
Applied Mathematics, 2015, 6, 195-205 
Published Online January 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.61019  

How to cite this paper: Adachi, T. and Kikuchi, D. (2015) Some Sequence of Wrapped Δ-Labellings for the Complete Bipar-
tite Graph. Applied Mathematics, 6, 195-205. http://dx.doi.org/10.4236/am.2015.61019  

 
 

Some Sequence of Wrapped Δ-Labellings for 
the Complete Bipartite Graph 
Tomoko Adachi, Daigo Kikuchi 
Department of Information Sciences, Toho University, Funabashi, Japan 
Email: adachi@is.sci.toho-u.ac.jp 
 
Received 2 January 2015; accepted 17 January 2015; published 20 January 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
The design of large disk array architectures leads to interesting combinatorial problems. Mini-
mizing the number of disk operations when writing to consecutive disks leads to the concept of 
“cluttered orderings” which were introduced for the complete graph by Cohen et al. (2001). Muel-
ler et al. (2005) adapted the concept of wrapped Δ-labellings to the complete bipartite case. In this 
paper, we give some sequence in order to generate wrapped Δ-labellings as cluttered orderings 
for the complete bipartite graph. New sequence we give is different from the sequences Mueller et 
al. gave, though the same graphs in which these sequences are labeled. 
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1. Introduction 
The desire to speed up secondary storage systems has lead to the development of disk arrays which achieve per-
formance through disk parallelism. While performance improves with increasing numbers of disks, the chance 
of data loss coming from catastrophic failures, such as head crashes and failures of the disk controller electron-
ics, also increases. To avoid high rates of data loss in large disk arrays, one includes redundant information 
stored on additional disks—also called check disks—which allows the reconstruction of the original data— 
stored on the so-called information disks—even in the presence of disk failures. These disk array architectures 
are known as redundant arrays of independent disks (RAID) (see [1] [2]). 

Optimal erasure-correcting codes using combinatorial framework in disk arrays are discussed in [1] [3]. For 
an optimal ordering, there are [4] [5]. Cohen et al. [6] gave a cyclic construction for a cluttered ordering of the 
complete graph. In the case of a complete graph, there are [7] [8]. Furthermore, in the case of a complete bipar-
tite graph, Mueller et al. [9] gave a cyclic construction for a cluttered ordering of the complete bipartite graph by 
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utilizing the notion of a wrapped Δ-labelling. In the case of a complete tripartite graph, we refer to [10]. 
As Figure 1, we present the case 2= . For example, information disk 1 is associated to the check disks a 

and c. A 2-dimensional parity code can be modeled by the complete bipartite graph ( ), , ,K U V E=
 

 in the 
following way. The point set of ,K

 

 is partitioned into the two sets—U and V both having cardinality  . 
Assign the points of U to the   check bits corresponding to the rows and the points of V to the   check bits 
corresponding to the columns. By definition, in ,K

 

 any point of U is connected with any point of V exactly on 
edge constituting the edge set E, i.e., 2E =   (see Figure 2). 

In this paper, we make label to the vertex of a bipartite graph. For example, we make label 1, 3, 0 and −1, 
respectively, to four vertices a, b, c and d of a bipartite graph in Figure 2. By such labelling, we get that the 
label of the edge { },a c  is 1 0 1− = ; the label of the edge { },a d  is ( )1 1 2− − = ; the label of the edge { },b c  
is 3 0 3− =  and the label of the edge { },b d  is ( )3 1 4− − = . The labellings [ ]1,3  of the upper vertices 
[ ],a b  and the labellings [ ]0, 1−  of the lower vertices [ ],c d  are sequences. The goal of this paper is to find 
new sequence in order to generate wrapped Δ-labellings as cluttered orderings for the complete bipartite graph. 
In Section 5, we give new sequence which we want. The new sequence we give is different from the sequences 
Mueller et al. [9] gave, though the same graphs in which these sequences are labeled. 

2. A Cluttered Ordering 
In a RAID system disk writes are expensive operations and should therefore be minimized. In many applications 
there are writes on a small fraction of consecutive disks—say d disks—where d is small in comparison to k, the 
number of information disks. Therefore, to minimize the number of operations when writing to d consecutive 
information disks one has to minimize the number of check disks—say f—associated to the d information disks. 

