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Abstract 
In this paper we study inviscid and viscid Burgers equations with initial conditions in the half 
plane x R T∈ >, 0 . First we consider the Burgers equations with initial conditions admitting two 
and three shocks and use the HOPF-COLE transformation to linearize the problems and explicitly 
solve them. Next we study the Burgers equation and solve the initial value problem for it. We study 
the asymptotic behavior of solutions and we show that the exact solution of boundary value prob-
lem for viscid Burgers equation as viscosity parameter is sufficiently small approach the shock 
type solution of boundary value problem for inviscid Burgers equation. We discuss both conflu-
ence and interacting shocks. In this article a new approach has been developed to find the exact 
solutions. The results are formulated in classical mathematics and proved with infinitesimal tech-
nique of non standard analysis. 

 
Keywords 
Non Standard Analysis, Boundary Value Problem, Viscid Burgers Equation, Inviscid Burgers 
Equation, Heat Equation 

 
 

1. Introduction 
The nonlinear parabolic partial differential equation 

t x xxu uu uε+ =                                       (1.1) 

was first introduced by J. M. Burgers [1] [2] as the simplest model for fluid flow, this equation combining both 
nonlinear propagation effects and diffusive effect. If ε is not null, we approach to the Naveir’s Stokes equations 
in one dimension. Burgers equation has a wide variety of applications in the modeling of water in unsaturated soil, 
dynamics of soil water, statistics of flow problems mixing and turbulent diffusion cosmology and seismology. 
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When ε is null, this equation approaches to the Euler’s equations in one dimension who governs the flows of 
perfect fluids. It’s the viscid equation. it has the form 

0.t xu uu+ =                                        (1.2) 

If the viscous term is dropped from the Burgers equation, discontinuities may appear in finite time; even if the 
initial condition is smooth, they give rise to the phenomenon of shock waves with important application in 
physics [3]. This property makes Burgers equation a proper model for testing numerical algorithms in flows 
where severe gradients or shocks are anticipated [4]-[6]. Discretization methods are well-known techniques for 
solving Burgers equation. Ascher and McLachlan established many methods as multi-symplectic box sheme. 
For the boundary value problem, Sinai [7] was interested to the initial condition case: null on R−  and Brow-
nian on R+ . She, Aurell and Frich [8] with numerical calculations particularly examined the initial conditions 
of Brownian fraction nair to the asymptotic behavior. 

A remarkable feature of viscid Burgers equation is that its solutions with initial conditions of the form 

( ) ( ),0u fξ ξ=                                     (1.3) 

can be explicitly written down. Hopf [9] and Cole [10] independently showed that the Equation (1.1) can be li-
nearized through the transformation 

2 .xu εϕ ϕ= −                                      (1.4) 

Then Hopf [9] showed that if ( ),x tφ  satisfies the linear heat equation 

t xxϕ εϕ=                                          (1.5) 

with initial condition 

( ) ( ) ( )2

0

1,0 exp d d .
2 2

x
x f

t
η

ϕ ν ν η
ε

∞  −
 = − + 
    

∫                       (1.6) 

Then ( ),u x t  defined by Equation (1.4) solves (1.1) and (1.3). Conversely, if ( ),u x t  is a solution of prob-
lem (1.1) and (1.3) then ( ),x tϕ  defined by Equation (1.4) is a solution of problem (1.5) and (1.6). Solving for 
ϕ  from (1.5) and (1.6) and substituting it into Equation (1.3) we obtained explicit formula for the solution of 
problem (1.1) and (1.2) namely: 

( )
( ) ( )

( ) ( )

