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Abstract 
This paper introduces a mathematical model which describes the dynamics of the spread of HIV in 
the human body. This model is comprised of a system of ordinary differential equations that in-
volve susceptible cells, infected cells, HIV, immune cells and immune active cells. The distinguish-
ing feature in the proposed model with respect to other models in the literature is that it takes in-
to account cells that represent two distinct mechanisms of the immune system in the defense 
against HIV: the non-HIV-activated cells and the HIV-activated cells. With a view at minimizing the 
side effects of a treatment that employs a drug combination designed to attack the HIV at various 
stages of its life cycle, we introduce control variables that represent the infected patient’s medica-
tion. The optimal control rule that prescribes the medication for a given time period is obtained by 
means of Pontryagin’s Maximum Principle. 
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1. Introduction 
Belonging to the family of retroviruses, the Human Immunodeficiency Virus (HIV) is responsible for AIDS. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.66102
http://dx.doi.org/10.4236/am.2015.66102
http://www.scirp.org
mailto:efarruda@po.coppe.ufrj.br
mailto:mazzaclaudia@gmail.com
mailto:milamagal@yahoo.com.br
mailto:dpastore@cefet-rj.br
mailto:rthome@cefet-rj.br
mailto:hyunyang@ime.unicamp.br
http://creativecommons.org/licenses/by/4.0/


E. F. Arruda et al. 
 

 
1116 

HIV infection results in a chronic, progressive disease that can lead to the destruction of the immune system. 
The disease is characterized by a high rate of viral replication, which results in the emergence of more virulent 
variants. HIV infection is currently characterized by the count of CD4+ T cells, by the amount of viral particles 
in the blood (viral load) and also by the clinical symptoms. Not all patients develop every stage of the disease, 
and the time elapsed between the infection and the manifestation of different clinical symptoms is highly 
variable, even though the causes of such a variation remain partly unknown. 

To reproduce, HIV joins the membrane of the T4 cell, which is vital to the immune response. The virus 
releases its RNA and an enzyme, which produces the DNA of the virus. Then, the DNA of the virus enters the 
nucleus and joins to the DNA of the cell, taking full control. The result of this union is the pro-viral DNA, that 
produces the messenger RNA, which contains the genetic code of the virus. The messenger RNA then reaches the 
cytoplasm and produces virions, which leave the host cell as newly formed HIV’s. Thus, when joined to a T4 
cell, a single virus produces many potential threats to other cells. 

By making quantification possible and unfolding non-trivial equilibrium points, the analysis of viral load in 
HIV infection has facilitated the management of the disease. It turns out that an exponential decrease in viral 
levels in plasma can be attained by the reverse transcriptase inhibitors and protease that are included in Anti- 
retroviral Therapy (ART) [1] [2]. 

When HIV viruses invade the human body, they attack the CD4+ T cells in their way. When attacked, these 
auxiliary cells signal the presence of an invader to other immune cells (CD8+ T cells). The CD8+ T cells then 
respond to this signal and become Cytotoxic T Lymphocytes (CTL) by attempting to destroy the infected cells 
[3]-[6]. This process, which is not exploited in typical HIV models, plays an important role in the proposed 
approach. Indeed, a novel feature of the present work is the introduction of a variable to represent the CD8+ T 
cells. Such a variable is extremely important to the model, since it enables the decision maker to evaluate the 
interaction between the CD8+ T cells, CTL and the other variables in the model, such as the virus load. 

This work proposes a simple mathematical model to describe the dynamics of the HIV taking into account the 
immune response. The proposed model introduces changes to several existing models in the literature [7]-[10]. 
As mentioned above, one such change is the introduction of a new variable to provide a more detailed des- 
cription of the defense of the immune system. This variable represents the number of unactivated CD8+ T 
defense cells, which can become activated (i.e. HIV-specific, or CTL) after being warned by some CD4+ T cell. 
In contrast to the formulation proposed by [4], which accounts for the activated cells but does not model the 
activation mechanism, the proposed model keeps track of both the unactivated CD8+ T cells and the activated 
cells, thus taking into account the dynamics of the activation process. 