Let ( ),G V E=  be a graph with n V=  vertices and edge set { }0 1 1, , , mE e e e −=  . Let d m≤  be a 
positive integer, called a window of G, and π  a permutation on { }0,1, , 1m − , called an edge ordering of G. 
Then, given a graph G with edge ordering π  and window d, we define ,d

iV π  to be the set of vertices which 
are connected by an edge of ( ) ( ) ( ){ }1 1, , ,i i i de e eπ π π+ + − , 0 1i m≤ ≤ − , where indices are considered modulo m. 
The cost of accessing a subgraph of d consecutive edges is measured by the number of its vertices. An upper 
bound of this cost is given by the d-maximum access cost of G defined as ,max d

i iV π . An ordering π  is a (d, 
f)-cluttered ordering, if it has d-maximum access cost equal to f. We are interested in minimizing the parameter 
f. 

Let   be a positive integer and let ,K
 

 denote the complete bipartite graph with 2  vertices and 2
  

edges. In the following, we identify the vertex set of ,K
 

 with 2Z Z×


, where two vertices are connected by 
an edge iff they have different second components in 2Z Z×



. The construction of (d, f)-cluttered orderings for 
,K
 

 with small positive integer f is based on two fundamental concepts. Firstly, we introduce the well-known 
concept of a Δ-labelling of a suitable bipartite subgraph from which one gets a decomposition of ,K

 

 into 
isomorphic copies of this subgraph. Secondly, we define the concept of a (d, f)-movement which will lead to 
“locally” defined edge orderings of ,K

 

. This principle was implicitely used in [6] in case of the complete 
graph. In case of the complete bipartite graph, we refer to [9]. 

In the following, ( ),H U E=  always denotes a bipartite graph with vertex set U which is partitioned into 
 

 
Figure 1. 2-dim. parity code and its parity check matrix. 

 

 
Figure 2. Code as graph. 
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two subsets denoted by V and W. Any edge of the edge set E contains exactly one point of V and W respectively. 
Let E= , then a Δ-labelling of H with respect to V and W is defined to be a map 2:U Z Z∆ → ×



 with 
( ) { }0V Z∆ ⊂ ×



 and ( ) { }1W Z∆ ⊂ ×


, where each element of Z


 occurs exactly once in the difference list 

( ) ( ) ( )( ) ( )( )1: , , , .E v w v V w W v w Eπ∆ = ∆ −∆ ∈ ∈ ∈                       (1) 

Here, 1 2: Z Z Zπ × →
 

 denotes the projection on the first component. In general, Δ-labellings are a well- 
known tool for the decomposition of graphs into subgraphs (see [11]). In this context a decomposition is un-
derstood to be a partition of the edge set of the graph. In case of the complete bipartite graph, one has the fol-
lowing proposition. 

Proposition 1. ([9]) Let ( ),H U E=  be a bipartite graph, E= , and Δ be a Δ-labelling as defined above. 
Then there is a decomposition of the complete bipartite graph ,K

 

 into isomorphic copies of H. 
For example, Figure 3 shows Δ-labellings of a graph ( )1;1H H=  with 3 edges leading to a decomposition 

of 3,3K  into isomorphic copies of ( )1;1H  such as Figure 4. Next, in order to move a graph H to an isomorphic 
copy such as Figure 5, we define the concept of a (d, f)-movement which can easily be generalized to arbitrary 
set system. 

Definition 1. Let G be a graph with edge set ( ) { }0 1 1, , , nE G e e e −=  , where n is positive integer, and let 0Σ , 
( )1 E GΣ ⊂  with 0 1:d = Σ = Σ . For a permutation σ  on { }0,1, , 1n −  define ( )

1,
0

: dd
i i jj

V eσ
σ

−
+=

=


 for 
0 i n d≤ ≤ − . Then, for some given a positive integer f, and a map σ  is called a ( ),d f -movement from 0Σ  
to 1Σ  if ( ){ }0 0 1je j dσΣ = ≤ ≤ − , ( ){ }1 1je n d j nσΣ = − ≤ ≤ − , and ,max d

i iV fσ ≤ . 
In order to assemble such (d, f)-movements of certain subgraphs to a (d, f)-cluttered ordering, we need some 

notion of consistency. Let 0 1:ϕ Σ → Σ  be any bijection, then a (d, f)-movement σ  from 0Σ  to 1Σ  is called 
consistent with ϕ  if 

( )( ) ( )     for    0,1, , 1.j n d je e j dσ σϕ − += = −,                          (2) 

Now, for each j Z∈


 one gets an automorphism jτ  of the bipartite graph ,K
 

 defined by cyclic transla-
tion of the vertex set: 
 

 
Figure 3. A Δ-labelling of a graph ( )1;1H  with 3 
edges. 

 

 
Figure 4. Isomorphic copies of ( )1;1H . 