2

0

2

1exp d d
2 2

,
1exp d d

2 2

xx f
t t

u x t
x

f
t

ηη ν ν η
ε

η
ν ν η

ε

∞ ∞

−∞

∞

−∞

  −−  − + 
    =

  −
 − + 
    

∫∫

∫
                 (1.7) 

and studied the asymptotic behavior of ( ),u x t . 
Explicit solutions of the Burgers equation (1.1) in the quarter plane with integrable initial data and piecewise 

constant boundary data were constructed by [11] using Hopf-Cole transformation [9]. He obtained a formula for 
its weak limit as viscosity parameter goes to 0. Although, there are many results for initial value problem has 
been studied less. Using maximum principle, this formula for weak limit was extended to general boundary data. 
ε is a positive parameter small enough. The problem is considered by [12]. As the fact that ε multiplies the larg-
est derivative, one is in the presence of a singular perturbation problem. The purpose of Singular Perturbation 
Theory is to investigate the behavior of solutions of (1.1) as 0.ε →  

The aim of the present article is to study solutions of Inviscid and Viscid Burgers equation if the initial condi-
tion admits several singular points, i.e. in the case of a finite number of shocks. A simple formulation is given 
for the asymptotic behavior based on the evaluation of integrals which is a method of the non standard perturba-
tion theory of differential equations proposed by Imm Van Den Berg [13] and improved by Lutz and Callot. 

Historically the subject non standard was developed by Robinson, Reeb, Lutz and Goze [14]. The nonstan- 
dard perturbation theory of differential equations, which is today a well-established tool in asymptotic theory, 
has its roots in the seventies, when the Reebian school (see [14] [15]) introduced the use of nonstandard analysis 
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into the field of perturbed differential equations. Our goal in this paper is to generalize these techniques on EDP 
and our general purpose is to describe the asymptotic behavior of solutions in boundary value problem with a 
small parameter ε and to discuss in particular the cases of confluence and the interacting shocks with new tech-
nical infinitesimal of non-standard analysis. We can conclude that the solutions of the problem: (1.1) and (1.3) 
are infinitely close to the solutions of problems (1.2) and (1.3), as ε  is a parameter positive sufficiently small. 

In Section 2, we treat the boundary value problem for inviscid Burgers equation, solve it and study it. Section 
3 is devoted to useful lemmas for our main results. In Section 4, we study viscid Burgers equation, solve exactly 
the initial value problems for it, and describe the asymptotic behavior of solutions with a non standard form. 
Some components, such as multi-leveled equations, graphics, and tables are not prescribed, although the various 
table text styles are provided. The formatter will need to create these components, incorporating the applicable 
criteria that follow. 

2. Initial Boundary Value Problem for Inviscid Burgers’ Equation 
2.1. Shock Fitting 
We consider the inviscid Burgers equation: 

0.t xu uu+ =  

In: x R∈ , 0t >  with the initial condition 

( ) ( ),0u fξ ξ=  

where : ,f R R→  is continuous. 
This problem not admits the regular solutions but some weak solutions with certain regularity exist. The 

Burgers equation on the whole line is known to possess traveling wave solutions. The solution of (1.2) and (1.3) 
may be given in a parametric form and shocks must be fitted in such that: 

( ) ( ) ( )( )1 2 1 2
1 1
2 2

U u u f fξ ξ= + = +                         (2.1) 

where 1ξ  and 2ξ  are the value of ξ  on the two sides of the shock [16]. 
According to Equation (1.2), the solution at time t is obtained from the initial profile ( )u f ξ=  by translat-

ing each point a distance ( )f tξ  to the right. The shock cuts out the part corresponding to 2 1ξ ξ ξ≥ ≥ . If the 
discontinuity line, it is a straight line chord property still holds. The cord on the f curve cuts off lobes of equal 
area. The shock determination can then be describe entirely on the fixe ( )f ξ  curve by drawing all the chords 
with the equal area property can be written analytically as between the points 1ξ ξ=  and 2ξ ξ= on the curve 
( )f ξ . Moreover since areas are preserved under the mapping, the equal area 

( ) ( )( )( ) ( )2

1
1 2 1 2

1 d .
2

f f f
ξ

ξ
ξ ξ ξ ξ ξ ξ+ − = ∫                     (2.2) 

This is the differential equation for the line cord of shock that checks the condition of entropy such as [16] [17] 
Corresponding to the two inflection points. 

2.2. Confluence of Shocks 
When a number of shocks are produced, in general it is possible for one of them to overtake the shock ahead. 
Then they combine and continue as a single shock. This is also described by our shock solution. 

