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Abstract 
In this paper, we apply the iterative technology to establish the existence of solutions for a frac-
tional boundary value problem with q-difference. Explicit iterative sequences are given to ap-
proxinate the solutions and the error estimations are also given. 

 
Keywords 
Fractional Boundary Value Problem with q-Difference, Iterative Sequence, Green’s Function,  
Error Estimation 

 
 

1. Introduction 
This paper deals with the existence of solutions for the following fractional boundary value problem with 
q-difference 

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

, 0, 0,1 ,

0 0 0, 1 ,
q

q q

D x t f t x t t

x D x D x b

α + = ∈


= = =
                         (1.1) 

where 0 1q< < , 2 3α< ≤  and ( ),f t u  may be singular at 0, 0u t= =  (and/or 1t = ). 
Fractional differential equations have been of great interest recently because of their intensive applications in 

economics, financial mathematics and other applied science (see [1]-[13] and the references therein). The 
q-difference calculus or quantum calculus is an old subject and is rich in history and in applications. In recent 
years, there have been papers investigating the existence and uniqueness of the positive solution for the frac- 
tional boundary value problem with q-difference (see [1]-[4] and the references therein). 

For problem (1.1), there have been paid attention to the existences of solutions. Rui [1] investigated the exi- 
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stence of positive solutions by applying a fixed point theorem in cones. By fixed point theorem again, Li and 
Han [2] considered a similar fractional q-difference equations given as  

( ) ( ) ( )( ) ( )0, 0,1 ,qD x t h t f x t tα λ+ = ∈  

subject to the boundary conditions ( ) ( ) ( ) ( ) ( )0 0 1 0q qx D x D x= = = . In this work, we will apply the iterative 
technology ([9] [11] [14]), and as far as we know, there are few papers to establish the existence of solutions by 
the iterative technology for the boundary value problem with q-difference. 

Motivated by the work mentioned above, with the iterative technology and properties of ( ),f t x , explicit 
iterative sequences are given to approximate the solutions and the error estimations are also given. 

2. Preliminaries and Some Lemmas 
In this section, we introduce some definitions and lemmas. 

Definition 2.1 [1]. Let 0α ≥ , ( )0,1q∈  and f be a function defined on [ ]0,1 . The fractional q-integral of 
the Riemann-Liouville type is defined by ( ) ( ) ( )0

qI f x f x=  and 

( ) ( ) ( ) ( )( ) ( ) [ ]1

0
d , 0, 0,1 .

x
q q qI f x x qt f t t xαα α α−= Γ − > ∈∫  

The q-integral of a function f defined in the interval [ ]0,b  is given by  

( ) ( ) ( ) ( ) ( ) [ ]
0

0
d 1 , 0, ,

x n n
q q

n
I f x f t t x q f xq q x b

∞

=

= = − ∈∑∫  

and q-integral of higher order n
qI  is defined by 

( )( ) ( ) ( ) ( ) ( )( )0 1, , .n n
q q q qI f x f x I f x I I f x n N−= = ∈  

Remark 1: Rα ∈ , ( )( )
0

n

nn

a bqa b a
a bq

α α
α

∞

+=

−
− =

−∏ . The q-gamma function is defined by  

( ) ( )( )

( )

1

1

1
1

x

q x

q
x

q

−

−

−
Γ =

−
, { }\ 0, 1, 2,x R∈ − −  , and satisfies ( ) [ ] ( )1q qqx x xΓ + = Γ , where [ ] 1

1

x

q

qx
q

−
=

−
, 

( )0,1q∈ . 
Definition 2.2 [1]. Let 0α ≥ , ( )0,1q∈ . The fractional q-derivative of the Riemann-Liouville type of order  

α  is defined by ( ) ( ) ( )0
qD f x f x=  and 

( ) ( ) ( ) ( ) , 0,m m
q q qD f x D I f xα α α−= >  

where m is the smallest integer greater than or equal to α . The q-derivative of a function f is defined by  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0
, 0 lim ,