 

 
Figure 5. A (3,4)-movement. 
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( )( ) ( )2 2: ,     , : , ,j jZ Z Z Z u b u j bτ τ× → × = +
 

                        (3) 

( ) 2,u b Z Z∈ ×


. Obviously, jτ  induces in a natural way an automorphism of the edge set of ,K
 

 which we  
also denote jτ . Then, ( )( ) ( )i i j

j E Eτ +=  and ( )( ) ( )
0 0
i i j

jτ
+Σ = Σ , i Z∈



. Next, we define a subgraph ( )0
,G K⊂
 

  

by specifying its edge set ( )( ) ( ) ( )0 0
0:E G E κ= ∪Σ . Let ( )( ) ( ) ( ) ( ){ }0 0 0 0

0 1 1, , , nE G e e e −=  , n d= + , where we fix 
some arbitrary edge ordering. We denote the restriction of the cyclic translation κτ  to ( )0

0Σ  by ( )0
κϕ  which 

defines a bijection ( ) ( ) ( )0 0
0 0: κ

κϕ Σ → Σ . 
Definition 2. With above notation, a (d, f)-movement of ( )0G  from ( )0

0Σ  to ( )
0
κΣ  consistent with ( )0

κϕ  
will be denoted as ( ),d f -movement from ( )0

0Σ  consistent with the translation parameter κ . 
According to Definition 1, such a (d, f)-movement is given by some permutation σ  of the index set 

{ }0,1, , 1n − . By applying the cyclic translation iτ  one gets a graph ( ) ( )( )0:i
iG Gτ=  with edge set 

( )( ) ( ) ( ) ( ) ( ) ( ){ }0 0 1 1, , ,i i i i i i
nE G E e e eκ+
−= ∪Σ =  , i Z∈



. We denote the restriction of κτ  to ( )
0
iΣ  by ( )i

κϕ  which  

defines a bijection 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
0 0 0: ,     ,     .i i i i i i i ie e eκ κ

κ κϕ ϕ+ +Σ → Σ = ∈Σ                       (4) 

Then σ  also defines a ( ),d f -movement of ( )iG  from ( )
0
iΣ  to ( )

0
i κ+Σ  consistent with ( )i

κϕ . Using that 
( )

( ) ( )
0

i i
jeσ ∈Σ , 0 j d≤ < , (see Defintion 1), we get, for 0,1, , 1j d= − , 

( )
( )

( )
( )

( )
( )( )

( )

( )
( )

( )
( )

4 2

.i i i ii
j j n d j je e e eκ

κσ σ σ σϕ+
− + += = =



                           (5) 

Having such a consistent σ , it is easy to construct a (d, f)-cluttered ordering of ,K
 

. In short, one orders the 
edges of ,K

 

 by first arranging the subgraphs of the decomposition along ( ) ( ) ( ) ( )( )10 2, , , ,E E E E κκ κ −
  and 

then ordering the edges within each subgraph according to σ . 
Proposition 2. ([9]) Let ( ),H U E= , E= , be a bipartite graph allowing some ρ -labelling, and let κ  

be a translation parameter coprime to  . Furthermore, let 0 EΣ ⊂ , 0:d = Σ . If there is a (d, f)-movement 
from 0Σ  consistent with κ , then there also is a (d, f)-cluttered ordering for the complete bipartite graph 

,K . 

3. Construction of Cluttered Orderings of ( );H h t  
In this section, we define an infinite family of bipartite graphs which allow (d, f)-movements with small f. In 
order to ensure that these (d, f)-movements are consistent with some translation parameter κ , we impose an 
additional condition on the Δ-labellings also referred to as wrapped-condition. 

Let h and t be two positive integers. For each parameter f and t, we define a bipartite graph denoted by 
( ) ( ); ,H h t U E= . Its vertex set U is partitioned into U V W= ∪  and consists of the following ( )2 1h t +  ver-

tices: 
( ){ }
( ){ }

: 0 1 ,

: 0 1 .
i

i

V v i h t

W w i h t

= ≤ < +

= ≤ < +
 

The edge set E is partitioned into subsets sE , 0 s t≤ < , defined by 

{ }{ }
{ }{ }
{ }{ }
1

0

: , , ,

: , ,

: , ,

:     for    0 ,

: .

s i j

s i h j

s h i j

s s s s
t

s
s

E v w s h i j s h h

E v w s h j i s h h

E v w s h i j s h h

E E E E s t

E E

+

+

−

=

′ = ⋅ ≤ < ⋅ +

′′ = ⋅ ≤ ≤ < ⋅ +

′′′ = ⋅ ≤ ≤ < ⋅ +

′ ′′ ′′′= ∪ ∪ ≤ <

=


,
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Figure 6 shows the edge partition of ( )2;1H . For the number of edges holds  

( ) ( ) ( )2 1 1
2 1

2 2
h h h h

E t h th h
+ + 

= ⋅ + + = + 
 

. 