Even though ART has produced undisputed advances in the treatment of HIV infection, it has been argued 
that the inhibitors that comprise ART may cause adverse effects; see for example [11]-[13]. Hence, one can 
argue that a compromise should be reached between the benefits obtained from ART and the adverse effects that 
it may cause. The ideal treatment should keep the benefits to a maximum degree while also minimizing the 
adverse effects. It is the development of such a treatment that we address in this paper, making use of the 
optimal control theory framework. We propose a dynamic model to represent the dynamics of the HIV infection, 
which takes into account the effects of the ART therapy and introduces control parameters that determine the 
intensity of the medication. An optimal control problem is then proposed to determine the optimal medication 
levels in such a way to maximize the benefits of the therapy, while keeping the medication to a minimum 
efficient level. The side effects assessment is another novelty of the paper, which also strives to provide insights 
into the effects in the optimal treatment by changing the parameters of the optimal control problem. In order to 
achieve our goal and minimize the side effects, optimal control theory is applied to the HIV infection model 
encompassing drug treatments. That, on the other hand, produces a problem whose solution is numerically 
obtained by standard algorithms, such as the gradient descent method; for more details on these algorithms we 
refer to [14]. The gradient algorithm makes use of both the solution to the system’s dynamics under a given 
control sequence, i.e., the medication levels for the complete treatment, and the solution of the co-state equations 
under the same medication, to generate an improved control sequence, and so on, until convergence is attained. 
The solutions to both the system’s dynamics and the co-state equations are obtained by means of finite diffe- 
rence algorithms. 

This work is organized as follows. Section 2 introduces the model, while Section 3 derives the trivial equi- 
librium point and analyzes the stability of the model. Section 4 introduces the optimal control problem, which 
derives the optimal medication levels. In Section 5, numerical experiments are proposed to illustrate the 
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proposed approach and shed light into the behavior of the controlled system. Finally, Section 6 concludes the 
paper. 

2. Model Formulation 
Let x represent the susceptible cells, i.e. the cells that can be infected with HIV, and define y as the cells that are 
already infected. In addition, assume that v represents the free viruses in the body, z denotes the defense cells 
(CD8+ T and B) and az  corresponds to the activated defense cells, i.e., cytotoxic T cells and plasma (activated 
CD8+ T and B cells). In the proposed model, the interaction of these variables is represented by the following 
set of differential equations: 

,

x x v

v y y a

v y v v a

z z z

a z z a

x x xv
y xv y p yz

v k y v p vz

z z zv
z zv z

λ µ β
β µ

µ µ

λ µ β
β µ

= − −
 = − −
 = − −
 = − −
 = −











                                 (1) 

with initial conditions: ( )0 ,x xx λ µ=  ( )0 0,y =  ( ) 00 ,v v=  ( )0 ,z zz λ µ=  ( )0 0.az =  
The parameters in the above equations are described in Table 3. Note that uninfected cells x are produced at a 

constant rate xλ , and decay at rate xµ . In addition, these cells are infected by the free viruses at rate vβ . As 
for the infected cells y, they are produced from the interaction of their uninfected counterparts and the viruses, at 
rate vβ , decay at rate yµ  and are eliminated by the activated defense cells at rate vp . Free viruses v are 
generated from infected cells at rate vk , decay at rate vµ  and are eliminated by means of the activated defense 
cells az , at rate vp . The defense cells, in turn, are generated at a constant rate zλ , and decay at rate zµ . 
Furthermore, they become activated by the viruses at rate zβ . The activated defense cells are generated from 
the defense cells in the presence of the virus, at rate zβ , and decay at rate zµ . It is worth stressing that these 
cells fight against the infected cells y and the free viruses v, as previously mentioned in the description of the 
model dynamics. 

The virus replication mechanism is depicted in Figure 1. Observe that free viruses (v) and uninfected cells (x, 
CD4+ T) produce infected cells (y) that, in turn, produce new free viruses. Figure 2 illustrates the activation of 
the defense cells (z, CD8+ T). Note that they are activated in the presence of free viruses. 