Consider the curve given by f Figure 1, then two shocks are formed corresponding to the inflection points p 
and q with families of equal area chords, typified by 1 2p p  and 1 2q q . 

As time goes, the points 1q  and 2p  approach each other until the stage in Figure 2 is reached where a 
common chord cuts off lobes of equal area for both humps. 

At this stage the characteristics corresponding to 2p′  and 1q′  are the same and therefore the shocks have just 
combined into one as shown in Figure 3. Characteristics 2p′  and 1q′  combined. All the characteristics be-
tween 2q′  and 1p′  have now been absorbed by one or other of the shocks. A single shock proceeds using 
chords 1 2p q′′ ′′ . 

In the plane ( ),x t  the shocks can be represented by Figure 4. 
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Figure 1. Graphic representation of the initial condition f.                                    

 

 
Figure 2. Graphical representation from the merger of the two shocks. The characteristics 2p′  
and 1q′  merge.                                                                             

 

 
Figure 3. Construction for merging shocks in a final stage.                                     
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Figure 4. The (x, t) diagram for merging shocks corresponding to Figure 1.               

3. Preliminaries 
In this section we present some lemmas that are important to prove our main result. 

Proposition 3.1. Let 1 2ϕ ϕ ϕ= +  be the analytic solution for the initial value problem for the heat equation 
(1.5) and (1.6). If the initial condition is given as in Figure 1, then u given by the Formula (1.4) is a solution for 
the initial value problem (1.1) and (1.3). It is explicitly given by: 

1 1 2 2

1 2

2 x u uu
φ ϕ ϕ

ε
φ ϕ ϕ

+
= − =

+
                                  (3.1) 

i.e. 

( )
( ) ( )

( ) ( )

2
2
1 0

2
2
1 0

1exp d d
2 2

, .
1 1exp d d

2 24π

i

i

i ii
i

i i
i

xx f
t t

u x t
x

f
t

η

η

ηη
ν ν η

ε

η
ν ν η

εε

∞=

= −∞

∞=

= −∞

 −−
− + 
  =
 −
− + 
  

∫∫

∫ ∫

∑

∑
                (3.2) 

Proof: When a shock overtakes another shock, they merge into a single shock of increased strength as de-
scribed in inviscid solution ( )0ε = , on the f curve in Figure 1; It is possible to give a simple solution of Burg-
ers equation that describes this process for arbitrary ε . The solution for a single shock is given in [3] [4] and 
the corresponding expression for ϕ  may be written in the form: 

2

1 2 ; exp , 1,2.
2 4

i i
i i

u u
x t b iϕ ϕ ϕ ϕ

ε ε
 

= + = + − = 
 

                     (3.3) 

In the expression of solution for a single shock given in [3] [4], the parameters b₁, b₂ witch locate the initial 
position of the shock are taken to be zero. The expressions 1 2ϕ ϕ  are clearly solutions of the heat equation 
( )t xxϕ εϕ=  with 

2

exp , 1,2.
2 4

i i
i

u u
x t iϕ

ε ε
 

= + = 
 

                                   (3.4) 

Corresponding to the initial conditions: 

( ) ( )0 0 0

1exp d , 1, 2
2

x
i i if iϕ φ η η η

ε
 = = − = 
 ∫                             (3.5) 
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Then the solutions of the heat equation are given as: 

( ) ( )2

0

1 1exp d d , 1,2
2 24π

i i
i i

x
f i

tt
η η

ϕ ν ν η
εε

 −
 = − + =
  

∫                    (3.6) 

( ) ( )2

0

1exp d d
2 2

i ii
i i i

xx
u f

t t
η ηη

ϕ ν ν η
ε

+∞

−∞

 −−
 = − +
  

∫∫                      (3.7) 

Using Equations (1.4) and (3.1) we obtain the expression (3.2). 
And to prove our results, we use the non standard analysis techniques, for that we consider the following 

lemma. 
Lemma 3.2. (The Van. Den. Berg lemma [14]): Let h be a standard function, defined and increasing on 