1q q qx

f x f qx
D f x D f D f x

q x →

−
= =

−
 

and q-derivatives of higher order by  

( )( ) ( ) ( )( ) ( )( )0 1, , .n n
q q q qD f x f x D f x D D f x n N−= = ∈  

Lemma 2.1 [1]. Suppose 2 3,0 1, 0q bα< ≤ < < ≥  and ( )h t  is q-integrable on ( )0,1 . Then the boundary 
value problem 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0, 0,1 ,

0 0 0, 1 ,

q

q q

D x t h t t

x D x D x b

α + = ∈


= = =
 

has the unique solution 

( ) ( ) ( ) ( )1

0
, d ,qx t g t G t qs h s s= + ∫  

where 
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( ) [ ]
1,

1 q

bg t tα
α

−=
−

                                  (2.1) 

( ) ( )
( )( ) ( )( )

( )( )

2 11

2 1

1 , 0 1,1,
1 , 0 1.q

qs t t qs qs t
G t qs

qs t t qs

α αα

α αα

− −−

− −

 − − − ≤ ≤ ≤= Γ − ≤ ≤ ≤
              (2.2) 

Lemma 2.2 [1]. Function G defined as (2.2). Then G satisfies the following properties: 
(1) ( ), 0G t qs ≥ , and ( ) ( ), 1,G t qs G qs≤  for all [ ], 0,1t s∈ . 
(2) ( ) ( )1 1, ,t G qs G t qsα− ≤  for all [ ], 0,1t s∈ . 
Lemma 2.3. Function G defined as (2.2). Then 

( ) ( ) ( )
1 111, , .

q

t G qs G t qs tα α

α
− −≤ ≤

Γ
 

Proof. Note that (2.2) and ( )( )20 1 1qs α−≤ − ≤ , it follows that ( ) ( )
11,

q

G t qs tα
α

−≤
Γ

 for all [ ], 0,1t s∈ . 

This, with Lemma 2.2, implies that 

( ) ( ) ( )
1 111, , .

q

t G qs G t qs tα α

α
− −≤ ≤

Γ
 

3. Main Result 
First, for the existence results of problem (1.1), we need the following assumptions. 

(A1) ( ) ( ) ( ) [ ), : 0,1 0, 0,f t x × +∞ → +∞  is continuous. 
(A2) For ( ) ( ) ( ), 0,1 0,t x ∈ × +∞ , f is non-decreasing respect to x and for any ( )0,1ξ ∈ , there exists a 

constant ( )0,1λ ∈  such that 

( ) ( ), , .f t x f t xλξ ξ≥                                    (3.1) 

Then, we let the Banach space [ ]0,1E C= , ( ) [ ]{ }: 0, 0,1P x E x t t= ∈ ≥ ∈  and 

( ){
( ) [ ]}1 1 1

: there exist a positive constant 0,1 ,

such that for 0,1 .

Q x P m

mt x t m t tα α− − −

= ∈ ∈

≤ ≤ ∈
 

Clearly P is a normal cone and Q is a subset of P in the Banach space E. 
In what follows, we define the operator :T Q E→   

( ) ( ) ( ) ( )( )1

0
, , d ,qTx t g t G t qs f s x s s= + ∫                            (3.2) 

where ( ) ( ), ,g t G t qs  are given by (2.1) and (2.2). 
Now, we are in the position to give the main results of this work. 
Theorem 3.1. Suppose (A1), (A2) hold. Then problem (1.1) has at least one positive solution ( )*x t  in Q if 

( )1 1
0

0 , d .qf t t tα−< < ∞∫                                (3.3) 

Proof. We shall prove the existence of solution in three steps. 
Step 1. The operator T defined in (3.2) is :T Q Q→ . 
For any ( )x t Q∈ , there exists a positive constant ( )0,1m∈  such that  