In the model, one can notice the introduction of two variables z and az  to represent the defense cells (CD8+ 
T) and the HIV activated defense cells (CTL), respectively. Figure 3 illustrates the action of the activated 
defense cells, which eliminate infected cells y and free viruses v. 

It is worth point out that, in the proposed model, the immune CTL cells are activated directly by the free 
viruses. In contrast, some previous works in the literature assume they are activated by infected cells, healthy 
cells and also CTL cells [15]. Observe that this is a simplification of the proposed model, which takes advantage 
of the fact that all elements that act to activate the immune CTL cells are mediated directly or indirectly by the 
virus. This hypothesis in our model simplifies the complex phenomena of activation and inactivation of the 
immune system by cytokines and dendritic cells (antigen presenting cells) [15]. Such a simplification is very 
useful in the optimal control formulation, which results in a larger and more complex set of equations. 
 

 
Figure 1. Virus replication.                                        
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Figure 2. CD8+ T response.                                                      

 

 
Figure 3. CTL response.                                                        

3. Equilibrium Points and Stability 
3.1. Trivial Equilibrium Point 
For a non-HIV-infected person, 0v =  (not virus), it is logical to conclude that we have no infected cells 
( )0y =  and no activated defense cells ( )0az = . Upon fixing these values in (1) and solving for the remaining 
unknowns, one finds the trivial equilibrium point of the dynamic system in Equation (1), described below: 

0

.0

0

x

x

o

z

z
a

x

y

P v

z

z

λ
µ

λ
µ

 
              = =               
 
 

                                     (2) 

3.2. Stability of Trivial Equilibrium Point 
By Hartman-Grobman’s theorem [16], one can say that an equilibrium point is stable if the sign of the real part 
of the eigenvalues of the Jacobian matrix, evaluated at this point, is negative. Making use of this theorem, it is 
possible to show that if the basic reproduction number of the virus 0R  is less than one unit, the trivial equi- 
librium point oP  in (2) is stable. In such a scenario the infection does not propagate in the human body. 

The Jacobian matrix of the system (1), ( )J P , is given by: 
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0 0 0
0
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                (3) 

evaluated at values corresponding to the equilibrium points. 
The Jacobian matrix evaluated at the point of trivial equilibrium (2) is given by: 

( )
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0 0 0
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0 0 0
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                            (4) 

The eigenvalues of the matrix ( )oJ P  are the roots r of the characteristic polynomial ( )p r  given by: 

( ) ( )( )2 .
v x

y
xx z

v y v

r
p r r r

k r

β λ
µ

µµ µ
µ µ

− −
= − + +

− −
                     (5) 

It can be noted that xµ−  and zµ−  are negative eigenvalues of the Jacobian matrix ( )oJ P . The other 
eigenvalues are obtained through the solution of the quadratic equation given by:  

( )( ) 0,v y v x
y v

x

k
r r

µ β λ
µ µ

µ
+ + − =  

i.e., 

( )2 0.v y v x
y v y v

x

k
r r

µ β λ
µ µ µ µ

µ
 

+ + + − = 
 

                      (6) 

Applying Routh-Hurwitz criterion [17], one can see that the system is stable if the last term in Equation (6) is 
positive. Hence, the system is stable if 

1.v v x

x v

k β λ
µ µ

<                                          (7) 

Lets assume that one virus infects one person. During its average survival time ( )1 vµ , the possibility of en- 

countering and infecting one target cell vβ  in a completely susceptible population of CD4+ T cells x

x

λ
µ

 
 
 

 is 

v x

v x

β λ
µ µ

 
 
 

. This infected cell, releases on average vk  viruses. Hence, 0R  is the average number of secondary  

viruses produced by one virus infecting a cell in a completely susceptible population of CD4+ T cells. 

