The Matching Uniqueness of A Graphs

Shichang Shen

School of Mathematics and Statistics, Qinghai Nationalities University, Xining, China
Email: 13909785766@163.com
Received 20 March 2015; accepted 30 June 2015; published 3 July 2015
Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In the paper, We discussed the matching uniqueness of graphs with degree sequence $\left(1^{3}, 2^{s-4}, 3\right)$. The necessary and sufficient conditions for $T(1,5, n) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right)$ and its complement are matching unique are given.

Keywords

Graph, Matching Polynomial, Matching Uniqueness

1. Introduction

All graphs considered in the paper are simple and undirected. The terminology not defined here can be found in [1]. Let G be a graph with n vertices. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of r-matching in G will be denoted by $p(G, r)$. We set $p(G, 0)=1$ and define the matching polynomial of G by

$$
\mu(G, x)=\sum_{r \geq 0}(-1)^{r} p(G, r) x^{n-2 r}
$$

For any graph G, the roots of $\mu(G, x)$ are all real numbers. Assume that $\gamma_{1}(G) \geq \gamma_{2}(G) \geq \cdots \geq \gamma_{n}(G)$, the largest root $\gamma_{1}(G)$ is referred to as the largest mathing root of G.

Throughout the paper, we denote by P_{n} and C_{n} the path and the cycle on n vertices, respectively. $T(a, b, c)(a \leq b \leq c)$ denotes the tree with a vertex v of degree 3 such that $T(a, b, c)-v=P_{a} \cup P_{b} \cup P_{c}$, and $T(a, b, c, 1,1)(a \leq b \leq c)$ denotes the tree obtained by appending a pendant vertex of the path P_{c} in $T(a, b, c)$ to a vertex with degree 2 of $P_{3} . Q\left(s_{1}, s_{2}\right)$ is obtained by appending a cycle $C_{s_{1}+1}$ to a pendant vertex of a path $P_{s_{2}}$. Two graphs are matching equivalency if they share the same matching polynomial. A graph G is said to be matching unique if for any graph $H, \mu(G, x)=\mu(H, x)$ implies that H is isomorphic to G. The study in
this ares has made great progress. For details, the reader is referred to the surveys [2]-[6]. In the paper, we prove $T(1,5, n) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right)(n \geq 5)$ and its complement are matching unique if and only if $n \neq 5,8,15$ or $n=6$, $p_{i} \neq 6$.

2. Basic Results

Lemma 1 [1] The matching polynomial $\mu(G, x)$ satisfies the following identities:

1) $\mu(G \cup H, x)=\mu(G, x) \mu(H, x)$.
2) $\mu(G, x)=\mu(G \backslash e, x)-\mu(G \backslash u, v, x)$ if $e=\{u, v\}$ is an edge of G.

Lemma 2 [1] Let G be a connected graph, and let H be a proper subgraph G.
Then $\gamma_{1}(G)>\gamma_{1}(H)$.
Lemma 3 [2] Let $G=T(a, b, c) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right)$, if $H \sim G$, then H are precisely the graphs of the following types:

$$
T\left(s_{1}, s_{2}, s_{3}\right) \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), Q\left(s_{1}, s_{2}\right) \cup P_{l} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), K_{1} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right) .
$$

Lemma 4 1) [1] $\gamma_{1}\left(P_{n}\right)=2 \cos \left(\frac{\pi}{n+1}\right), \gamma_{1}\left(C_{n}\right)=2 \cos \left(\frac{\pi}{2 n}\right)$.
2) [2] $\gamma_{1}(T(m, m, n))=\gamma_{1}(Q(m, n))=\gamma_{1}(Q(n+1, m-1))$.
3) [2] $\gamma_{1}(Q(2, m-1)) \leq \gamma_{1}(T(1, m, n))(2<m \leq n)<\gamma_{1}(Q(2, m+1))$.
4) [3] $\gamma_{1}(T(m, m, n))>\gamma_{1}(Q(m-1, n))(m \geq 3), \gamma_{1}(Q(m+1, m))=\gamma_{1}(Q(m, 2 m+2))$,
$\gamma_{1}(Q(m, m-1))>\gamma_{1}(Q(m-1, m))$.
5) [4] $\gamma_{1}(T(1,3, n))<\gamma_{1}(T(1,4,6)), \gamma_{1}(T(1,4, n))<\gamma_{1}(T(1,5,7))$.
6) [5] $2<\gamma_{1}(T(1, m, n))(2<m<n)<(2+\sqrt{5})^{\frac{1}{2}}<\gamma_{1}\left(T\left(s_{1}, s_{2}, s_{3}\right)\right)\left(2 \leq s_{1}<s_{2}<s_{3}\right)$.