( ) [ ]1 1 1, 0,1 .mt x t m t tα α− − −≤ ≤ ∈  

Then from (A2): ( ),f t x  is non-decreasing respect to x and (3.1), we can imply that for ( ) ( )0,1 , 0,1 ,s λ∈ ∈  

( ) ( ) ( )( ) ( ) ( )1 1 1 1 1, , , , , ,m f s s f s ms f s x s f s m s m f s sλ α α α λ α− − − − − −≤ ≤ ≤ ≤           (3.4) 
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where 

( ) ( )1 1 1, ,f s m s m f s sα λ α− − − −≤  

is implied by the equivalent form to (3.1): if 1M > , 

( ) ( ) ( ) ( ) ( ), , , for all , 0,1 0, .f t Mu M f t u t uλ≤ ∈ × +∞  

From (3.4) and Lemma 2.3, we can have 

( ) ( ) ( ) ( )( )

[ ] ( ) ( )( )

[ ] ( ) ( )

1

0

11 1
0

11 1 1 1
0

, , d

1 , d
1

1 , d ,
1

q

q
qq

q x
qq

Tx t g t G t qs f s x s s

b t t f s x s s

bt m f s s s c t

α α

α λ α α

α α

α α

− −

− − − − −

= +

≤ +
− Γ

 
 ≤ + ≤
 − Γ 

∫

∫

∫

 

and 

( ) ( ) ( ) ( )( )

[ ] ( ) ( )( )

[ ]

1

0

11 1
0

1 1

, , d

1, , d
1

,
1

q

q
q

x
q

Tx t g t G t qs f s x s s

b t t G qs f s x s s

b t c t

α α

α α

α

α

− −

− −

= +

≥ +
−

≥ ≥
−

∫

∫  

where xc : 

[ ]
[ ] ( ) ( )1 1

0

10 min 1, , 1.
11 , d

1

x
q q

qq

bc
b m f s s sλ αα

α α
− −

 
 
 < < ≤ 

− +
− Γ  

∫
 

This implies T is Q Q→ . 
Step 2. There exist iterative sequences { }nx , { }ny  satisfying  

( ) ( ) ( ) ( ) ( ) ( ) [ ]0 1 1 0 , 0,1 .n nx t x t x t y t y t y t t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∀ ∈    

Since T Qϕ ∈  for ( ) [ ]1, 0,1t t tαϕ −= ∈ , there exists a constant ( )0,1cϕ ∈  such that  

( ) ( ) ( )1 .c t T t c tϕ ϕϕ ϕ ϕ−≤ ≤                                 (3.5) 

For cϕ  defined in (3.5), there exist constants ,δ γ  satisfying  
1 1

1 10 < < , .c cλ λ
ϕ ϕδ γ

−
− −≥                                    (3.6) 

Let 

( ) ( ) ( ) ( )0 0, ,x t t y t tδϕ γϕ= =                              (3.7) 

( ) ( ) ( ) ( )1 1, .n n n nx t Tx t y t Ty t− −= =                           (3.8) 

Then it follows that 

( ) ( ) ( ) ( ) ( ) ( ) [ ]0 1 1 0 , 0,1 .n nx t x t x t y t y t y t t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∀ ∈    

In fact, from (3.6)-(3.8) , we have 

( ) ( )0 0 ,x t y t≤                                          (3.9) 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )

1
1 0 0

1

0

0

, , d

, , d

,

q

q

x t Tx t g t G t qs f s s s

g t G t qs f s s s

T t c t t x t

λ

λ λ
ϕ

δϕ

δ ϕ

δ ϕ δ ϕ δϕ

= = +

≥ +

≥ ≥ ≥ =

∫

∫                     (3.10) 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )

1
1 0 0

1

0
1

0

, , d

, , d

.