0 .x v v

x v

k
R

λ β
µ µ

=                                       (8) 

So, if 0 1R <  (basic reproduction number of the virus), as it can be seen in (7), the trivial equilibrium point 
oP  given in (2) is stable. That is, in this case, the infection does not propagate in the body. 
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3.3. Non-Trivial Equilibrium Points 
Equating to zero all the differential equations given in (1), one comes up to the following general formulation 
for the equilibrium points of the dynamical system: 

( )

,

x

x v

z

z z
a

z z

z z z

v
x

y
y

v
P v

z
v

z
v

v

λ
µ β

λ
µ β
λ β

µ µ β

 
 +        
  = =       +  

   
  + 

                              (9) 

where: 
( )

( ) ( )
,x v z z z

x v y z z z y z z

v
y v

v v p v
λ β µ µ β

µ β µ µ µ β λ β
+

=
 + + + 

                      (10) 

or 

( )
( )

.v z z z v z z

v y z z z

v p v
y v

k v
µ µ µ β λ β

µ µ µ β
+ +  =

+
                               (11) 

It is possible to observe that when 0v =  in (9), and (10) or (11), we obtain the trivial equilibrium point 
given in (2). However, if 0v ≠ , i.e, for an HIV infected individual, equaling Equation (10) and (11) it is 
possible to obtain, after some numerical manipulation, the following polynomial equation of degree 3: 

3 2
3 2 1 0 0,a v a v a v a+ + + =                                       (12) 

where the coefficients are: 
2 2 2 2 2 2

3 ,y v z v z v z v z y z y z v z v z v z y v za p p p pµ µ µ β β µ µ β β λ µ µ β β λ β β λ= + + +                   (13) 

( )2 2 3 2
2 0

2 2 2 2 2

1 2

,
x y v z z y v z v z v z v z y z

y z v z v z x v z z y z x y z z v z x z y v z

a R p

p p p p p

µ µ µ µ β µ µ µ β β µ µ β β λ

µ µ β β λ µ µ µ β λ µ µ µ β λ µ β λ

= − + +

+ + + +
               (14) 

( )3 2 2 4
1 02 1 ,x y v z z x v z z y z x y z z v z y v z va R p pµ µ µ µ β µ µ µ β λ µ µ µ β λ µ µ µ β= − + + +              (15) 

( )4
0 01 .x y v za Rµ µ µ µ= −                                                      (16) 

The coefficients of Equation (12) are positive when 0 1R < , implying that there is no positive solution; hence 
0v =  is a solution. When 0 1R > , 0 0a < , and as 0R  increases, the coefficient 1a  becomes negative, 

followed by 2a . Hence, for 0 1R > , a unique change of sign occurs between successive coefficients, and 
according to Descartes rule of signs, there is a unique positive solution. 

4. Optimal Control Formulation 
In order to study the effect of treating HIV infection with the use of a cocktail of drugs, we introduce two 
control variables ( 1u  and 2u ) in the dynamic system described in Equation (1). The control variable 1u  
represents the effect of inhibitors of reverse transcriptase, integrase and input. These drugs protect the uninfected 
cells x, preventing their infection, i.e., keeping them from turning into infected cells y. To account for this effect, 
we introduce in the basic model of Equation (1) a new state variable px , which represents the cells that are 
protected by the action of the inhibitors. The control variable 2u  simulates the effect of the protease inhibitor, 
which blocks infected cells y, preventing them from releasing new viruses v in the body. To account for this 
action, we introduce a new variable by  in our model. This variable describes the infected cells that are blocked 
by the action of the protease inhibitor. With the modifications described above, the studied dynamic system (1) 
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can be reformulated as: 

1
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                               (17) 

The initial conditions were obtained by running the uncontrolled model from Equation (1) for a period of 365 
days. Note that the second and fourth equations are decoupled. 

We point out that 1u  and 2u  are dynamic variables in continuous time, which prescribe the medication 
dosages at each time [ ]0,t T∈ , where T is the total length of the planned treatment. Thus, ( )1u t  represents 
the dosage of inhibitors of reverse transcriptase, integrase and input at time [ ]0,t T∈ ; whereas ( )2u t  indi- 
cates the dosage of the protease inhibitor at time [ ]0,t T∈ . To simplify the treatment, doctors can apply a sub- 
optimal treatment, with regular dosages of medication corresponding to the combined medication prescribed by 
continuous variables 1u  and 2u  for each regular interval. For example, if the treatment is prescribed daily for 
a period of 365 days, the sub-optimal treatment would be comprised of a discrete sequence of dosages  

{ }1 , 1, ,365ku k ∈   and { }2 , 1, ,365ku k ∈  , such that 
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u u s s k

u u s s k
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= =

= =

∫

∫





                           (18) 

Alternatively, doctors could prescribe average values of the sequences 1u  and 2u  over predetermined inter- 
vals, such as monthly intervals for example, re-evaluating the treatment between successive intervals. 