[0,+∞[ such that ( ) ( )1rh aν ν δ= +  where δ for v ≃ 0. ( ) ( )qh mν ν> . And let ϕ  be an intern function de-  
fined on ]0,+∞[ such that : ( ) ( )1sbϕ ν ν δ= +  for v ≈ 0, and such that ∀ d > 0, ∃ standard k and standard c  
such that: ( ) ( )( )exp coshkϕ ν ν< , for v d> . Then 

( ) ( )
1 10

1Γ
1exp d

2 1
2

s s
r r

sbh r

ra

ν
ϕ ν ν

ε

ε

∞

+ +   
   
   

+ 
 −   = ⋅ 

   
 
 

∫                           (3.8) 

where a, r are positive standard, m and q are the both positive δ  is an infinitesimal. b and s are standard, 
0b ≠  and 1s > − . 

To give estimation to the solution, given by (3.2), we state the following lemma: 
Lemma 3.3. Let ε be a positive real small enough. And let ϕ and h be two standard functions such that: h, is a 

C2 class function verified the Lemma 3, and admits on the ξ point a unique absolute minimum ( ) 0h ξ′ =  and 
( ) 0h ξ′′ > . ( ) 0ϕ ξ ≠ . It is S-continuous on ξ and satisfies the conditions of the Lemma 3 in the both ways. Then  

( ) ( ) ( )
( )

( )4πexp d 1
2
h

h

η εϕ η η ϕ ξ δ
ε ξ

∞

−∞

− 
= + 

′′ 
∫                           (3.9) 

δ is an infinitesimal. 
Proof: To prove this lemma, we use the “Van Den Berg” method, lemmas: (5.6), (5.7) [14]. It consists in the 

following steps 
1) Search for the absolute minimum (maximum) of the function under the exponential sign and bring it out. 
2) Bring back the minimum (maximum) to the zero. 
3) Searching the galaxy as well as the main galaxy where the function in the exponential sign is appreciable. 
4) Calculate the integral. 
As consequence we have the following lemma. 
Lemma 3.4. Let f the initial condition as Figure 1. Assume: 
(H1): :f R R→  is C2(R). 
(H2): There exist a, b, c, d and e in R, with a < b < c < d < e, such that 

( ) ] [ ] [ ] [ ] [
( ) [ ] [ ]

0, if , , , and if , , ,

0, if , and if ,

f x x a b c x c d e

f x x a b x d e

′′ ≥ ∈ −∞ ∈ ∞


′′ ≤ ∈ ∈
 

Then for x and t fixed, the functions defined as: 

( ) ( ) ( )2

0
, , d , 1, 2

2i i

x
h x t f i

t
η η

η ν ν
−

= + =∫                           (3.10) 

has at most two minima iξ
+  and iξ

−  relative to the variable iη . These two minima satisfy the equations: 
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( ) , 1, 2i ix tf iη η= + =                                     (3.11) 

And the condition: ( ) ( ), , , , ,i i i ih x t h x tξ ξ− +=  is equivalent to the shock conditions: 

( ) ( )( )( ) ( )1 d , 1,2
2

i

i
i i i if f f i

ξ

ξ
ξ ξ ξ ξ ν ν

+

−
− + − ++ − = =∫                       (3.12) 

Proof: Let f the initial condition given as in Figure 1, two shocks are formed corresponding to the inflection 
points of ( )f ξ . for some time we see appear an area of three values for the solution ( ),u x t . At first the wave 
breaks on the feature for which: ( ) 0if x′ <  and ( )if x′  is a maximum during the time ct t= . Inside the zone 
of each shock and for a point ( ),x t , there are three characteristics corresponding to two minimum framing a 
maximum. When a shock overtakes another, they merge into a single shock of increased strength as describe for 
the inviscid solution ( )0ε =  on the f curve in Figure 2. The characteristics between 2q′  and 1p′  are ab-
sorbed by one Figure 3. At this stage there are two stationary values that satisfy the equations (3.11) we noted 
them by iξ

