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Abstract 
This paper discusses a special class of mathematical programs with equilibrium constraints. At 
first, by using a generalized complementarity function, the discussed problem is transformed into 
a family of general nonlinear optimization problems containing additional variable µ. Further-
more, combining the idea of penalty function, an auxiliary problem with inequality constraints is 
presented. And then, by providing explicit searching direction, we establish a new conjugate pro-
jection gradient method for optimization with nonlinear complementarity constraints. Under 
some suitable conditions, the proposed method is proved to possess global and superlinear con-
vergence rate. 
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1. Introduction 
Mathematical programs with equilibrium constraints (MPEC) include the bilevel programming problem as its 
special case and have extensive applications in practical areas such as traffic control, engineering design, and 
economic modeling. So many scholars are interested in this kind of problems and make great achievements, (see 
[1]-[10]). 
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In this paper, we consider an important subclass of MPEC problem, which is called mathematical program 
with nonlinear complementarity constraints (MPCC): 

( )
( )

( )

min ,
s.t. , 0,

0 , 0

f x y
g x y

G x y y
≤

≤ ⊥ ≥
                               (1.1) 

where : n mf R R+ → , ( )T
1 2, , , : n m P

pg g g g R R+= → , ( )T
1 2, , , : n m m

mG G G G R R+= →
 are all continuously 

differential functions, ( ), , n m mx y w R + +∈ . ( ),G x y y⊥  denotes orthogonality of the vectors y and ( ),G x y , 
i.e., ( )T , 0y G x y = . 

In order to eliminate the complementary constraints, which can not satisfy the standard constraint qualifica-
tion [11], we introduce the generalized nonlinear complementary function 

( ) ( ) [ )2 2 2, , 2 , , , 0, .a b a b a b a b Rφ µ µ µ= + − + + ∈ × ∞  

Obviously, the following practical results about function φ  hold: 
• if ( ), ,0 0a bφ =  and a b≠ , then 

( ) ( )

( ) ( )

, ,0 , ,0
0, 0,  if  0,

, ,0 , ,0
0, 0,  if  0.

a b

a b

a b a b
D D b

a b
a b a b

D D a
a b

φ φ

φ φ

∂ ∂
= ≠ = = >

∂ ∂
∂ ∂

= = = ≠ >
∂ ∂

                    (1.2) 

•  

( ), , 0, 0 0, 0, .a b a b abφ µ µ µ= ≥ ⇔ ≥ ≥ =                         (1.3) 

By means of the function φ , problem (1.1) is transformed equivalently into the following standard nonlinear 
optimization problem 

( )
( ) { }
( ) ( ) { }
( )

1

2

2

min ,
s.t. , 0, 1, 2, , ,

, , , 0, 1, 2, , ,

, , 0, ,

1 e 0.

j

j j j

j j

f x y
g x y j I p
c x y w w G x y j I m

y w j I
µ

φ µ

≤ ∈
= − = ∈

= ∈

− =

 

                   (1.4) 

Similar to [12], we define the following penalty function 

( ) ( ) ( ) ( )( ) ( )
1

, , , , , , , , e 1 ,
m

c j j j
j

x y w f x y c y w c x y w c µθ µ φ µ
=

= − + + −∑  

where 0c >  is a penalty parameter. Therefore, our approach consists of solving an auxiliary inequality con-
strained problem which is defined by 

( )
( )
( )
( )

1

2

2

min , , ,
s.t. , 0, ,

, , 0, ,

, , 0, ,

1 e 0.

c

j

j

j j

x y w
g x y j I
c x y w j I

y w j I
µ

θ µ

φ µ

≤ ∈
≤ ∈

≤ ∈

− ≤

                            (1.5) 

2. Preliminaries and Algorithm 
For the sake of simplicity, we denote 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( ){ }
( ) ( ) ( ) ( ){ }

( )

( )
( )
( )

0 1

1 1 2 2

1

2

2

, , , , , , , , ,

, , , , ,

0, ,0 , 0 ,

, 0, , 0, , , 0, ,1 e 0 ,

, , , ,
, , , , ,

,
, , , ,

1 e , 1

j j j

j

j j j

j

j
i i

j

z x y w s x y t y w t y w

dz dx dy dw ds dx dy

X z g s j I G x y y

X z g s j I c z j I t j I

g x y i j j I
c x y w i j p j I

r r z
t i j p m j I

i p m m

µ

µ

µ φ µ

µ
φ µ

= = = =

= =

= ≤ ∈ ≤ ⊥ ≥

= ≤ ∈ ≤ ∈ ≤ ∈ − ≤

= ∈
= + ∈

= =
= + + ∈

− = + + +

{ }
( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ){ }
2

0 1

.
1, 2, , 2 1 ,

, , , , , , ,
, , 0 , , , 0 .

i i i i i i

i i

T p m
h h z r z H H z r z i T
I z i T r z J z i I r z

µ µ µ µ
µ µ µ µ









= + +
= = ∇ = = ∇ ∈

= ∈ = = ∈ =



           (2.1) 

Throughout this paper, the following basic assumptions are assumed. 
H 2.1. The feasible set of (1.1) is nonempty, i.e., 0X φ≠ . 
H 2.2. The functions ( )2, ,j jf g G j I∈  are twice continuously differentiable. 
H 2.3. ( ) 1,z Xµ∀ ∈ , the vectors ( ) ( ) ( ){ }0 1, , , \ih z i J z T Iµ µ∈ 

 are linearly independent. 
The following definition and proposition can be refereed to in [13]. 
Definition 2.1. Suppose that ( )* * * *

0, ,z x y w X= ∈  satisfies the so-called nondegeneracy condition: 

( )( ) ( )* * *
2, , 0,0 , .j jy G x y j I≠ ∈                             (2.2) 

If there exists multipliers ( )* * * 2, , p mu Rλ γ +∈  such that 

( ) ( ) ( )* * * * * * *0
, 0,n m

m

f s g s G x y u
E

λ γ× 
∇ +∇ +∇ + = 

 
                       (2.3) 