q

q

y t Ty t g t G t qs f s s s

g t G t qs f s s s

T t c t t y t

λ

λ λ
ϕ

γϕ

γ ϕ

γ ϕ γ ϕ γϕ−

= = +

≤ +

≤ ≥ ≥ =

∫

∫                     (3.11) 

Then, by (3.9)-(3.11), (A2) and induction, the iterative sequences { }nx , { }ny  satisfy  

( ) ( ) ( ) ( ) ( ) ( ) [ ]0 1 1 0 , 0,1 .n nx t x t x t y t y t y t t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∀ ∈    

Step 3. There exists *x Q∈  such that 

( ) ( ) ( ) ( ) [ ]* *, , uniformly on 0,1 .n nx t x t y t x t→ →  

Note that ( ) ( )0 0x t y tδ
γ

= . By induction it is easy to obtain  

( ) ( ).
n

n nx t y t
λ

δ
γ

 
≥  
 

 

Thus, for , ,n p N∀ ∈  we have 

( ) ( ) ( ) ( ) ( )

( )0

0 1

1 0, as .

n

n

n p n n n nx t x t y t x t y t

y t n

λ

λ

δ
γ

δ
γ

+

   ≤ − ≤ − ≤ −     
   ≤ − → →∞    

                  (3.12) 

This yields that there exists *x Q∈  such that  

( ) ( ) [ ]* uniformly on 0,1 .nx t x t→  

Moreover, from (3.12) and 

( ) ( ) ( ) ( ) ( ) ( )* *0 ,n n n ny t x t y t x t x t x t≤ − = − + −  

we have 

( ) ( ) [ ]* uniformly on 0,1 .ny t x t→  

Letting n →∞  in (3.8), *x Q∈  is a fixed point of T. That is, ( )*x t  is a positive solution of problem 
(1.1). 

Theorem 3.2. Suppose the conditions hold in Theorem 3.1. Then for any initial 0x Q∈ , there exists a se- 
quence { }nx  such that ( ) ( ){ }*

nx t x t→  uniformly on [ ]0,1  as n →∞ , where ( )*x t  is the positive solu- 
tion of problem (1.1). And the error estimation for the sequence ( ){ }nx t  is 

[ ]
( ) ( ) ( )*

0,1
max 1 ,

n

nt
x t x t O k λ

∈
− = −                            (3.13) 

where k is a constant with 0 1k< <  and determined by 0x . 
Proof. Let 0x Q∈  be given. Then there exists a constant ( )0,1cϕ ∈  such that  

( ) ( ) ( )1
0 .c t Tx t c tϕ ϕϕ ϕ−≤ ≤                                 (3.14) 
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For cϕ  defined in (3.14), choose constants ,δ γ  such that  
1 1

1 10 < < , .c cλ λ
ϕ ϕδ γ

−
− −≥  

Then define ( ) ( )0 , nx t x t  as (3.7), (3.8), and we can have ( ){ }nx t  converges uniformly to the positive 
solution ( )*x t  of problem (1.1) on [ ]0,1  as n →∞ . 

For the error estimation (3.13), it can be obtained by letting p →∞  in (3.12). 
Example 3.3. Consider the function  

( ) ( ) ( ) ( )
2 11 sin
3 62, , , 0,1 0, ,

t
f t x t x t x

−−
= ∈ × ∞  

( ),f t x  satisfies (A2) and is singular at 0t = . Let 1
2

q = , 2.5α = . Then 

( )
1

1 11 4
50 0
4

1, d .
1 2

q qf t t t t d tα−

−
≤ = < ∞

−
∫ ∫  

By Theorem 3.1, the following problem 

( ) ( )
( ) ( ) ( ) ( ) ( )

2 11 sin2.5 3 62
0.5

0.5 0.5

0, 0,1 ,

0 0 0, 1 1,

t
D x t t x t

x D x D x

−−
 + = ∈

 = = =

 

has at least one positive solution. 
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