The t subgraphs defined by the edge sets Es, 0 s t≤ < , and its respective underlying vertex sets are isomorphic 
to ( );1H h . Intuitively speaking, the bipartite graph ( );H h t  consists of t “consecutive” copies of ( );1H h , 
where the last h vertices of V and W respectively of one copy are identified with the first h vertices of V and W 
respectively of the next copy. Traversing these copies with increasing s will define a (d, f)-movement of 

( );H h t  with small parameter f as is shown in the next proposition. 
Proposition 3. ([9]) Let h, t be pogitive integers. Let ( ) ( ); ,H h t U E= , 2t ≥ , be the bipartite graph as de- 

fined above. Then, there is a (d, f)-movement of ( );H h t  from 0E  to 1tE −  with ( )2 1d h h= +  and 4f h= . 
By Proposition 1 a Δ-labelling of the graph ( );H h t  will lead to a decomposition of the complete bipartite 

graph ,K
 

 into   isomorphic copies of ( );H h t , where ( )2 1th h= + . However, in general there is no 
( ),d f -movement consistent with some translation parameter κ . To this means, we impose an additional con-
dition on the Δ-labelling. The following definition generalizes and adapts the notion of a wrapped Δ-labelling to 
the bipartite case, which was introduced in [6] for certain subgraphs of the complete graph. 

Definition 3. Let ( ),H U E= , E= , denote a bipartite graph and let ,  X Y U⊂  with X Y= . A Δ- 
labelling Δ is called a wrapped Δ-labelling of H relative to X and Y if there exists a Zκ ∈  coprime to   such 
that 

( ) ( ) ( ),0Y X κ∆ = ∆ +                                 (6) 

as multisets in 2Z Z×


. The parameter κ  is also referred to as translation parameter of the wrapped 
Δ-labelling. 

For the graphs ( );H H h t= , we define { }: , 0i iX v w i h= ≤ <  and ( ){ }: , 1i iY v w ht i h t= ≤ < + . Further-
more, in the following we only consider wrapped Δ-labellings relative to X and Y for which the stronger condi-
tion 

( ) ( ) ( ) ( ) ( ) ( ),0     and    ,0 ,i ht i i ht iv v w wκ κ+ +∆ = ∆ + ∆ = ∆ +                  (7) 

hold for 0 i h≤ < . Suppose we have such labelling Δ satisfying condition (7). Now, ( )iE , i Z∈


, are isomor-
phic copies of ( );H h t . Furthermore, ( )

0
κΣ  is isomorphic to ( );1H h  consisting of the first d edges of ( )E κ . 

From condition (7) follows that the graph ( )0
,G K⊂
 

 with edge set ( )( ) ( ) ( )0 0
0:E G E κ= ∪Σ  can obviously 

identified with ( ); 1H h t + . In addition, one easily checks that the (d, f)-movement of ( ) ( )0 ; 1G H h t= +  from 
Proposition 3 is consistent with the translation parameter κ . 

Proposition 4. ([9]) Let ,  h t  be positive integers. From any wrapped Δ-labelling of ( );H h t , satisfying 
condition (7), one gets a (d, f)-cluttered ordering of the complete bipartite graph ,K

 

 with ( )2 1th h= + , 
( )2 1d h h= + , and 4f h= . 

4. Sequences of Wrapped Δ -Labellings for H(1; t), H(2; t) and H(h; 1) 
In this section, we construct some infinite families of such wrapped Δ-labellings. By applying Proposition 2 we 
get explicite (d, f)-cluttered orderings of the corresponding bipartite graphs. For these results in this section, we 
refer to [9]. 

4.1. A Sequence for H(1; t) 
We define a wrapped Δ-labelling of ( )1;H t  for any positive integer t. ( ) ( )1; ,H t U E=  has ( )2 1t +  vertices 
 

 
Figure 6. Partition of the edge set of ( )2;1H . 
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and 3t edges. For a fixed t, we define 3 2: tU Z Z∆ → ×  on the vertex set U V W= ∪  as follows: 

( )
( )
( )
( )( )

( )

2

2

,0 , for 0 ,

1,0 , for ,

1 ,1 , for 0 ,
( )

1,1 , for ,

j

j

jt j t
v

t j t

j t j t
w

t j t

≤ <∆ = 
+ =

 − ≤ <∆ = 
+ =

 

where the integers in the first components are considered modulo 3t. We now compute the difference list ( )E∆  
of δ  defined as in (1). Hence each element of 3tZ  appears in ( )E∆  and the difference condition holds. 
Figure 3 illustrates the definition for the case t = 1. 