( ) ( )* * * * * *0 0; 0, if 0; 0, if 0j j j jg s u G s yλ γ≤ − ⊥ ≥ = > = >                 (2.4) 

hold, then *s  is said to be a K T−  point of (1.1). 
Proposition 2.1. Suppose that ( )* * * *

0, ,z x y w X= ∈  satisfies the so-called nondegeneracy condition (2.2), 
then ( )* * * *, , ,s uλ γ  is a K T−  point of (1.1) if and only if ( )* * * *, , ,s u vλ  satisfies 

( )
( )

( )
( )

( )
( )

* * *

1
* * * * * * *

1
*

11 1

0 0
0 ,
00 0

x x x
n m n

y y y m

mm m m

f s g s G s

f s g s G s u W v
YE

λ
× ×

×

×× ×

     ∇ ∇ ∇        
       ∇ + ∇ + ∇ + =                 −    

     

               (2.5) 

( )* *0 0,g s λ≤ − ⊥ ≥                                 (2.6) 

where 

( ) ( )* * * *
* * *

2 * * *

, if  0,
, ,

, if  0,
j j j jm

j j
j j j

w w G s
v v j I R v

u y y

γ = >= ∈ ∈ = 
>

                  (2.7) 

( )* *
2diag ,jY y j I= ∈  and ( )( )* * *

2diag ,j jW w G s j I= = ∈ . 
Proposition 2.2. (1) s is a feasible point of (1.1) if and only if ( ),z µ  with ( ) , 0w G s µ= =  is a feasible 

point of (1.4). 
(2) *s  is a K T−  point of (1) if and only if ( )*

*,z µ  with ( )* *
*, 0w G s µ= =  is a K T−  point of (1.4). 

Proof. (1) According to the property of function φ , the conclusion follows immediately from (1.3). 
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(2) Suppose that *s  is a K T−  point of (1.1). If set ( )* *w G s=  and * 0µ = , then, from (1), we see 
( )*,0z  is a feasible point of (1.4). While, it follows from proposition 2.1 that there exists vector ( )* * *, ,u vλ  
such that (2.5) and (2.6) hold. Define 

( )
( )
( )

( )* * * * *
** * * * *

2 * * * * 1

, if  0, ,
ˆ ˆ ˆ ˆ, , .

, if  0,

mj j a j j jm
j j

jj j b j j

y v D t y t
v v j I R v v

w v D t y

φ µ
ι

µ=

 > ∂= ∈ ∈ = = −
∂=

∑           (2.8) 

So, it is not difficult to prove that ( )* * * * *ˆ, , , ,z u vλ ι  satisfies the K T−  system of (1.4), according to (1.3), 
(2.5) and (2.6). 

Conversely, if ( )*
*,z µ  is a K T−  point of (1.4), then it follows that 

( )* *
*, 0w G s µ= =  and ( ) ( )* *,0 0j jt tφ φ= = , 

which shows that *s  is a feasible point of (1.1). Suppose ( )* * * * 2 1ˆ, , , p mu v Rλ ι + +∈  is a K T−  multiplier cor-
responding to ( )*

*,z µ  of (1.4). Define *v  as follows: 

( )
( )
( )

* * * *

* * *
2 * * * *

ˆ , if  0;
, ,

ˆ , if  0.

b j j j jm
j j

a j j j j

D t v y y
v v j I R v

D t v w y

 >= ∈ ∈ = 
=

                   (2.9) 

Then, it is easy to see, from (1.2) and the K T−  system of (4) at ( )*
*,z µ , that *s  with the multiplier 

( )* * *, ,u vλ  satisfies (2.5) and (2.6). Therefore, we assert *s  is a K T−  point of (1.1) according to proposi-
tion 2.1. 

Now, we present the definition of multiplier function associated with  -active set [14]. 
Definition 2.2. A continuous function ( ) 2 1 2 1, : n m p mz R Rρ µ + + + +→  is said to a multiplier function, if ( )* *,z µ  

satisfies the K T−  system of (1.5) with corresponding multipliers ( )* *,zρ µ . 
Firstly, for a given point ( ),k

kz µ , by using the pivoting operation, we obtain an approximate active 
( ),k

k kJ J z µ= . 
Algorithm A: 
Step 1. For the current point ( ) 1,k

kz Xµ ∈  and parameter ( ) ( )( ) 2 1, , ,k k p m
k i kz z i T Rµ µ + += ∈ ∈  . Set 0l = , 

( ) 0,k
l kz µ =  ; 

Step 2. If ( ) ( )( )T

,, ,k k
l k l k k ldet A z A zµ µ ≥  , let ( ) ( ), , , , ,k k

k k l k l k kJ J A A z l z lµ µ= = = , stop; otherwise, 

goto Step 3, where 

( ) ( ) ( ){ }
( ) ( ){ }

, 1 ,

, 1

, , , 0 ,

, , \ .

k k k
k l k k l i k i k

k
k l i k k

J z i I z r z

A h z i J T I

µ µ µ

µ

= ∈ − ≤ ≤

= ∈ 

 
                  (2.10) 

Step 3. 1l l= + , , , 1
1
2k l k l−=  , go back to Step 2. 

Lemma 2.1. For any iteration index k, algorithm A terminates in finite iteration. 
For the current point ( ),k

kz µ  and  -active set kJ , compute 

( ) ( ) ( )( ) ( ) ( )( )1, , , \ , , , , .k k k k
k i k k k k k i k kF z r z i L J T I A A z h z i Lµ µ µ µ= ∈ = = = ∈          (2.11) 

Now we give some notations and the explicit search direction in this paper. 

