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Abstract 
In this work, an extended Jacobian elliptic function expansion method is proposed for construct-
ing the exact solutions of nonlinear evolution equations. The validity and reliability of the method 
are tested by its applications to Dynamical system in a new Double-Chain Model of DNA and a dif-
fusive predator-prey system which play an important role in biology. 
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1. Introduction 
The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1]. 
Exact solutions for these equations play an important role in many phenomena in physics such as fluid mechanics, 
hydrodynamics, Optics, Plasma physics and so on. Recently many new approaches for finding these solutions 
have been proposed, for example, tanh-sech method [2]-[4], extended tanh-method [5]-[7], ( )( )−ϕ ξexp  [8]- 
[11], homogeneous balance method [12], F-expansion method [13]-[15], exp-function method [16] [17], trigono-  

metric function series method [18], 
′ 

 
 

G
G

-expansion method [19]-[22], Jacobi elliptic function method [23]-[26]  

and so on.  
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The objective of this article is to apply the extended Jacobian elliptic function expansion method for finding 
the exact traveling wave solution of Dynamical system in a new Double-Chain Model of DNA and a diffusive 
predator-prey system which play an important role in biology and mathematical physics. 

The rest of this paper is organized as follows: In Section 2, we give the description of the extended Jacobi 
elliptic function expansion method In Section 3, we use this method to find the exact solutions of the nonlinear 
evolution equations pointed out above. In Section 4, conclusions are given.  

2. Description of Method 
Consider the following nonlinear evolution equation  

( ), , , , , 0,t x tt xxF u u u u u =                                      (1) 

where F is polynomial in ( ),u x t  and its partial derivatives in which the highest order derivatives and nonlinear 
terms are involved. In the following, we give the main steps of this method [23]-[26] 

Step 1. Using the transformation  

( ) , ,u u x ctξ ξ= = −                                        (2) 

where k and c are the wave number and wave speed, to reduce Equation (1) to the following ODE:  

( ), , , , 0,P u u u u′ ′′ ′′′ =                                       (3) 

where P is a polynomial in ( )u ξ  and its total derivatives, while d
d

' '
ξ

= . 

Step 2. Making good use of ten Jacobian elliptic functions, we assume that (3) has the solutions in these 
forms:  

( ) ( ) ( ) ( )1
0

1
, 1, 2,3, ,

N
j

i j i j i
j

u a f a f b g iξ ξ ξ ξ−

=

 = + + = ∑                          (4) 

With  

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1

2 2

3 3

4 4

5 5

6 6

, ,

, ,

, ,

, ,

, ,

, ,

f sn g cn

f sn g dn

f ns g cs

f ns g ds

f sc g nc

f sd g nd

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

= =

= =

= =

= =

= =

= =

                                  (5) 

where snξ , cnξ , dnξ , are the Jacobian elliptic sine function, The jacobian elliptic cosine function and the 
Jacobian elliptic function of the third kind and other Jacobian functions which is denoted by Glaisher’s symbols 
and are generated by these three kinds of functions, namely  

1 1 1, , , ,

, , ,

cnns nc nd sc
sn cn dn sn
sn dn sncs ds sd
cn sn dn

ξξ ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξξ ξ ξ
ξ ξ ξ

= = = =

= = =
                           6) 

That have the relations  
2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1, 1, 1 ,

, 1 , 1 ,

sn cn dn m sn ns cs
ns m ds sc nc m sd nd

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

+ = + = = +

= + + = + =
                        (7) 

With the modulus m ( )0 1m< < . In addition we know that  

2d d d, , .
d d d

sn cn dn cn sn dn dn m sn cnξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ

= = − = −                      (8) 
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The derivatives of other Jacobian elliptic functions are obtained by using Equation (8). To balance the highest 
order linear term with nonlinear term we define the degree of u as [ ]D u n=  which gives rise to the degrees of 
other expressions as  

( )d d, .
d d

sq q
p

q q

u uD n q D u np s n q
ξ ξ

    
 = + = + +  
     

                         (9) 

According the rules, we can balance the highest order linear term and nonlinear term in Equation (3) so that n 
in Equation (4) can be determined. 