Observe that, if the dosages 1u  and 2u  were to be kept constant, one could replace xµ  for ( )1x uµ +  and 
yµ  for ( )2y uµ +  in terms involving 1u  and 2u , and all the results regarding the equilibrium points and their 

stability obtained in the foregoing section would be retrieved here. In that case, the number of primary virus 
replication after treatment (control), represented by cR , is given by: 

0
1 2

.yx
c

x y

R R
u u

µµ
µ µ

=
+ +

                                   (19) 

Note that the terms multiplying 0R  in the above equation arise due to the (now constant) control variables 
( )1 1, u t u t= ∀ ∈ , and ( )2 2 , u t u t= ∀ ∈ . Note also that, if 1 2 0u u= =  (no treatment), then 0cR R= , where 

0R  was defined in (8). 
In the remainder of this paper, we analyze the system’s dynamics with 1 :u t +→   and 2 :u t +→   varying 

over time, and strive to obtain an optimal treatment, prescribing the values of these variables at each time in 
such a way that an optimal compromise between the efficiency of the treatment and its side effects is obtained. 

It is worth reinforcing that, in relation to typical HIV models that simulate the production rates and infect- 
ability of the virus, the proposed model includes two new variables in the dynamics: protected uninfected cells 

px  and blocked infected cells by , which do not release new viruses. This modeling choices are explained 
partly by the fact that the antiretroviral treatment stops the cell transcription process. The cell becomes healthy 
and the virus is destroyed, but that happens only after the contact between the cell and the virus. Bearing that in 
mind, instead of having the control be set in the infection force by a mass action law, we assume that the cells 
became resistant to infection (or protected). We also assume that the effect of the protease inhibitor is to prevent 
the release of viable viruses. Consequently, only infected but untreated cells release viable viruses. Upon being 
treated, the infected cell becomes blocked and does not release viable viruses thereafter. 

The introduction of the new variables, namely protected uninfected cells px  and blocked infected cells by , 
allows a better understanding of the dynamics. Moreover, taking into account the number of such cells is 
important to assess the effects of the prescribed treatment. Another innovation is the introduction of the control 
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variables, which enables us to model the compromise between medication and side-effects. 
Observing the model we note that the defense cells CD8+ T (z) produce the activated cells CTL ( )az , while 

the latter contribute to the reduction of infected cells (y) and free viruses (v). Moreover, the control variable 1u , 
corresponding to the reverse transcriptase inhibitor, protects the cells CD4+ T (x) from being infected, thus 
producing protected cells px . In addition, the control variable 2u  corresponds to the integrase inhibitor and 
keeps the infected cells y from producing viruses v. The infected cells under the effect of this inhibitor are called 
blocked cells, and are denoted by by . Table 1 provides a description of the variables that were added to the 
model. Figure 4 illustrates the dynamics of the system described by Equation (17). 

4.1. Objective Function 
System (17) is now optimized with respect to control parameters 1u  and 2u . For this reason, both are allowed 
to vary with time. To reach a compromise between medication and side effects, we introduce an optimal control 
problem aimed at maximizing the number of protected cells while also mitigating the side effects. The optimal 
control problem is defined as follows: 

( )
( )

2 2 2
1 2 1 3 20

1Maximize d ,
2

Subject to 17 .

T
pJ c x c u c u t= − −∫                       (20) 

In the expression above, 1c , 2c  and 3c  are non-negative scalars. The functional J in equation (20) has the 
following objective: we maximize the protected cells ( )px  while also trying to minimize the drug admini- 
strations ( 1u  and 2u ). We are assuming that the higher 1u  and 2u , the higher the side effects. 