Lemma 5 [5] Let G be a tree and let $G_{u, v}$ be obtained from G by subdividing the edge $u v$ of G, then

1) $\gamma_{1}\left(G_{u, v}\right)>\gamma_{1}(G)$, if $u v$ not lies on an internal path of G.
2) $\gamma_{1}\left(G_{u, v}\right)<\gamma_{1}(G)$, if $u v$ lies on an internal path of G, and if G is not isomorphic to $T(1,1, n, 1,1)$.

Lemma 6 [6] $\bigcup_{i=0}^{s} C_{p_{i}}$ are matching unique.
Lemma $7 \quad \gamma_{1}(T(1,5, n))<\gamma_{1}(T(1,6,8))$.
Proof. Direct computation (using Matlab 8.0), we immediately have the following:

$$
\begin{gathered}
\mu(T(1,5,9,1,1), x)=x^{19}-18 x^{17}+134 x^{15}-533 x^{13}+122 x^{11}-1617 x^{9}+1176 x^{7}-413 x^{5}+50 x^{3}, \\
\mu(T(1,6,8), x)=x^{16}-15 x^{14}+90 x^{12}-276 x^{10}+458 x^{8}-400 x^{6}+164 x^{4}-24 x^{2}+1 . \\
\gamma_{1}(T(1,5,9,1,1))=2.0518, \gamma_{1}(T(1,6,8))=2.0522 .
\end{gathered}
$$

By Lemma 2, 5, we get $\gamma_{1}(T(1,5,5))<\gamma_{1}(T(1,5,6))<\gamma_{1}(T(1,5,7))<\cdots<\gamma_{1}(T(1,5, n))$

$$
<\gamma_{1}(T(1,5, n-2,1,1))<\gamma_{1}(T(1,5, n-3,1,1))<\cdots<\gamma_{1}(T(1,5,9,1,1))<\gamma_{1}(T(1,6,8)) .
$$

3. Main Results

Theorem 1 Let $G=T(1,5, n) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right)(n \geq 5)$, then G are matching unique if and only if $n \neq 5,8,15$ or
$n=6, p_{i} \neq 6$.
Proof. The necessary condition follows immediately from Lemma 1. We have

$$
\begin{array}{r}
\mu\left(T(1,5,5) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right)=\mu\left(Q(5,1) \cup P_{5} \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right) \\
\mu\left(T(1,5,8) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right)=\mu\left(Q(2,5) \cup P_{7} \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right) \\
\mu\left(T(1,5,15) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right)=\mu\left(T(1,6,7) \cup C_{7} \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right) \\
\mu\left(T(1,5,6) \cup C_{6} \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right)=\mu\left(T(1,4,13) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right)
\end{array}
$$

Now suppose that $n \neq 5,8,15$ or $n=6, p_{i} \neq 6, H$ is a graph being matching equivalency with G. We proceed to prove that H must be isomorphic to G. By Lemma 3

$$
H \in\left\{T\left(s_{1}, s_{2}, s_{3}\right) \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), Q\left(s_{1}, s_{2}\right) \cup P_{l} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), K_{1} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right)\right\}
$$

Case 1. If $H=Q\left(s_{1}, s_{2}\right) \cup P_{l} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right)$. By $n>5$, we know that $\gamma_{1}(H)>2$. Hence, the component of $\gamma_{1}(H)>2$ in H may be only $Q\left(s_{1}, s_{2}\right)$. By Lemma 4, $\quad \gamma_{1}(Q(2,4)) \leq \gamma_{1}(T(1,5, n))<\gamma_{1}(Q(2,6))$ and $\gamma_{1}(T(1,5,8))=\gamma_{1}(Q(2,5))$. Let $s_{1}=2$, then $\gamma_{1}(T(1,5, n)) \neq \gamma_{1}\left(Q\left(2, s_{2}\right)\right)$, a contradiction. Let $s_{1}=3$. If $s_{2}=1$, then $\gamma_{1}(Q(3,1))=\gamma_{1}(Q(2,2))$, a contradiction. If $s_{2}=2$, then $\gamma_{1}(Q(3,2))=\gamma_{1}(Q(2,6))$, a contradiction. If $s_{2} \geq 3$, then $\gamma_{1}\left(Q\left(3, s_{2}\right)\right) \geq \gamma_{1}(Q(3,3))>\gamma_{1}(Q(2, n))$, a contradiction. Let $s_{1}=4$. If $s_{2}=1$, then $\gamma_{1}(Q(4,1))=\gamma_{1}(Q(2,3))$, a contradiction. If $\mathrm{s}_{2} \geq 2$, then $\gamma_{1}\left(Q\left(4, s_{2}\right)\right) \geq \gamma_{1}(Q(4,2))=\gamma_{1}(Q(3,3))>\gamma_{1}(Q(2, n))$, a contradiction. Let $s_{1}=5$. If $s_{2}=1$, then $\gamma_{1}(Q(5,1))=\gamma_{1}(Q(2,4))$, a contradiction. If $s_{2} \geq 2$, then $\gamma_{1}\left(Q\left(5, s_{2}\right)\right) \geq \gamma_{1}(Q(5,2))=\gamma_{1}(Q(3,4))>\gamma_{1}(Q(3,3))>\gamma_{1}(Q(2, n))$, a contradiction. Let $s_{1} \geq 6$, then $\gamma_{1}\left(Q\left(s_{1}, s_{2}\right)\right) \geq \gamma_{1}(Q(6,1))>\gamma_{1}(Q(2,5))$, a contradiction.