In addition we see that when 1m → , snξ , cnξ , and dnξ  degenerate as tanhξ , sechξ , sechξ , re- 
spectively, while when therefore Equation (5) degenerate as the following forms  

( ) ( ) ( ) ( )1
0

1
tanh tanh sech ,

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                        (10) 

( ) ( ) ( ) ( )1
0

1
coth coth coth ,

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                        (11) 

( ) ( ) ( )1
0

1
tan tan sec( ) ,

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                         (12) 

( ) ( ) ( )1
0

1
cot cot csc( ) .

N
j

j j
j

u a a bξ ξ ξ ξ−

=

 = + + ∑                         (13) 

Therefore the extended Jacobian elliptic function expansion method is more general than sine-cosine method, 
the tan-function method and Jacobian elliptic function expansion method.  

3. Application 
3.1. Example 1: Dynamical System in a New Double-Chain Model of DNA  
An attractive nonlinear model for the nonlinear science in the deoxyribonucleic acid (DNA). The dynamics of 
DNA molecules is one of the most fascinating problems of modern biophysics because it is at the basis of life. 
The DNA structure has been studied during last decades. The investigation of DNA dynamics has successfully 
predicted the appearance of important nonlinear structures. It has been shown that the non linearity is respon- 
sible for forming localized waves. These localized waves are interesting because they have the capability to 
transport energy without dissipation [27]-[35]. In Ref. [34] [35], it is given that a new double-chain model of 
DNA consists of two long elastic homogeneous strands which represent two poly nucleotide chains of the DNA 
molecule, connected with each other by an elastic membrane representing the hydrogen bonds between the base 
pair of the two chains. Under some appropriate approximation, the new double-chain model of DNA can be 
described by the following two general nonlinear dynamical system:  

2 3 2
1 1 1 1 1 ,tt xxu c u u uv u uvλ γ µ β− = + + +                               (14) 

2 2 2 3
2 2 2 2 2 0 ,tt xxv c v v u u v v cλ γ µ β− = + + + +                             (15) 

where  

( )1 2 1 0
2; ; ;Y Fc c c l

h
µλ

ρ ρ ρσ
−

= ± = ± = −  

0 0
2 1 2 1 22 3

2 2 22 ; 2 ; ;
l l

h h
µ µµλ γ γ µ µ

ρσ ρσ ρσ
−−

= = = = =  

( )00
1 2 03

24
; ,

h ll
c

h
µµ

β β
ρσρσ

−
= = =                               (16) 

where ρ , σ , Y and F denote respectively the mass density, the area of transverse cross-section, the Young’s 
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modulus and tension density of each strand; µ  is the rigidity of the elastic membrane; h is the distance be- 
tween the two strands, and 0l  is the height of the membrane in the equilibrium positive. In Equations (14) and 
(15), u is the difference of the longitudinal displacements of the bottom and top strands, while v is the difference 
of the transverse displacements of the bottom and top strands. 

we first introduce the transformation  
,v au b= +                                          (17) 

where a and b are constants, to reduce Equations (14) and (15) to the following system of equations:  

( ) ( ) ( )2 3 2 2 2
1 1 1 1 1 1 1 12 ,tt xxu c u u a u ab a u b bµ β β γ λ γ β− = + + + + + +                      (18) 

and  

( ) ( )
3

2 3 2 2 2 02 2 2 2
2 2 2 2 2 23 3 .tt xx

cb b bu c u u a u ab u b
a a a a a
γ µ λ β

µ β β λ β − = + + + + + + + + + 
 

            (19) 

Comparing Equations (18) and (19) and using (17) we deduce that 
2

hb =  and F Y= . Now Equations (18)  

and (19) can be written as  
2 3 2
1 0,tt xxu c u Au Bu Cu− − − − =                                (20) 

where  

( )2 20
13 2

0

6 2 2 62 4 ; ; ; ; .
la YA a B C c

l hh h
µα α α α α
ρσ ρ

 −
= − + = = + = = 

 
                 (21) 