−  and 1,2,i iξ + = , each couple frames a maximum. Let: ( ),i x tη , be the minimum for the functions 
given by the Formula (3.10), is such that: 

( ) 0, 1,2i i
i

i

h x
f i

t
η

η
η
∂ −

= − = =
∂

 

This equation is verified at the two minima iξ
−  and 1,2,i iξ + = . If ( ) ( ), , , , ,i i i ih x t h x tξ ξ− +=  and within 

(3.10) this condition can be written as: 

( )
( )

( )
( )2 2

0 0
d d , 1.2

2 2
i ii ix x

f f i
t t

ξ ξξ ξ
ν ν ν ν

+ −
+ −− −

+ = + =∫ ∫                   (3.13) 

But iξ
−  and iξ

+  both verify the equations: 

( ) 0, 1,2i
i

x
f i

t
ξ

ξ
− − = = 

 
                              (3.14) 

The condition of the shock is expressed by (3.12), is the same condition of shock given by (2.2) for invicid 
Burgers equation. 

4. Initial Boundary Value Problem for Inviscid Burgers’ Equation 
4.1. Confluence of Shocks 
Our general purpose now is to show that the exact solution of (1.1) and (1.3) endorse the ideas regarding shocks 
in Section 2, we want to confirm that as ε  is small enough, the solution of (1.1) and (1.3) reduce to solution of 
(1.2) and (1.3), with discontinuous shocks which satisfy the condition (2.2), and the shocks are located at the 
positions determined in Section 2. The shocks are formed corresponding to the inflection points of the initial 
condition ( ) ( ),0u x f x= , who assume the assumptions (H1), (H2) in the lemma (3.4). Then we proved the fol-
lowing result: 

Theorem 4.1. Under the assumptions: (H1), (H2) in lemma (3.4), the problem (1.1) and (1.3) admits a unique 
solution for 0t >  given by: 

( )
( ) ( )

( ) ( )

2
2

1 0

2
2

1 0

1exp d d
2 2

,
1 1exp d d

2 24π

i

i

ii
ii

i
ii

xx f
t t

u x t
x

f
t

η

η

ηη
ν ν η

ε

η
ν ν η

εε

+∞

= −∞

∞

= −∞

 −−
− + 
  =
 −
− + 
  

∫

∫ ∫

∑ ∫

∑
                (4.1) 

Such a solution is confluence of shocks and for ε sufficiently small, this solution is infinitely close to the solu-
tion of the reduced problem given in (2.2). 

Proof: 1) From Figure 2 and Figure 3, after some time the two shocks combine and continue into one, and 
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this is the lowest minimum that carries this amount to the case of a single shock. From the proposition (3.1), the 
problem (1.1) and (1.3) admits a single solution explicitly given by Formula (4.1). Uniqueness is due to the con-
dition of entropy which restricts the set of solutions to one which is stable with a singular perturbation dissipa-
tive nature. 

2) Let ( ),x t  be a standard point outside the line of the shock. From the solutions of the equation  
( )i ix tfη η= + , there is only one denoted iξ  is the absolute minimum of the function given by the expression 

(3.10). Using the expressions (3.1) and (3.2) of the Proposition 3.1 ( ),u x t  is given as: 

( )
( ) ( )

( ) ( )

2
2

2 1 0
1

2 2
21

1 0

1exp d d
2 2

,
1 1exp d d

2 24π

i

i

ii
ii

i ii

i ii
ii

xx f
t tuIu x t

J x
f

t

η

η

ηη
ν ν η

εϕ

ϕ η
ν ν η

εε

+∞

= −∞
=

∞=
= −∞

 −−
− + 
  = = =
 −
− + 
  

∑ ∫ ∫
∑
∑ ∑ ∫ ∫

 

From the Lemma 3.2 we have 

( )
( )

( ) ( )

( )
( ) ( )