( ) ( ) ( ) ( )
1T 1 T 1 1

2 1, , , .k k
k k k k k k k k k k n m k kQ Q z A B A A B P P z B E A Qµ µ

−− − −
+ += = = = −             (2.12) 

( ) ( ) ( )
( ) ( ) ( ) T

0 0 0 0

, , , ,

, , , .
k

k

k k k k
k k c k

k k k k k k
k k c k k

z Q z z

d dz d d z P z Q V

π π µ µ θ µ

µ µ θ µ

= = − ∇

= = = − ∇ +
                            (2.13) 
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( ) ( ) ( , ), 0,
, , ,

, 0.

k k
k k k k i k i

k i k i k k
i i

r z
V V z V i L V

µ π
µ

π π
− >= = ∈ = 

≤
                           (2.14) 

( )( ) ( )T
1 0 0 0 0 1, , , .k k k k k k k k k

k k kd Q d e F z dz d d dz d d d
τ

µ µ µ= − + + + = = +                 (2.15) 

( ) ( ) ( )T T
0 2 0 2T

, , , ,
1 2k

k k k k k k kk
k c k k k kk

z d d Q e q qz q d d
e
ρ

ρ θ µ µ ρ
π

−
= −∇ = = = +

+
          (2.16) 

where ( )T1, ,1 kLe R= ∈
. 

According to the above analysis, the algorithm for the solution of the problem (1.1) can be stated as follows. 
Algorithm B: 
Step 0. Given a starting point ( )1

1 1,z Xµ ∈ , and an initial symmetric positive definite matrix ( ) ( )2 1 2 1
1

n m n mB R + + × + +∈ . 

Choose parameters ( ) ( )0 0 1 2
1, , , 0,1 , 0, , 2,3 , 2, 0, 0, 0, 1
2 kc kξ σ υ ε α τ δ δ δ ∈ ∈ ∈ > > > > = 

 
. 

Step 1. By means of Algorithm A, compute ( ) ( ), , ,k k
k k k kJ J z A A zµ µ= =  and ( ),k

kF z µ . 
Step 2. Compute 0

kd  according to (2.13). If 0 0kd = , stop; otherwise, compute kd  according to (2.14). If 

( ) { }0 0T

0 0, min , ,
k

k k k k
c kz d d d

δ δ
θ µ ξ ξ∇ ≤ − −                       (2.17) 

goto Step 3; otherwise, goto Step 4. 
Step 3. Let 1λ = . 
(1) If 

( ) ( ) ( )T

0, , , ,
k k k

k k k k k
c k k c k c kz dz d z z dθ λ µ λ µ θ µ αλ θ µ+ + ≤ + ∇                (2.18) 

( ), 0, .k k
i k kr z dz d i Tλ µ µ+ + ≤ ∈                                       (2.19) 

Set kλ λ= , goto Step 5. 

(2) Let 1
2

λ λ= . if λ σ< , goto Step 4; otherwise, repeat (1). 

Step 4. Obtain feasible descent direction kq  from (2.16), and compute βk, the first number β in the sequence  
1 11, , ,
2 4

 
 
 

  satisfying 

( ) ( ) ( )T
, , , ,

k k k

k k k k k
c k k c k c kz qz q z z qθ β µ β µ θ µ υβ θ µ+ + ≤ + ∇                (2.20) 

( ), 0, .k k
i k kr z qz q i Tβ µ β µ+ + ≤ ∈                                      (2.21) 

Let ,k k
k kd q λ β= = . 

Step 5. Define ( )
( )

1T T
10

0

k

k
k k k m

f s

A A Aπ
−

×

 ∇
 
 = −
 
 
 

 , ( ) { }1 1, max \k k
k ic z i T Iµ π δ= − ∈ +  and set 

( ){ } ( )2
1

max , , , , ;

, otherwise.

k k k
k k k

k

k

c z c c z c
c

c

µ δ µ
+

 + >= 


                  (2.22) 

and ( ) ( )1
1, ,k k k

k k kz z dµ µ λ+
+ = + . Obtain 1kB +  by updating the positive definite matrix kB  using some quasi- 

Newton formulas, and set k = k + 1. Go back to Step 1. 
In the remainder of this section, we give some results to show that Algorithm B is correctly stated. 



C. Zhang et al. 
 

 
1717 

Lemma 2.2. (1) If 0 0kd ≠ , then we have 

( ) ( )T T 2
0

1, 0, , 0,
2k k

k k k k
c k c k kz d z qθ µ θ µ ρ∇ < ∇ ≤ − <                    (2.23) 

( ) ( ) ( )T T

0, 0, , 0, , .k k k k k
i k i k kh z d h z q i I zµ µ µ≤ < ∈                     (2.24) 

(2) If the sequence { },k
kz µ  is bounded, then there exists a constant 0 0c >  such that 

( )T 2

0, .
k

k k k
c kz q c qθ µ∇ ≤                               (2.25) 

Proof. (1) If 0 0kd ≠ , then 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

T T T

0

T 2

0 0

T T T 2
0 2 T

, , ,

, , 0,

1, , 0.
21 2 e

k k k

k k
k k
i i

k k

k k k k k k
c k c k k c k

k k k k k
k c k k k c k i i i

k k k k k kk
c k k c k k k kk

z d z P z V

P z B P z h

z q z d d e

π π

θ µ θ µ θ µ π

θ µ θ µ π π

ρ
θ µ ρ θ µ ρ ρ π ρ

π

≤ >

∇ = −∇ ∇ −

= − ∇ ∇ − + <

 
 ∇ = ∇ + = − + ≤ − <
 + 

∑ ∑  

In view of T
0
k k

kA d V= , we get ( ) ( )T

0 0, ,k k k
i kh d i I z µ≤ ∈ . Since 

( )
2

T T
0 2 T T

,
1 2 1 2

k k k k k k
k k k k k k

A q A d d V e e
e e
ρ ρ

ρ ρ
π π

  − = + = − ≤
 + + 

 

so we have 

( ) ( )
2T

T
0, , .

