ
µ µ
 Λ Λ

≤ + 
 

. Hence, the claim is proved. 

By the claim, we are left to consider two cases. 
Case 1. *

nI I≥  for all large n. The conclusion is evident in this case. 
Case 2. nI  oscillates about *I  for all large n. Set ( )1n m′ >  and 0ρ ≥  satisfy  

[ ]* * *
1 1, , and for , .n n nI I I I I I n n nρ ρ′ ′− + + ′ ′≥ ≥ < ∈ +  

Let k ′  be the smallest integer such that k τ′  is strictly exceeding n′ . 
Denote  

( ) ( )
( )

* *

1

ln ln ln
max 1,1 .

ln 1

I I S

h

µ β µβ
η

τ µ
+

  Λ + −  = + 
+    

 

Subcase 2.1. If ( )n kρ η τ′ ′+ ≤ + , then from the second equation of the system (5), for [ ],n n n ρ′ ′∈ + , we 
have  

( ) ( )
( ) ( )

1 2 1
2 1

2 2 2

1 *
2

1 1 1

1

n n n
n n n

I I I
I

h h h h h h

h h I qη τ

µ γ µ γ µ γ

µ γ

′− − −
′− +

− +

≥ ≥ ≥ ≥
+ + + + + +

≥ + +





                 (35) 

Subcase 2.2. If ( )n kρ η τ′ ′+ > + , we shall consider the following two subcases, respectively. 
(a) If ( )n n k η τ′ ′< ≤ + , it follows from (35) that nI q≥ ; 

(b) If ( )k n nη τ ρ′ ′+ < ≤ + , we firstly claim that 
*

1

1

2
n

IS Sµ β
µ
−

≥  for ( )1n k η τ′≥ + − . 

From the first equation of comparison system (25) for ( )1k n kτ τ< ≤ + , we obtain  

( ) ( )( ) ( ) ( )* *
1 1*

1

1 1 1 ,
n k n k

n ku h h I h h I u
I

τ τ

τµ β µ β
µ β

− − − −Λ
= − + + + + +

+
             (36) 

where ku τ  is the number of nu  immediately after the kth pulse vaccination at time n kτ= . Using the second 
equation of (25), we reduce the stroboscopic map such that  

( ) ( ) ( )( ) ( )( )* *
1 1*1

1

1 1 1 1 1 .kk
u h h I h h I u

I
τ τ

ττ
θ µ β θ µ β
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− −

+

Λ
= − − + + + − + +

+
 

Therefore, by using the stroboscopic map and (27) we can derive for 1η η′ ≥ − ,  
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          (37) 



Y. J. Liu et al. 
 

 
119 

and from (36), we also obtain that  
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−
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         (38) 

It follows from (37)and (38) that for ( )1n k η τ′≥ + − ,  
*

1

1

2
,n n

IS u Sµ β
µ
−

≥ ≥                                  (39) 

where ( ),n nS I  is the solution of system (5) with ( )1kS sη τ
∗

′+ − = , and nu  is the solution of comparison system 
(25) with ( )1ku sη τ

∗
′+ − = . Obviously, (39) implies that (28) holds when ( )1n k η τ′≥ + − . Then, proceeding 

exactly as the proof for the above claim, we see that nI q≥  for ( )k n nη τ ρ′ ′+ < ≤ + . Since these positive 
integer 1m  and ρ  are chosen in arbitrary way, we conclude that nI q≥  for all large n. This proof is com- 
pleted.                                                                                   □ 

Theorem 6. System (5) is permanent provided that * 1R > . 
Proof. Denote ( ),n nS I  be any solution of system (5) with initial condition (refc1:cond). From the first equ- 

ation of system (5), we have 

1
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0
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1

1

1
1

n n
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i n i
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h S h S
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h hh p I
h

S

τ µ β µβ
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−
=
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= ≥

+ + Λ

+ +
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∑
 

for sufficiently large n. Consider the following comparison system:  

( )(

( )

1
1 1

1 , , 1 ,
1 1
1 , .