2
2 1

1
2

2
1

1

4π 1
2

,
4π 1

2

ii
i

i ii

iii
i

hx
t huIu x t

J h

h

ηη ε δ
εξϕ

ηεϕ δ
εξ

=

=

=
=

 −
− + 

′′  
= = =

 
− + 

′′  

∑
∑
∑ ∑

 

where δ > 0 is an infinitesimal. And we will have the following estimate 

( ) ( ) ( ) ( ), 1 , , 1, 2i
i i

x
u x t u x t f i

t
η

δ ξ
−

= + = =  

To conclude we have the following corollary. 
Corollary 4.2. Let ( ),x t , be a standard point outside each line of shock. Among the solutions of the equation 

( )i ix tfη η= + , one denoted iξ  is the absolute minimum of the function ( ), ,i ih x tη  given by (3.10), and fur-
ther the solution of (1.1) and (1.3) verifies at the point ( ),x t  

( ) ( ) ( )1 1    , ,  ,   ,if x is an infinitely largu x t e posf i et vu x tiξ =  

( ) ( ) ( )2 2    , ,  ,   .if x is an infinitely largu x t e negf a et vu x tiξ =  

And the center of the shock when 1 1ϕ ϕ=  is that: 

( )1 2
1
2

x u u= +  

Proof: Using lemma (3.4), outside the region of each shock. For ( ),x t  fixed, each function ( ), ,i ih x tη  has 
an absolute minimum at , 2, 1i iξ = . In (3.1) ( ),u x t  is in the form 

( ) 1 1 2 2

1 2

,
u uu x t ϕ ϕ
ϕ ϕ
+

=
+

 

With iϕ  and i iuϕ  are given by (3.6) and (3.7). Then 

( )
( ) ( )

( ) ( )

2
2

1 0

2
2

1 0

1exp d d
2 2

,
1 1exp d d

2 24π

i

i

ii
ii

i
ii

xx f
t t

u x t
x

f
t

η

η

ηη
ν ν η

ε

η
ν ν η

εε

+∞

= −∞

∞

= −∞

 −−
− + 
  =
 −
− + 
  

∑ ∫ ∫

∑ ∫ ∫
 

Using lemma (3.3) we obtain 
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( )
( )

( )
( )

( ) ( )

( )
( )

( )
( ) ( )

1 21 2

1 2

1 2

1 2

4π 4πexp exp 1
2 2

,
4π 4πexp exp 1

2 2

h hx x
t th h

u x t
h h

h h

η ηη ηε ε δ
ε εξ ξ

η ηε ε δ
ε εξ ξ

    − − − + − +    ′′ ′′    =
     − + − +    ′′ ′′    

 

And it follows that: 
If 2 1u u> , 1ϕ  function dominates when x is infinitely large positive and there is obtained 

( ) ( ) ( ) ( )1
1 1, 1 , ,

xu x t u x t f
t
η

δ ξ
−

= + =  

If 1 2u u> , 2ϕ  function dominates when x is infinitely large negative and there is obtained 

( ) ( ) ( ) ( )2
2 2, 1 , .

xu x t u x t f
t
η

δ ξ
−

= + =  

4.2. Interacting Shocks 
In this section, we discuss the interacting shocks case; before going further in this case we need the following 
proposition and lemma. 

Now since any iϕ  a solution of the heat equation, we may clearly add further terms in (3.3) and generate 
more general solution of burgers’ equation. Such solution represents interacting shocks. As consequence we 
have the following 

Proposition 4.3. Let 1 2 3ϕ ϕ ϕ ϕ+ += , be the analytical solution for the problem (1.5) and (1.3). If f is the ini-
tial condition admitting three inflection points, then the solution of (1.1) and (1.3) is explicitly given by  

( ) 1 1 2 2 3 3

1 2 3

, 2 x u u u
u x t

ϕ ϕ ϕ ϕ
ε
ϕ ϕ ϕ ϕ

+ +
= − =

+ +
                            (4.2) 

i.e. 