1 2
k k kk
i kk

h q i I z
e
ρ

µ
π

−
≤ < ∈

+
                         (2.26) 

(2) Note that the boundedness of sequence { },k
kz µ  and kB  positive definite, we know that 0 2,k kd d  are 

bounded. By (2.16), there exists constant ˆ 0c >  such that ˆ k
k c qρ ≥ . Thus, there exists constant 0 0c >  such 

that 

( )T 22
0

1, .
2k

k k k
c k kz q c qθ µ ρ∇ ≤ − ≤ −  

So, the claim holds. 
According to Lemma 2.2 and the continuity of functions ( ),

k

k
c kzθ µ  and ( ), ,k

i kr z i Tµ ∈ , the following 
result is true. 

Lemma 2.3. Algorithm B is well defined. 

3. Global Convergence 
In this section, we consider the global convergence of the algorithm B. Firstly, we show that ks  is an exact sta-
tionary point of (1.1) if the Algorithm B terminates at the current iteration point ( ),k

kz µ . 
Lemma 3.1. (1) ( ),k

kz µ  is a K − T point of (1.5) if and only if 0 0kd = . 
(2) If ( ),k

kz µ  is a K T−  point of (1.5), then ( ),k
kz µ  with 0kµ =  is a K − T point of (1.4). 

Proof. (1) If ( ),k
kz µ  is a K − T point of (1.5), then from the definition of index set Jk, we know the K − T 

multiplier corresponding to constraints about index 1 \ kI J  is 0. Thus, there exists vector ( ),i ki Lχ χ= ∈  such 
that 

( ) ( ), 0, 0, , 0, .
k

k k
c k k i i i k kz A r z i Lθ µ χ χ χ µ∇ + = ≥ = ∈                   (3.1) 

Note that matrix kA  is full of column rank, and kB  positive definite. Thus we have ( ) 1T 1
k k kA B A

−−  exists. 
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Furthermore, it follows from (3.1) that 

( ) ( ) ( )1T 1 T 1 , , .
k k

k k k
k k k k k c k k c kA B A A B z Q zχ θ µ θ µ π

−− −= − ∇ = − ∇ =  

By (2.14) and (3.1), we have 

( ) ( ) ( )1 10, , , 0, , 0,
k k k

k k k k
k c k k k k c k k c kV B z B A Q z P zθ µ θ µ θ µ− −= ∇ − ∇ = ∇ =  

so 0 0.kd =  
On the other hand, it is easy to verify that 

0, , .
kk k k k k k k k LP A P B P P Q A E= = =  

It follows from 0 0kd =  that 

( )T
00 , , 0.

k

k k k
k k c kA d V P zθ µ= = ∇ =  

From the positive definiteness of kB  and (2.12), (2.13) and (2.14), we have 

( ) ( ), 0, 0, , 0, ,
k

k k k k k
c k k i i i k kz A r z i Lθ µ π π π µ∇ + = ≥ = ∈                    (3.2) 

which implies that ( ),k
kz µ  is a K T−  point of (1.5). 

(2) In view of the definition of ( ),c zθ µ , we obtain from (3.2) that 

( )

( )

( )

1

1
\

0 0,
0

0, , 0, .

k

k

k k k
m k i i i

i T I i L

k k k
i i i k k

f s

c h h

r z i L

π

π π µ

×
∈ ∈

 ∇
 
  − + =
 
 
 

≥ = ∈

∑ ∑
                          (3.3) 

Since the vectors { },k
i kh i L∈  are linearly independent, we have 

( )
( )

( )1

1T T
1

\
0 ,

0
k

k

k k
L k k k m k i

i T I

f s

A A A c hπ
−

×
∈

  ∇
  
  = − −
  
    

∑  

i.e. 

( )
( )

1

1T T

\
.

k k

k k k
L L k k k k i

i T I
c A A A hπ π

−

∈

= + ∑  

Thus, we deduce 

( )1, \ .k k
i i kc i T Iπ π= + ∈                                 (3.4) 

In view of the definition of penalty parameter kc , from (3.4), we have 

( )1 10, \ .k k
i i kc i T Iπ π δ= + ≥ > ∈                             (3.5) 

Combining with (3.2) and (3.5), it holds that 

( ) ( )1, 0, \ , 0.k
i k kr z i T Iµ µ= ∈ =                             (3.6) 

Let ( ), ,k k
i i Tπ π= ∈  where 1, , 0, \k k k

i i k i ki L i I Jπ π π= ∈ = ∈ . From (3.3) and (3.6), we can easily see that 
( ), ,k k

kz µ π  is a K − T point pair of (1.4). 
Theorem 3.1. Suppose the nondegeneracy condition holds at kz . If ( ),k

kz µ  is a K − T point of (1.4), then 
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ks  is a K − T point of (1.1). 
Proof. According to the K − T system of (1.4) and the relationship of index i and j in (2.1), we see that 

( ) ( ) 20, , 0, .k k k
k j j jw G s t j Iµ φ= = = ∈                           (3.7) 

Then, combining with Proposition 2.1 and Proposition 2.2, we can conclude that ks  is a K − T point of (1.1). 
In the sequel, it is assumed that the Algorithm B generates an infinite sequence ( ){ },k

kz µ . The following 
further assumption about ( ){ },k

kz µ  is required in subsequent discussions. 
H 3.1. (1) The sequence ( ){ },k

kz µ  is bounded. 