The wave transformation ( ) ( ),u x t u ξ= , kx tξ ω= + , reduce Equation (20) to the following ODE:  

( )2 2 2 3 2
1 0,k c u Au Bu Cuω ′′− − − − =                              (22) 

where 2 2 2
1 0k cω − ≠ . Balancing u′′  and 3u  yields, 2 3 1N N N+ = → = . Consequently, we have the for- 

mal solution:  

0 1 1 ,u a a sn b cn= + +                                     (23) 

where 0a , 1a  and 1b  are constant such that 1 0a ≠  or 1 0b ≠ . From (23), it is easy to see that  

1 1 ,u a cndn b sndn′ = −                                    (24) 
2 3 2 2 2

1 1 1 1 12 2 .u m sna a sn m m sn cnb a sn b cn′′ = − + + − −                        (25) 

Substituting Equations (23) and (25) into Equation (22) and equating all coefficients of 3sn , 2sn cn , 2sn , 
sncn , sn , cn , 0sn  to zero, we obtain  

( ) ( )2 2 2 2 2 3
1 1 1 1 12 3 0,k c m a A a b aω − − − + =                             (26) 

( ) ( )2 2 2 2 2 3
1 1 1 1 12 3 0,k c m b A a b bω − − − =                              (27) 

( ) ( )2 2 2 2
0 1 0 1 1 13 3 0,A a b a a B a b− − + − − =                              (28) 

0 1 1 1 16 2 0,Aa a b Ba b− − =                                    (29) 

( )( ) ( )2 2 2 2 2 2
1 1 1 0 1 1 1 0 1 13 3 2 0,k c a m a A a a a b Ba a Caω − − − − + − − =                   (30) 

( ) ( )2 2 2 2 3
1 1 0 1 1 0 1 13 2 0,k c b A a b b Ba b Cbω− − − − − − =                        (31) 

( ) ( )3 2 2 2
0 0 1 0 1 03 0.A a a b B a b Ca− + − + − =                             (32) 

Solving the above system with the aid of Maple or Mathematica, we have the following solitary wave 
solution: 
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Case 1.  

( )2 2 2 2
1 2 2 2 2 2 2 2 2

1 1 0 1 1 12
1

2
, 0, 2 2 , 0, 0, ,

m k c
A B C k c m m k c a a b b

b

ω
ω ω

− +
= = = − + − + = = =          (33) 

Case 2.  

( ) ( ) ( )

( )( ) ( )

2 2 2 2 2 2 2 2
1 1

2
11

2
2 2 2 2 1

1 0 1 1 1

2 1 2 6
, ,

2

1 2
2 1 2 , , 0, ,

2

m k c m m k c
A B

bb

m bC m k c a a b b
m

ω ω

ω

− + − + − − +
= = ±

− +
= − + − + = ± = =

                  (34) 

Case 3.  

( ) ( ) ( )

( )( ) ( )

2 2 2 2 2 2 2 2
1 1

2
11

2
2 2 2 2 1

1 0 1 1 1

2 1 6
, ,

2

1
2 1 , , , 0,

2

m k c m m k c
A B

aa

m aC m k c a a a b
m

ω ω

ω

− − + + − +
= = ±

+
= − + − + = ± = =

                    (35) 

Sothat solution of Equation (22) has the form  
Case 1.  

( )
( )2 2 2 2

12
.

m k c
u cn

A

ω
ξ

− +
= ±                                  (36) 

Case 2.  

( )
( ) ( )2 2 2 2 2

11
1 2 2

2

m m k cbu cn
m A

ω
ξ

− + − +
= ± ±                           (37) 

Case 3.  