Case 2 If $H=T\left(s_{1}, s_{2}, s_{3}\right) \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right)$. By $\gamma_{1}(H)>2$, hence the component of $\gamma_{1}(H)>2$ in H may be only $T\left(s_{1}, s_{2}, s_{3}\right)$. Let $s_{1}=1$. If $s_{2}=1$, then $\gamma_{1}\left(T\left(1,1, s_{3}\right)\right)<2$, a contradiction. If $s_{2}=2,3$, then $\gamma_{1}\left(T\left(1,2, s_{3}\right)\right)<\gamma_{1}(Q(2,4))$, a contradiction. If $s_{2}=4$, then $\gamma_{1}\left(T\left(1,4, s_{3}\right)\right)=\gamma_{1}(T(1,5, n))$, by Lemma 4, we get $n=6$, thus $s_{3}=13$. That is,

$$
\begin{gathered}
\mu\left(T(1,5,6) \cup C_{6} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), x\right)=\mu\left(T(1,4,13) \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), x\right)=\mu\left(T(1,5,6) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right), x\right) \text {, then } \\
\mu\left(C_{6} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right), x\right)=\mu\left(\bigcup_{i=0}^{s} C_{p_{i}}, x\right), \text { by Lemma 6, } p_{i} \text { has at least one equal to 6, a contradiction. If } s_{2}=5,
\end{gathered}
$$ by Lemma 4, 6, we have $s_{3}=n, s=m, p_{i}=q_{i}$, thus H be isomorphic to G. Let $s_{1}=2$. If $s_{2}=2$, $\gamma_{1}\left(T\left(2,2, s_{3}\right)\right)=\gamma_{1}\left(Q\left(2, s_{3}\right)\right) \neq \gamma_{1}(T(1,5, n))$, a contradiction. If $s_{2} \geq 3, s_{3} \geq 3$, a contradiction. Let $s_{1} \geq 3$, by Lemma 4, $\quad \gamma_{1}(T(1,5, n))<\gamma_{1}\left(T\left(s_{1}, s_{2}, s_{3}\right)\right)$, a contradiction.

Case 3 If $H=K_{1} \cup\left(\bigcup_{i=0}^{m} C_{q_{i}}\right)$, by $\gamma_{1}(G)>2$, a contradiction. Combing cases $1-3, H$ is isomorphic to G.

The proof is complete. For a graph, its matching polynomial determine the matching polynomial of its Complement [6], so the complement of $G=T(1,5, n) \cup\left(\bigcup_{i=0}^{s} C_{p_{i}}\right)(n \geq 5)$ are matching unique if and only if $n \neq 5,8,15$ or $n=6, p_{i} \neq 6$.

References

[1] Godsil, C.D. (1993) Algebraic Combinatorics. Chapman and Hall, New York, London.
[2] Shen, S.C. (2001) A Necessary and Sufficient Conditions for Matching Uniqueness of a Class of T-Shape tree. Journal of Mathematical Study, 34, 411-416.
[3] Ma, H.C. (2003) The Matching Equivalent Classes of Graphs with the Maximum Root Less than 2. Journal of Systems Science and Mathematical Sciences, 3, 337-342.
[4] Cvetkovic, D.M., Doob, M. and Sachs, H. (1980) Spectra of Graphs. Academic Press, New York.
[5] Ghareghani, N., Omidi, G.R. and Tayfeh-Rezaie, B. (2007) Spectral Characterization of Graphs with Index at Most $\sqrt{2+\sqrt{5}}$. Linear Algebra and Its Applications, 420, 483-489. http://dx.doi.org/10.1016/j.laa.2006.08.009
[6] Beezet, R.A. and Farrell, E.J. (1995) The Matching Polynomials of a Regular Graphs. Discrete Mathematics, 137, 718.