(2) The accumulation point ( )*
*,z µ  of infinite sequence ( ){ },k

kz µ  satisfies (2.2). 
From H 3.1 and the fact that there are only finitely many choices for sets 1kJ I⊆ , we may assume that there 

exists a subsequence K, such that 
*

*, , , ,k
k kz z B B J J k K→ → ≡ ∈                             (3.8) 

where J is a constant set. Correspondingly, the following results hold: 
* *

* * * 0 0, , , , , , .k k
k k kA A Q Q P P d d q q k K k→ → → → → ∈ →∞  

Lemma 3.2. Suppose ( ) ( )*
*, ,k

kz zµ µ→ , then for k K∈  large enough, we have 

(1) there exists a constant 0>  such that , kk l ≥  . 
(2) there exists a constant 0c >  such that kc c≡ . 
Proof. (1) suppose, by contradiction, that there exists an index set K K′ ⊆  such that ( ), 0 ,

kk l k K k′→ ∈ →∞ . 
Let , 1k k lJ J′ −= . For k K ′∈  large enough, from Algorithm A, we have 

( ) ( )( ) ( ) ( )1 1

T
, ,\ \det 2 , , , 0, .

kk k

k k
k l k l i k i k kJ T I J T IA A z r z i Jµ µ′ ′ ′< − ≤ ≤ ∈

 

                 (3.9) 

Since there are only finite possible subsets of 1I , there must be an infinite subset K K′′ ′∈  such that for any 
, kk K J J′′ ′ ′∈ = . Thus, it follows from (3.9) that 

( ) ( )( )
( )

1 1

T
,\ \

*
*

det 2 0, , ,

, 0, ,

kk lJ T I J T I

i

A A k K k

r z i Jµ

′ ′ ′′< → ∈ →∞

′= ∈

 


                    (3.10) 

which contradicts the condition H 2.3. 
(2) Suppose by contradiction, there exists a subsequence { }ik  such that ( )1 1, 2,

i ik kc c i−> =  , then from the 
definition of kc , we have 

( ) ( )1, 1, 2, ,

, .
i

k
k k

k

c z c i

c k

µ −> =

→∞ →∞



                             (3.11) 

From the finite selectivity of kJ , we can suppose without loss of generality that ( )1,2,
ikJ J i= =  . By (1), 

we can see that ( ),
i ik kc z µ  is bounded, i.e., ( ) ( )*,  1, 2,

i ik kc z c iµ < =   for some *c . Let M be such an 
integer that ( )*

1ikc c i M− ≥ ≥ , then we have 

( ) ( )*
1 ,  ,

i i ik k kc c c z i Mµ− ≥ ≥ ≥  

a contradiction, and the result is proved. 
Lemma 3.3. Suppose that ( ) ( ) ( )*

*, ,k
kz z k Kµ µ→ ∈ , and ( ) ( ) ( )1

1, ,k k k
k k kz z d k Kµ µ λ+
+ = + ∈  which is 

generated by Step 4 and Step 5. If ( )*
*,z µ  is not a K T−  point of (1.5), then we have 

(1) ( ) ( ) ( )T T* * * * *
* * *, 0, , , ,c iz q h z q i I zθ µ µ µ∇ < ∈ , 

(2) { }* , 0,k kinf k K k Kβ β β≥ = ∈ > ∈ . 
Proof. (1) Suppose * *

* 0 0, , ,k k
kB B d d q q k K→ → → ∈ . Since ( )*

*,z µ  is not a K T−  of (1.5), so we have 
*
0 0d ≠  and 
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( ) ( )
( ) ( )

T T* * * *
* 0 *

T* * *
* *

, 0, , 0,

, 0, , .

c c

i

z d z q

h z q i I z

θ µ θ µ

µ µ

∇ < ∇ <

< ∈
 

Therefore, for k K∈  large enough, we obtain 

( )

( ) ( )

( ) ( )

T* *
* 0

T T* *
* 0

*
*

1 , 0,
2

1, , 0,
2

, 0, , .

k c

k k
c k c

Tk k
i k

z d

z q z d

h z q i I z

ρ θ µ

θ µ θ µ

µ µ

− ≤ ∇ <

∇ ≤ ∇ <

< ∈

                        (3.12) 

(2) For (2.20), denote 

( ) ( ) ( )
( ) ( ) ( )

T

T

, , ,

1 , .

k k k k k
c k k c k c k

k k
c k

a z qz q z z q

z q o

θ β µ β µ θ µ υβ θ µ

υ β θ µ β

+ + − − ∇

= − ∇ +



 

From (3.12), for k K∈  large enough and 0β >  small enough, it holds that 0s ≤ . 
For (2.21), when ( )*

*\ ,i T I z µ∈ , the fact ( ) ( )* *
* *, ( , ), , 0, k

k iz z r z k Kµ µ µ→ < ∈  and the continuity of ir  
imply that (4.5) holds. When ( )*

*,i I z µ∈ , it holds that ( )*
*, 0ir z µ = . From (3.12), for k K∈  large enough 

and 0β >  small enough, we have 

( ) ( ) ( ) ( )

( ) ( )

T

T

, , ,

, 0.

k k k k k
i k k i k i k

k k
i k

r z qz q r z h z q o

h z q o

β µ β µ µ β µ β

β µ β

+ + = + +

≤ + ≤
 

According to the analysis above, the result is true. 
Lemma 3.4. Algorithm B generates infinite sequence ( ){ },k

kz µ , whose any accumulation points ( )*
*,z µ  

are K T−  points of (1.1). 
Proof. Suppose that ( ){ } ( )*

*, , ,k
kz z k Kµ µ→ ∈ . From (2.17), (2.18), (2.20) and Lemma 2.2, we know that 

( ){ },k
c kzθ µ  is a descent sequence. While, for ,k K k∈ →∞ , it is obvious that ( ) ( )*

*, ,k
c k cz zθ µ θ µ→ . So 

( ) ( )*
*, , , .k

c k cz z kθ µ θ µ→ →∞                            (3.13) 

Now we consider the following two cases: 
(1) Suppose there exists an infinite subset 1K K⊆  such that 

( ) ( )1
1, , ,k k k

k k kz z dµ µ λ+
+ = +  

which is obtained by Step 3 and Step 5. In view of 1,k k Kλ σ≥ ∈  in Step 3, it follows from (2.17) and (2.18) 
that 