( )
( ) ( )2 2 2 2 2

11
1 2

.
2

m m k cau sn
m A

ω
ξ

+ − − +
= ± ±                           (38) 

3.2. Example 2. A Diffusive Predator-Prey System 
Consider a system of two coupled nonlinear partial differential equations describing the spatio-temporal dy- 
namics of a predator-prey system [36],  

( ) 2 3

3

1 ,

.
t xx

t xx

u u u u u uv

v v uv mv v

β β

κ δ

= − + + − −

= + − −
                                (39) 

where κ , δ , m and β  are positive parameters. The solutions of predator-prey system have been studied in 
various aspects [36]-[38]. The dynamics of the diffusive predator-prey system have assumed the following  

relations between the parameters, namely m β=  and 1 1κ β
δ

+ = + . Under there assumptions, Equation (39)  

can be rewritten in the form:  

2 3

3

1 ,

.

t xx

t xx

u u u u u uv

v v uv v v

β κ
δ

κ β δ

 
= − + + − − 

 
= + − −

                             (40) 

We use the wave transformation ( ) ( ), ,u x t u x ctξ ξ= = −  to reduce Equation (40) to the following non- 
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linear system of ordinary differential equations:  

2 3

3

1 0,

0,

u cu u u u uv

v cv uv v v

β κ
δ

κ β δ

  ′′ ′+ − + + − − =  
  
 ′′ ′+ + − − =

                            (41) 

where c is a nonzero constant. 
In order to solve Equation (41), let us consider the following transformation  

1 ,v u
δ

=                                          (42) 

Substituting the transformation (42) into Equation (41), we get  
2 3 0.u cu u u uβ κ′′ ′+ − + − =                                  (43) 

Balancing u′′  with 3u  in Equation (43) yields, 2 3 1N N N+ = ⇒ = . Consequently, we get the same for- 
mal solution (23). Substituting (23)-(25) into (43), setting the coefficients of ( 3sn , 2sn cn , 2sn , sncn , cn , 
sn , 0sn ) to zero, we obtain the following under determined system of algebraic equations for ( 0a , 1a , 1b ).  

2 3 2
1 1 1 12 3 0,a m a a b− + =                                   (44) 

2 2 3
1 1 1 12 3 0,m b a b b− + =                                   (45) 

( )2 2 2 2
1 1 0 1 0 13 3 0,a b a a a bκ − − + =                                (46) 

1 1 0 1 12 6 0,a b a a bκ − =                                   (47) 
2 2 2

1 1 1 0 1 0 1 1 12 3 3 0,a m a a a a a a a bβ κ− − − + − − =                         (48) 
2 3

1 1 0 1 0 1 12 3 0,b b ka b a b bβ− − + − − =                              (49) 

( )2 2 3 2
0 0 1 0 0 13 0,a a b a a bβ κ− + + − − =                              (50) 

solving Equations (44)-(50) using the maple or mathematica program to get solitary wave solution of equations 
we get  

0 1 11, 3 , , 2, , 0.
2 2 2

m a a bβ β βκ β ω ω= ± − = ± = = ± − = =  

So we get  

( ) 0 1u a a snξ = +                                      (51) 

( ) 2 1 2 ,u m msnξ = ± + ±                                  (52) 

when 1m =  hyperbolic solution  

( ) ( )( )2 1 tanhu ξ ξ= ± +                                  (53) 

4. Conclusion 
We establish exact solutions for the dynamics of DNA molecules which is one of the most fascinating problems 
of modern biophysics because it is at the basis of life. The DNA structure has been studied during last decades. 
The investigation of DNA dynamics has successfully predicted the appearance of important nonlinear structures 
and a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of 
a predator-prey system where the prey per capita growth rate is subject to the All effect. The extended Jacobian 
elliptic function expansion method has been successfully used to find the exact traveling wave solutions of some 
nonlinear evolution equations. As an application, the traveling wave solutions for Dynamical system in a new 
Double-Chain Model of DNA and a diffusive predator-prey system, which have been constructed using the 
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extended Jacobian elliptic function expansion method. Let us compare between our results obtained in the present 
article with the well-known results obtained by other authors using different methods as follows: Our results of 
the system of shallow water wave equations and a diffusive predator-prey system, are new and different from 
those obtained in [34]-[38]. It can be concluded that this method is reliable and proposes a variety of exact 
solutions NPDEs. The performance of this method is effective and can be applied to many other nonlinear 
evolution equations. 
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