n n

nn

hv v n k k
h h h h

v v n k

τ τ
µ β µ µ β µ
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+
Λ = + ∈ +  + + Λ + + Λ

 = − =

           (40) 

According to Lemma 2, we know that for any sufficiently small sε , there exists a sufficiently large n′  such 
that 

( ) ( )( )
( )( )1

1 1 1
0,

1 1 1
n n n s s s

h h
S v v m

m h h

τ

τ

θ µ β µ
ε ε

β µ θ µ β µ

−

−

 − − + + ΛΛ  ≥ > − ≥ − > 
+ Λ − − + + Λ  


  

for all n n′> . By Lemma 1 and Theorem 5, we can obtain system (5) is permanent. The proof of Theorem 6 is 
complete.                                                                                 □ 

5. Numerical Simulation and Discussion 
We have formulated a discretized SIR epidemic model with pulse vaccination and time delay. We establish 
some threshold conditions for permanence and extinction of the disease. To illustrate the analytical results, we 
do some numerical simulations. 
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Set 10Λ = , 1 0.1µ = , 2 0.15µ = , 0.05γ = , 1α = , 1h = , 2ω = , 8τ = , ( )1 3 0, 1, 2ip i= = , then 
system (5) becomes 
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 − = − −

+ 
∈ +  


 

− = − + + 
 = −  = = 

∑

∑  

Let 0.18β = , then * 0.88916 1R = < . According to Theorem 4, we know that the disease will die out (see 
Figure 1). Let 0.214β = , then * 1.0529 1R = > . According to Theorem 5, we know that the disease will be 
permanent (see Figure 2). 
 

 

Figure 1. The time series of system (2.1) with initial values are ( )1 100,nφ =  
( )2 5nφ = , for [ ],0n ω∈ − . * 0.88916R = . The disease dies out.                     

 

 

Figure 2. The time series of system (5) with initial values are ( )1 100,nφ =  
( )2 5nφ = , for [ ],0n ω∈ − . * 1.0529R = . The disease is permanent.                   
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Figure 3 shows a bifurcation diagram for stroboscopic map of system (2.1) with the infection rate β  as the 
bifurcation parameter. This is illustrated in Figure 4 by the curve I∞  (the number of infection individuals at 
the equilibrium) that varies with β . We can observe that the value of I∞  increases as β  increases, and I∞  
is hypersensitive when ( )0.2, 0.215β ∈ , or else it is insensitive. 

Figure 4 shows a bifurcation diagram for stroboscopic map system (2.1) with pulse vaccination rate θ     
as the bifurcation parameter (for which * 1R > ). In this case, numerical result implies that there is unique 
positive equilibrium of stroboscopic map for all θ , that is, there is a positive periodic solution of system (2.1) 
for all θ . As Figure 5 and Figure 6 shown, it can be seen that the positive equilibrium is globally attractive.  
 

 
Figure 3. The bifurcation diagram the unique endemic equilibrium (the com- 
ponent I of infectious individuals regarding β as the bifurcation parameter, all 
other parameters are same as in model (5.1)).                                  

 

 
Figure 4. The bifurcation diagram the unique endemic equilibrium (the com- 
ponent I of infectious individuals regarding θ  as the bifurcation parameter, 
all other parameters are same as in model (5.1) except for 0.214β = ).            

 

 
(a)                                                      (b) 

Figure 5. Time series of system (2.1). *0.214, 1.0529Rθ = = .                                                           
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Figure 6. The phase diagram of system (2.1). * 1.0529R = .                      

 

 
Figure 7. The tendency of the infected individuals I with different values of β.            

 
Therefore, an interesting open problem is proposed whether we can prove that the positive periodic solution of 
model (2.1) is globally attractive as * 1R > . 

Finally, the numerical simulations of the stroboscopic map of model on the number of infected individuals 
with different values of β  are shown in Figure 7. It shows that the number of infected individuals will in- 
crease steadily in next few days, then reach the peak and begin a slow decline, and finally become stable. The 
greater the value β , the bigger the peak value and the earlier the peak appears. Our result implies that decreas- 
ing infection rate can put off the disease outbreak and reduce the number of infected individuals. 
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