( ) ( )( ) ( ) ( )0

1 1 1

T1
1 0 0lim , , lim , lim 0.k k k k k

c k c k c kk K k K k K
z z z d d

δ
θ µ θ µ αλ θ µ αεξ+

+∈ ∈ ∈
− ≤ ∇ ≤ − ≤  

Obvious, 0 10,kd k K→ → . Again, *
0 0 ,kd d k K→ ∈ , so we have *

0 0d = . Imitating the proof of Lemma 3.1, it 
is easy to see that ( )*

*,z µ  is a K T−  point of (1.5). 
(2) Assume the iteration ( ) ( )1

1, , ,k k k
k k kz z d k Kµ µ λ+
+ = + ∀ ∈  is generated by Step 4 and Step 5. Suppose by 

contradiction that ( )*
*,z µ  is not a K T−  point of (1.5). Then, from (3.12) and Lemma 3.3, we have 

( ) ( )( ) ( ) ( )T T1 * *
1 * *

10 lim , , lim , , 0,
2

k k k k
c k k k c k ck K k K

z z z q z qθ µ θ µ υβ θ µ υβ θ µ+
+∈ ∈

= − ≤ ∇ ≤ ∇ <  

which is a contradiction. Thus, the claim holds. 
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Theorem 3.2. The K T−  point ( )*
*,z µ  of (1.5) must be the one of (1.4), where * 0µ = . 

Proof. If ( )*
*,z µ  is a K T−  point of (1.5), then there exists multiplier *π  such that 

( )

( ) ( )( )

( ) ( )

1 1

*

* * *
1 *

\ \

* * *
* 1

0 0,
0

0, , 0, \ .

m i i i
i T I i J T I

i i i

f s

c h h

r z i J T I

π

π π µ

×
∈ ∈

 ∇
 
  − + =
 
 
 

≥ = ∈

∑ ∑




                         (3.14) 

Set 

( )( ) ( )
( )*

1* * T T
* 1 * * * 1\ , 0 .

0
i m

f s

A h i J T I A A Aπ
−

×

 ∇
 
 = ∈ = −
 
 
 


  

Obvious, ( ) ( )1 1

*
\ \

k
J T I J T Iπ π→
 

  . While, from (3.14) we get 

( ) ( )
( )

( )
1

1

*

1* T T *
* * * 1 *\

\
0

0
m iJ T I

i T I

f s

A A A c hπ
−

×
∈

  ∇
  
  = − −
  
    

∑


 

i.e. 

( ) ( )
( )

( )1 1
1

1* * T T *
* * * *\ \

\
.iJ T I J T I

i T I
c A A A hπ π

−

∈

= + ∑
 

  

Thereby, 

( )* *
* 1, \ .i i c i T Iπ π= + ∈                               (3.15) 

According to the definition of *c , it is clear that 

( )* *
* 1 10, \ .i i c i T Iπ π δ= + ≥ > ∈                            (3.16) 

In addition, combining with (3.2) (3.16), we obtain 

( ) ( )*
* 1 *, 0, \ , 0.ir z i T Iµ µ= ∈ =                            (3.17) 

Let ( )* *,i i Tπ π= ∈ , where ( )* * *
1 1, \ , 0, \i i ii J T I i I Jπ π π= ∈ = ∈ . It follows from (3.14) and (3.17) that 

( )* *,0,z π  is a K T−  point pair of (1.4). 
Theorem 3.3. Suppose (2.2) holds at *z . If ( )*,0z  is a K T−  point of (1.4), then *s  is a K T−  point 

of (1.1). 
Proof. According to Theorem 3.2 and (2.1), Proposition 2.1 and Proposition 2.2 imply *s  is a K T−  point 

of (1.1). 

4. Superlinear Convergence 
Now we discuss the convergence rate of the Algorithm B, and prove that the sequence ( ),k

kz µ  generated by 
the Algorithm B is one-step superlinearly convergent. For this purpose, we add some stronger regularity as-
sumptions. 

H 4.1. The bounded sequence ( ){ },k
kz µ  possesses an accumulation point ( )*

*,z µ , at which second-order 
sufficiency condition and strict complementary slackness hold, where ( )* *,i i Tζ ζ= ∈  is the corresponding 
multiplier of ( )*

*,z µ . 
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Lemma 4.1. Under H 2.1-H 4.2, we have that 

( )1
1lim 0, lim 0.k k

k kk k
z z µ µ+

+→∞ →∞
− = − =  

Proof. For ( ) ( )1
1, ,k k k

k k kz z dµ µ λ+
+ = +  generated by Step 3 and Step 5, from (2.17) and (2.18), it holds that 

( ) ( ) ( ) ( ) 0T

0, , , , .k k k k k k k
c k k k k c k k c k c k kz dz d z z d z d

δ
θ λ µ λ µ θ µ αλ θ µ θ µ αξλ+ + ≤ + ∇ ≤ +  

While, for ( ) ( )1
1, ,k k k

k k kz z dµ µ λ+
+ = +  generated by Step 4 and Step 5, from (2.17), (2.20) and Lemma 2.2, 

we have 

( ) ( ) ( ) ( )T 2

0 0, , , , .k k k k k k k
c k k k k c k k c k c k kz dz d z z d z c dθ λ µ λ µ θ µ υλ θ µ θ µ υλ+ + ≤ + ∇ ≤ −  

So 

( ) ( ) { }02 21
1 0, , min , , .k k k k

c k c k kz z d c d k
δ

θ µ θ µ λ υ αξ
−+

+ ≤ − ∀  

Passing to the limit k →∞  and from (3.13), we obtain 

{ }02 2

0lim min , 0.k k
kk

d c d
δ

λ υ αξ
−

→∞
=  

Thereby 

( )1
1lim 0, lim 0.k k

k kk k
z z µ µ+

+→∞ →∞
− = − =  

Theorem 4.1. The entire sequence ( ),k
kz µ  converges to ( )*,0z , i.e., ( ) ( )*, ,0 ,k

kz z kµ → →∞ . 
In order to obtain the superlinear convergence rate, we make the following assumption. 
H 4.2. * *, , kB B k B→ →∞  positive definite. 
Lemma 4.2. If H 2.1-H 4.2 hold, then we get that 
(1) for k large enough, ( )*

* *,kL I z Iµ= = . 
(2) ( )( )*

0 * 1lim 0, lim , ( \k k
ik k

d i I T Iπ ζ
→∞ →∞

= = ∈  . 