( )
( ) ( )

( ) ( )

2
3

1 0

2
3

1 0

1exp d d
2 2

, , 1, 2,3
1 1exp d d

2 24π

i

i

ii
ii

i
ii

xx f
t t

u x t i
x

f
t

η

η

ηη
ν ν η

ε

η
ν ν η

εε

+∞

= −∞

∞

= −∞

 −−
− + 
  = =
 −
− + 
  

∑ ∫ ∫

∑ ∫ ∫
             (4.3) 

Proof: When a shock overtakes another, they merge into a single shock of increased strength as described in 
inviscid solution ( )0ε = . For arbitrary ε , it is possible to provide a simple solution to the Burgers equation 
that describes this process. The solution for a single shock is given in [4] and the corresponding expression for 
ϕ  is written as: 

2

1 2 3 , exp
2 4

.i i
i i

u u
x t bϕ ϕ ϕ ϕ ϕ

ε ε
 

+ +  


= − +


= −  

In the solution for a single shock given in [4], the parameters 1 2,b b  which locate the initial position of the  

shock are taken to be zero and ( )3 3 2
1

2
b u u

ε
= − . The expressions 1ϕ , 2ϕ  and 3ϕ  are clearly solution of the  

heat equation ( )t xxϕ εϕ=  with 
2

exp , 1,2.
2 4

i i
i

u u
x t iϕ

ε ε
 

= − + = 
 

                                  (4.5) 

And 
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2
3 3 3 2

3 exp , 3
2 4 2
u u u u

x t iϕ
ε ε ε

 −
= − + − = 

 
                          (4.6) 

Corresponding to the initial conditions: 

( ) ( )0 0 0

1exp d , 1,2,3
2ε

x
i if iϕ φ η η η = = − = 

 ∫                      (4.7) 

Then the solutions of the heat equation are given as: 

( ) ( )2

0

1 1exp d d , 1,2,3
2 24π

i i
i i

x
f i

tt
η η

ϕ ν ν η
εε

 −
 = − + =
  

∫                   (4.8) 

and 

( ) ( )2

0

1exp d d , 1,2,3
2 2

i ii
i i i

xx
u f i

t t
η ηη

ϕ ν ν η
ε

+∞

−∞

 −−
 = − + =
  

∫ ∫                (4.9) 

Using (1.4) and (4.4) we obtain the expression (4.3). Then we have the following. 
Theorem 4.4. For 0t > , and for 3 2 1 0u u u> > > , the problems (1.1) and (1.3) have a unique solution given 

by: 

( )
( ) ( )

( ) ( )

2
3

1 0

2
3

1 0

1exp d d
2 2

,
1 1exp d d

2 24π

i

i

ii
i

i
i

xx f
t t

u x t
x

f
t

η

η

ηη
ν ν η

ε

η
ν ν η

εε

+∞

= −∞

∞

= −∞

 −−
− + 
  =
 −
− + 
  

∑ ∫ ∫

∑ ∫ ∫
 

Such a solution is interacting shocks and for ε sufficiently small, it is infinitely close to the solution of the re-
duced problems (1.2) and (1.3). 

Proof. 1) In the interacting shock case we have three shocks, when a shock overtakes another they merge into 
a single shock of increased strength and the lowest minimum dominating. Then we go back to the single shock 
case. Using the proposition (4.3), we deduce the uniqueness of solution explicitly given by (3.4). The uniqueness 
is due to the entropic condition [3] [4], which restricts the set of solutions to one, who is stable with singular 
perturbation with dissipative nature. 

2) Let ( ),x t  be a standard point outside the line of the shock. From the solutions of the equation  
( )i ix tfη η= + , there is only one denoted that iξ  is the absolute minimum of the function given by the expres-

sion (3.10). ( ),u x t  is given as 

( )
( ) ( )

( ) ( )

2
3

3 1 0
1

3 2
31

1 0

1exp d d
2 2

,
1 1exp d d

2 24π

i

i

ii
ii

i ii

i ii
ii

xx f
t tuIu x t

J x
f

t

η

η

ηη
ν ν η

εϕ

ϕ η
ν ν η

εε

+∞

= −∞
=

∞=
= −∞

 −−
− + 
  = = =
 −
− + 
  

∑ ∫ ∫
∑
∑ ∑ ∫ ∫

 

From the Lemma 3.2 we have: 