4.2. The Hamiltonian 
To find the optimal control variables *

1u  and *
2u  that solve Problem (20), we make use of Pontryagin’s maximum 

 
Table 1. New variables after control.                                                 

Control variables Label 

Reverse transcriptase reverse, integrase and entrance inhibitors 1u  

Protease inhibitors 2u  

New state variables  

Protected susceptible cells due to treatment with inhibitors 1u  px  

Infected cells blocked due to treatment with inhibitor 2u  by  

 

 
Figure 4. Virus replication with antiretroviral therapies.                       



E. F. Arruda et al. 
 

 
1123 

principle [14] [18] [19], and derive the Hamiltonian of our optimal control problem, which is given by: 

[ ]

[ ] [ ]

2 2 2
1 2 1 3 2 1 1 2 1

3 2 4 2 5

6 7 1 1 2 2

1
2

,

p x x v x p
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β µ µ µ µ

λ µ β β µ

   = − − + − − − + −  

     + − − − + − + − −     
+ − − + − + +

 

where , 1, ,7jw j =  , are the co-state variables, that determine the adjoint systems. It is well known that the 
optimal solution must satisfy both the original and the adjoint system of equations.The variables 1v  and 2v  
are penalty multipliers (slack variables), added to the model to ensure that the constraints 1 0u ≥  and 2 0u ≥  
are satisfied. For the optimal controls *

1u  and *
2u , it holds that *

1 1 0v u =  and *
2 2 0v u = . In the remainder of 

this section, we will consider all possible values for the control variables, including the lower limits 1 0u =  and 
2 0u = . 
1) Considering the set: { }1 20 and 0t u u> >  
It follows from Pontryagin’s maximum principle that the optimal control variables *

1u  and *
2u  must satisfy: 
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= =
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Thus, isolating *
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2u , we obtain, 
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1
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3
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w w x v
u

c
w w y v

u
c

 − +
=




− + =

                                     (21) 

As in this case we necessarily have 1 2 0v v= = , since * *
1 1 2 2 0v u v u= = , the optimal control can be expressed 

as: 
( )

( )

2 1*
1
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4 3*
2

3

.
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c
w w y

u
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 −
=




− =

                                        (22) 

2) Considering the set: { }1 20 and 0t u u= =  
It follows from Equation (21), that 

( )
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4 3 2
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0
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w w x v
c

w w y v
c

 − +
=




− + =

                                     (23) 

Since, by definition, 1 0v ≥  and 2 0v ≥ , it follows from Equation (23) that 

( )
( )

1 2 1

2 4 3

0

0.

v w w x

v w w y

− = − ≤

− = − ≤

                                    (24) 

Therefore, to ensure that *
1u  and *

2u  do not take negative values, we summarize the results obtained in (22) 
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and (24) by: 
( )

( )

2 1*
1

2

4 3*
2

3

max 0 ,

max 0 , .

w w x
u

c

w w y
u

c

−  =  
  
 − =  
  

                                  (25) 

Hence, the optimal control for Problem (20) is characterized by (25). 

4.3. The Co-State Equations 
The necessary conditions of the Pontryagin’s maximum principle [14] also establish that the adjoint variables 
satisfy: 
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1 1 1 1 1 2 3
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H p yw p vw w
z
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 ∂

= + + ∂

             (26) 

Finally, we analyze the conditions of transversality. In our case, there is no terminal value for the state 
variables. Therefore, the transversal conditions to the adjoint variables are given by 

( ) 0, 1, ,7.iw T i= =   

Observe that the optimal control values in (25) depend directly on the co-state variables and, through these 
variables, on the dynamics described in (17). Hence, they cannot be analytically determined. Consequently, to 
solve Problem (20), one searches for optimal control values *

1u  and *
2u  that simultaneously solve the initial 

value problem in Equation (17) and the final value problem in Equation (26). In this paper, we find the optimal 
control trajectories iteratively, employing a classical specialized gradient algorithm [14] and solve the diffe- 
rential equation systems by means of finite difference methods. 

5. Numerical Results 
For the numerical simulations we have used the dataset described in Table 2 and Table 3, which was also 
studied in [8] [9] [20]. For this data set, the reproduction number 0 3.6R =  indicates an infection. 