Proof. (1) On one hand, by Lemma 3.2, for k large enough, there exists a constant 0>  such that 
, 1

kk l≤ <   in Algorithm A. It follows from H 4.1 and the fact ( ) *,k
kz µ ζ→  that, for k large enough, 

* kI L⊆ . 
On the other hand, we assert that *kL I⊆ . Otherwise, there exists some index t and infinite subset K such that 

( ) ( ) ( ) ( )*
* ,\ , ,0 0, , , , , .

k

k k k
k t t k k l t k t kt L I r z r z z z k Kµ µ µ µ µ∈ < ≥ − ≥ − ∀ ∈  

Let ,k K k∈ →∞ , then 

( ) ( )* * * *0 ,0 ,0 , 0.t t t tr z zµ ζ ζ> ≥ − = − >  

It is a contradiction with the complementary slackness condition, which shows that *kL I⊆ , i.e., *kL I= . 
(2) According to ( ) ( )*, ,0k

kz zµ →  and *kB B→ , the fact *kL I=  implies * *
0 0 , ,k kd d kπ π→ → →∞ . 

Again, since ( )*,0z  is a K T−  point of (1.5), imitating the proof of Lemma 3.1, we get that 

( )* * * * *
0 * * *0, , 0, 0, 0,  .c i i id z A r i Iθ µ π π π= ∇ + = = ≥ ∈  

So the uniqueness of K T−  multiplier shows *lim k
k π ζ→∞ = . 

Lemma 4.3. Under H 2.1-H 4.2, for k large enough, 0
kd  with the corresponding multiplier 

( ) ( )1T 1 ,k k k
k k k kA B A F zζ π µ

−−= +  is a K T−  point of the following quadratic program 
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( )

( ) ( )

T T

T

*

1min ,
2

s.t. , 0, .

k
c k k

k k
i k i

z d d B d

r z h d i I

θ µ

µ

∇ +

+ = ∈
                           (4.1) 

Proof. Suppose that ( ),d ζ  is a K T−  point pair of (4.1). From (2.12), (2.14) and (4.1), it holds that 

( ) ( ) ( ) ( )1T T 1, , , , .k k k k k
k c k k k k k k kd P z Q F z A B A F zθ µ µ ζ π µ ζ

−−= − ∇ − = + =  

In addition, for k large enough, *0,k
i i Iπ > ∈  holds from fact *lim k

k π ζ→∞ =  and strict complementarity 
condition. While, from the definition of kV , it holds that ( ) ( )T

0 , ,k k k
k c k k kd P z Q F z dθ µ µ= − ∇ − = . So the 

claim holds. 
Lemma 4.4. (1) For k large enough, there exist constants , 0b η >  such that 

( )
( ) ( )

* 1

T 2

0 0
\

, , , .k k k k k k
i i k c k

i I T I
r F z z d b dζ η µ θ µ

∈

≤ ∇ ≤ −∑


                 (4.2) 

(2) 0 1
k k kd d d= +  obtained by (2.15) satisfies 

( )2

0 1 0, .k k k kd d d O d∼ ∼                              (4.3) 

Proof. (1) Since ( ) ( )*
*, ,k

kz zµ µ→ , and for k large enough, *kL I= , it is easy to see 

( ) ( )( )* *
* *, , , 0, 0, .k k

k iF z r z i I kµ µ ζ π→ ∈ = → > →∞                  (4.4) 

Obviously, for k large enough, *0,k
i i Iζ > ∈ . Thereby, there exists a constant 0η >  such that 

( )
* *

, .k k k k k
i i i i k

i I i I
r r F zζ ζ η µ

∈ ∈

= − ≤ −∑ ∑  

In addition, from Lemma 4.3, we see 

( ) ( ) T
0 0, 0, , 0.k k k k k

c k k k k kz B d A F z A dθ µ ζ µ∇ + + = + =                    (4.5) 

So 

( ) ( ) ( ) ( )

( )
*

T T T TT
0 0 0 0 0 0

2 2

0 0

,

, .

k k k k k k k k k k
c k k k k i i

i I

k k k
k

z d d B d A d d B d r

b d F z b d

θ µ ζ ζ

η µ

∈

∇ = − − = − +

≤ − − ≤ −

∑
             (4.6) 

(2) Since 

( ) ( ) ( ) ( )T 2

0 0 0 0 *, , ,k k k k k k k
i k i ir z dz d r z h d O d i Iµ µ+ + = + + ∀ ∈  

we know 

( ) ( )2

0 0 0, .k k k k
kF z dz d O dµ µ+ + =  

From ( ) *2,3 , kQ Qτ ∈ →  and the boundedness of *Q , it follows that 

( )2

0 1 0, .k k k kd d d O d∼ ∼  

So, the result is true. 
In order to obtain the superlinear convergence rate, we make another assumption. 
H 4.3. The sequence of symmetric matrices { }kB  satisfies 
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( )( ) ( ) ( )( ) ( )2 2 * *
0 0 0 0, , ,0, ,k k k k k k

k k k k kP B L z d o d P B L z d o dµ ζ ζ−∇ = ⇔ −∇ =  

where 

( )
( ) ( )

( ) ( )
*

1T T
2 1

2 2

2 * * 2 * * *

,

, , , ,

,0, ,0 .

k

k n m k k k k

k k k k k
k c k i i

i I

c i i
i T

P E A A A A

L z z H

L z z H

µ ζ θ µ ζ

ζ θ ζ

−

+ +

∈

∈

= −

∇ = ∇ +

∇ = ∇ +

∑

∑

 

Lemma 4.5. For k large enough, Algorithm B is not implemented on Step 4, and 

( ) ( )1
11, , ,k k k

k kz z dλ µ µ λ+
+≡ = +  

holds in Step 3. 
Proof. According to 0 0kd →  and Lemma 4.4, we have 

( )T 2

0 0 0, , ,k k k k k
c kd d z d b dθ µ∼ ∇ ≤ −  

which shows (2.17) hold. Now we prove that, the arc search (2.19) and (2.18) eventually accept unit step, i.e., 
1kλ = , for k large enough. 