( )
( )

( ) ( )

( )
( ) ( )

3
3 1

1
3

3
1

1

4π 1
2

,
4π 1

2

i ii
i

ii ii

i iii
i

i

hx
t huIu x t

J h

h

ηη ε δ
εξϕ

ηεϕ δ
εξ

=

=

=
=

 −
− + 

′′  
= = =

 
− + 

′′  

∑
∑
∑ ∑

 

where δ > 0 is an infinitesimal. And we will have the following estimate 

( ) ( ) ( ) ( ), 1 , , 1, 2,3i
i i

x
u x t u x t f i

t
η

δ ξ
−

= + = =  
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from which the following corollary 
Corollary 4.5. Let ( ),x t  be a standard point outside the line of the shock. So there exists a unique solution 

denoted iξ  which is the absolute minimum of the function given by (3.10). If ε  is reasonably small, we can 
recognise shock transition between the states 1 2 3, ,u u u  by noting in which regions the corresponding ϕ  do-
minates. At 0t = , 1ϕ  dominates in 0 x< , 2ϕ  in: 1 0x− < < ; 3ϕ  dominates in: 1x < − . Then 

( ) ( ) ( )1 1, , , in 0 ,u x t u x t f xξ= <  

( ) ( ) ( )2 2, , , in 1 0,u x t u x t f xξ= − < <  

( ) ( ) ( )3 3, , , in 1.u x t u x t f xξ= < −  

Proof: For ( ),x t  fixed, outside the shock region and by the use of the lemma (3.2), each function ih  ad-
mits one absolute minimum on the point iξ . In Formula (3.4), ( ),u x t  is as  

1 1 2 2 3 3

1 2 3

u u u
u

ϕ ϕ ϕ
ϕ ϕ ϕ
+ +

=
+ +

                                      (4.11) 

where ,i i iuϕ ϕ  are given by (4.8) and (4.9); and using the Lemma 3.2 there are equivalent to those 

( )
( ) ( )4π exp 1 , 1,2,3
2

i i
i

i

h
i

h

ξεϕ δ
εξ

 
= − + = 

′′  
                     (4.12) 

( )
( ) ( )4π exp 1 , 1, 2,3
2

i i
i i

i

hxu i
t h

ξη εϕ δ
εξ

 −
= − + = 

′′  
               (4.13) 

where δ is an infinitesimal positive real. 
As shown in Figure 5, If ε  is reasonably small, we can recognise shock transition between the states 

1 2 3, ,u u u  by noting in which regions the corresponding ϕ  dominates. At 0t = , in: 0 x< , 1ϕ  dominates 
and we have: 

( ) ( ) ( )1 1, , ,u x t u x t f ξ=  

2ϕ  dominates in: 1 0x− < < , then we have: 
( ) ( ) ( )2 2, , ,u x t u x t f ξ=  

In: 1x < − , 3ϕ  dominates and we obtain: 

( ) ( ) ( )3 3, , ,u x t u x t f ξ=  

The symbol “≃” means infinitely close to [8]. Thus we have a shock transitions from 1u  to 2u  centred at
0x = , and one from 2u  to 3u  centered at 1x = − . For 0t > , for early times the transition from 1u  to 2u  

occurs where 1 2ϕ ϕ=  on 

( )1 2
1
2

x u u t= +                                       (4.14) 

The transition from 2u  to 3u  occurs where 2 3ϕ ϕ=  on 

( )2 3
1 1
2

x u u t= + −                                    (4.15) 

Since, ( ) ( )2 3 1 2
1 1
2 2

u u u u+ > + , the second shock overtakes the first at the point ( )* *,x t  determined by 

(4.14) and (4.15). At this point 
1 2 3ϕ ϕ ϕ= =  

for *t t> , there is no longer any region where 2ϕ  dominates and the continuing solution describe a single 
shock transition between u1 and u3, moving with the velocity 

( )1 3
1
2

x u u t= +  
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Figure 5. Merging shocks.                                                       

 
on the path determined by 1 3.ϕ ϕ=  
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