5.1. The Uncontrolled System 
Figure 5 conveys a numerical simulation of the uncontrolled model in Equation (1), solved by means of the 
Finite Difference Method, for a one year period. Note that the solution represents the typical behavior of the 
immune system in the presence of HIV [9] [21]-[23]. The system rapidly approaches the non-trivial equilibrium 
point. 

In Figure 5, one can see a steep increase in the number of viruses and infected cells in the first month. In 
contrast, the number of susceptible cells presents a substantial decrease over the same period. In the subsequent  
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Table 2. Initial conditions.                                                                    

State variables Label Value 

CD4+ T cells in body (susceptible) x 3 310 mm−  

CD4+ T cells infected by HIV y 30 mm−  

Free HIV in the body v 3 310 mm− −  

Defense cells CD8+ T HIV specific z 3500 mm−  

Activated defense cells az  30 mm−  

 
Table 3. Parameters.                                                                        

Parameters and constants Variable Value 

Mortality of susceptible cells xµ  10.02 day−  

Mortality of infected cells yµ  10.24 day−  

Mortality of the virus vµ  12.4 day−  

Mortality of defense cells zµ  10.04 day−  

Average number of free virus from infected cells vk  360 

Activation of immunologic response rate zβ  6 3 15 10 mm day− −× ⋅  

Virus infection rate vβ  5 3 12.4 10 mm day− −× ⋅  

Infected cells destruction rate yp  3 10.02 mm day−⋅  

Virus destruction rate vp  3 10.02 mm day−⋅  

Susceptible cells supply rate xλ  1 320 day mm− ⋅  

Defense cells supply rate zλ  1 320 day mm− ⋅  

 

 
Figure 5. Numerical experiment without control.                                                  

 
periods, these variables stabilize and gradually approach a non-trivial equilibrium point. As previously men- 
tioned, the proposed model describes the typical behavior of the immune system in the presence of HIV. The 
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difference is that it also allows a separate analysis of the activated defense cells. In Figure 5, one can notice a 
migration of immune cells into the compartment of activated defense cells. We believe that this could lead, over 
the years, to the saturation of the immune system. Furthermore, the results seem to suggest a trend for a regular 
non-trivial dynamical system balance. 

5.2. Adding Medication: The Optimal Control Problem 
The optimal control problem in Equation (20) was solved for a one year treatment period. The initial condition 
for the state variables was obtained by running the uncontrolled system in Equation (1) for a one year period. 
The last value of each variable (after 365 days) was taken as the initial value for the same variable in the 
controlled problem. In this work, we first consider Case 1, with 3

1 10c −= , 2 1c =  and 3 1c = , which will be 
used as our benchmark for model evaluation. Note that, under such parameters, the objective function in (20) 
evaluates the number of protected cells versus the side effects attained from the medication to be taken to 
accomplish such a number. The small value of 1c  is due to the large number of immune cells, which render the 
first term in Equation (20) quite significant. The optimal trajectories of the system for the selected parameters 
are depicted in Figure 6. 

Note in Figure 6 that the first week of treatment causes a substantial decrease in the unprotected (susceptible) 
CD4+ T cells, with an increase in the number of protected cells. That is because the treatment makes most of 
these cells become protected cells. Note that, since the medication efficiently fights the infection, the number of 
HIV-specific CD8+ T cells can be reduced with respect to the uncontrolled dynamics in Figure 5. That leaves 
the imune system free to combat other infections. With regards to the infected cells, blocked and unblocked, 
they rapidly vanish. Note that the unblocked cells vanish more rapidly than their blocked counterparts. Note also 
that the number of remaining viruses rapidly decays to zero, its trivial equilibrium point. It is also noteworthy 
that the optimal dosage of the transcriptase inhibitor ( )1u  is significantly higher than that of the integrase 
inhibitor ( )2u . In the next section we verify how the variation in the parameters of the optimal control problem 
affects the dynamics. It is also noteworthy that the medication levels are much higher in the early treatment 
period, and are stabilized to lower levels in a very short time span. 