Firstly, for (2.19), when *\i T I∈ , the fact that ( )* *
0 0, , 0, ,0 0k k

k id z z r zµ→ → → <  and the continuity of 
ir  imply 

( ), 0k k
i k kr z dz dµ µ+ + ≤  

when *i I∈ , using Taylor expansion, we get 

( )
( ) ( ) ( )
( ) ( ) ( )

0 1 0 1

T 2

0 0 0 0 1 1

T 3

0 0 1 0

,

, ,

, , .

k k k k k
i k

k k k k k k k k
i k i k

k k k k k k
i k i k

r z dz dz d d

r z dz d h z dz d d O d

r z dz d h z d O d

µ µ µ

µ µ µ µ

µ µ µ

+ + + +

= + + + + + +

= + + + +

               (4.7) 

Again, from 

( )T
1 0 0 0, ,k k k k k

k kA d d e F z dz d
τ

µ µ= − − + +  

we see 

( ) ( )T

1 0 0 0 *, , , .k k k k k k
i k i kh z d d r z dz d i I

τ
µ µ µ= − − + + ∈  

Thus, (4.7) yields 

( ) ( )3

0 0, .k k k k k
i kr z dz d d O d

τ
µ µ+ + = − +                          (4.8) 

In view of ( )2,3τ ∈ , (2.19) obviously holds when 1kλ = . 
Secondly, we prove that, for k large enough, (2.18) holds for 1kλ = . Denote 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

T

0

T T T T 22
0 0 0 0

, , , ,

1, , , .
2

k k k

k k k

k k k k k
c k k c k c k

k k k k k k k k
c k c k c k

z dz d z z d

z d d z d z d d

ϕ θ λ µ λ µ θ µ α θ µ

θ µ θ µ α θ µ

= + + − − ∇

= ∇ + ∇ − ∇ +
          (4.9) 

From (4.5), we have 
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( ) ( ) ( ) ( ) ( )
*

T T T T 32
0 0 0, , .

k k

k k k k k k k k k
c k c k i i

i I
z d d z d h d o dθ µ θ µ ζ

∈

∇ = − ∇ − +∑  

Also, by (4.8), it holds that 

( ) ( ) ( ) ( ) ( )T T 2 3

0 0 0 0 0 *
1 , .
2

k k k k k k k k k
i i ir h d d H d o d d O d i I

τ
+ + + = − + ∈  

So 

( ) ( ) ( )
* * *

T T 2

0 0 0
1 .
2

k k k k k k k k k k
i i i i i i

i I i I i I
h d r d H d o dζ ζ ζ

∈ ∈ ∈

 
− = − + + 

 
∑ ∑ ∑  

Thus, (4.6) yields 

( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )( ) ( ) ( ) ( )

*

T T 22
0 0 0 0 0

T T 22
0 0 0 0 0

11 , , 1
2
11 , , 1 , .
2

k k k k k k k k k
k k i i

i I

k k k k k k k k
k k k k

d B d d L z d r o d

d B d d L z B d F z o d

ϕ α µ ζ α ζ

α µ ζ α η µ

∈

= − + ∇ + − +

≤ − + ∇ − − − +

∑
 

Denote ( ) 1T T
* 2 1 * * * *n mP E A A A A

−

+ += − , then *kP P→ . Set 

( ) 1T T
0 * 0 * * * * 0, .k k kd P d y y A A A A d

−
= + =                          (4.10) 

Clearly, 

( ) ( ) ( )
( ) ( ) ( )

1 1TT T T
* * * * 0 * * * 0

1T
0 * * * ,

k k
k k

k k
k

y A A A A A d A A A A d

o d A A A F z µ

− −

−

= − +

= −
 

while, from (2) and (10), it holds that 

( ) ( ) ( )( )0 0, , .k k k
ky O d y o d O F z µ= = +  

So 

( )( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

T 2T 2
0 * 0 0

2 2

0 0

1 , , 1 ,
2
1 1 , , 0,
2

k k k k k k
k k k

k k k k
k k

b d P y L z B d F z o d

b d o d F z o F z

ϕ α µ ζ α η µ

α α η µ µ

 ≤ − + ∇ − − − + 
 
 = − + − − + ≤ 
 

 

which implies the theorem hold. 
According to Lemma 4.3, Lemma 4.4 and Lemma 4.5, combining with Theorem 12.3.3 in [15], the following 

state holds. 
Theorem 4.2. The Algorithm B is superlinearly convergent, i.e., 

1 * *

1

.
k k

k k

z z z z
o

µ µ

+

+

 − −
 =
 
 

 

5. Conclusion 
By means of perturbed technique and generalized complementarity function, we, using implicit smoothing 
strategy, equivalently transform the original problem into a family of general optimization problems. Based on 
the idea of penalty function, the discussed problem is transformed an associated problem with only inequality 
constraints containing parameter. And then, by providing explicit searching direction, a new variable metric 
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gradient projection method for MPCC is established. The smoothing factor µ  regarded as a variable ensures 
that we can obtain an exact stationary point of original problem once the algorithm terminates in finite iteration. 
What’s more, the proposed algorithm adjusts penalty parameter automatically. Under some mild conditions, the 
global convergence is obtained as well as the superlinear convergence rate. 
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