5.3. Sensitivity Analysis 
In this section we examine the effects of the parameters of the optimal control problem in Equation (20). We 
vary the parameters 2c  and 3c  and verify the effects of the variations in the controlled system dynamics. The 

 

 
Figure 6. Optimal trajectories for Case 1: 3

1 2 310 , 1c c c−= = = .                                                       
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objective is to verify the implications of different compromises between immune response and side effects into 
the medication levels as time elapses. 

In Case 2, we examine the influence of parameter 2c , making 1 0.001c = , 2 100c =  and 3 1c = . In this case, 
we assume that the reverse transcriptase inhibitor presents more side effects than the protease inhibitor, thus 
causing an augmented value of 2c  with respect to Case 1. The results are conveyed in Figure 7. It can be noted 
that, with the increase of 2c  there is a decrease in both the number of protected cells ( )px  and unprotected 
cells (x). The evolution of the virus shows that, in this case, the viruses get extinct more slowly than in Case 1. 
The same applies to the infected cells y and by . Apparently, the changes do not cause significant changes in the 
values of z and az . With regards to the control variables, i.e. the medication levels, the levels of 1u  are 
reduced in this example. 

In Case 3 we make 1 0.001c = , 2 1c =  and 3 100c = , assuming that 2u  produces more side effects than 
1u . The results are depicted in Figure 8. One notes that the viruses get extinct slightly slower than in Case 1, 

with the same applying to infected cells y. Once again, the changes do not cause significant changes in the 
values of z and az . The medication levels 1u  and 2u  are similar to those in Case 1. The increase in 3c  does 
not seem to affect the levels of 2u  significantly, for these levels were already very reduced in Case 1. 

In Case 4 we make 1 20.001, 100c c= =  and 3 0.01c = . In this case, in addition to 1u  being very harmful, 
we assume that 2u  has reduced side effects. The results are presented in Figure 9. One notices that the 
dynamics of the system remains similar to that in the other cases. One difference is that the viruses and the 
unblocked infected cells y get extinct much faster. Another significant difference is that, in this case, the levels 
of 2u  exceed those of 1u . 

6. Concluding Remarks 
This paper introduces a novel model of HIV dynamics. In contrast to typical HIV dynamics models, the pro- 
posed model explicitly describes the protected CD4+ T cells and the HIV-specific CD8+ T cells. That allows us 
to explicitly understand and quantify these effects, thus providing a better understanding of the system’s 
dynamics. 

The dynamics of the proposed model can be influenced by the use of Anti-retroviral Therapy (ART), which 
has produced significant advances in the treatment of HIV infection. Such a therapy, however, is associated to 
side effects, which should be avoided whenever possible. To take account of the side effects and produce a 
desirable compromise between treatment effectiveness and side effects, we propose an optimal control approach 

 

 
Figure 7. Optimal trajectories for Case 2: 1 2 30.001, 100, 1c c c= = = .                                                  



E. F. Arruda et al. 
 

 
1128 

 
Figure 8. Optimal trajectories for Case 3: 1 2 30.001, 1, 100c c c= = = .                                                   
 

 
Figure 9. Optimal trajectories for Case 4: 1 2 30.001, 100, 0.01c c c= = = .                                                
 
which prescribes an optimal treatment aimed at maximizing the benefits of the treatment, while also minimizing 
the side effects. The optimal control problem is solved by means of Pontryagin’s maximum principle and the 
optimal medication levels are numerically found by a standard gradient algorithm. 

The proposed optimal control formulation is analyzed in the light of selected numerical examples, which 
provide insight into the behavior of the system under different compromises between medication effectiveness 
and side effects. We evaluate the sensitivity of the method with respect to the parameters in the optimal control 
functional by means of a series of examples, which shed light on the optimal trajectories of the variables with 
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respect to different compromises between efficiency and side-effects. We analyze four different cases with 
distinct levels of side effect introduced by drugs 1u  and 2u , which give rise to different treatment policies that 
take into account the prescribed compromises between these side effects, with a view at keeping the drug 
benefits while keeping the side effects to the minimum. 
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