Obviously, the wrapped-condition (7) relative to { }0 0,X v w=  and { },t tY v w=  holds as well and the transla-
tion parameter 2 1tκ = +  is coprime to 3t for any t. Therefore, Δ defines the desired wrapped Δ-labelling of 

( )1;H t . 
Theorem 5. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bi- 

partite graph ttK ,33  with = 3d  and = 4f . 
Theorem 6. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bi- 

partite graph 3 ,3t tK  with 3d s r= +  and ( )2 1f s r= + + , 0s > , 0,1,2r = . 

4.2. A Sequence for H(2; t) 
We define a wrapped Δ-labelling of ( )2;H t  for any positive integer t. ( ) ( )2; ,H t U E=  has ( )4 1t +  ver-
tices and 10t edges. For a fixed t, a labelling Δ is a map 210: ZZU t ×→∆  on the vertex set U V W= ∪ . We 
specify the second component of Δ on the vertices ( )0 1 2 1, , , tV v v v +=   sequentially by the following list of 2t 
+ 2 numbers: 

0 0 1 1 1 1 0 0, , , , , , , , , , , ,j j t tc c a c c a c c a c c a c c aκ κ− −+ + + + + + +   

and, on the vertices ( )0 1 2 1, , , tW w w w +=   by, similarly, 

0 0 1 1 1 1 0 0, , , , , , , , , , , ,j j t td d b d d b d d b d d b d d bκ κ− −+ + + + + + +   

where we set 

( )
2

6 1,     2 ,              0,1, , 1,

6 2,     2 1 ,     0,1, , 1,

2 1.

j

j

a t c jt j t

b t d j t j t

tκ

= − = = −

= − = − = −

= +




 

All integers are considered modulo 10t. Note that 10E t=  and 22 1tκ = +  are coprime for all t and that 
the wrapped-condition (7) is obviously fulfilled. Thus, Δ defines a wrapped Δ-labelling. 

Theorem 7. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipar- 
tite graph 10 ,10t tK  with 10d =  and 8f = . 

Theorem 8. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipar- 
tite graph 10 ,10t tK  with 10d s r= +  and ( ) ( )4 1 min , 4f s r= + + , 0s > , 0,1, ,9r =  . 

4.3. A Sequence for H(h; 1) 
We define in this section a wrapped Δ-labelling for ( );1H h  for any positive integer h. ( ) ( );1 ,H h U E=  has  
4h vertices and ( )2 1h h +  edges. We define the Δ-labelling ( ) 22 1: h hU Z Z+∆ → ×  on the vertex set U V W= ∪   

by specifying the first component of Δ on the vertices ( )0 1 2 1, , , hV v v v −=   sequentially by the following list of 
2h numbers: 

0 1 1 0 1 1, , , , , , , ,h ha a a a a aκ κ κ− −+ + +   

and on the vertices ( )0 1 2 1, , , hW w w w −=   by, similarly, 
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0 1 1 0 1 1, , , , , , , ,h hb b b b b bκ κ κ− −+ + +   

where we set 

( )
( )

0

0

0,     2 2 1 ,        1, 2, , 1,

0,     2 1 1,     1, 2, , 1,

1.

i

j

a a i h i h

b b j h j h

κ

= = − + = −

= = − + − = −

= −



  

All integers are considered modulo ( )2 1h h + . Obviously, ( )2 1E h h= +  and κ  are coprime for any posi-
tive integer h and the wrapped-condition (7) is fulfilled. Figure 7 illustrates the definition for the case 3h = . 
All numbers in ( )2 1h hZ +  appear exactly once as difference of Δ which hence defines a wrapped Δ-labelling. 

Theorem 9. ([9]) Let h  be a positive integer. For all h  there is a (d, f)-cluttered ordering of the complete 
bipartite graph ( ) ( )2 1 , 2 1h h h hK + +  with ( )2 1d h h= +  and 4f h= . 

5. Our Result: A Sequence of a Wrapped ∆ -Labelling for ( )3;H t   
In this section, we define a wrapped Δ-labelling of ( )3;H t  for any positive integer t. ( ) ( )3; ,H t U E=  has 
( )6 1t +  vertices and 21t edges. For a fixed t, a labelling Δ is a map 21 2: tU Z Z∆ → ×  on the vertex set 

U V W= ∪ . We specify the second component of Δ on the vertices ( )0 1 3 2, , , tV v v v +=   sequentially by the 
following list of 3 3t +  numbers: 

0 0 0 1 1 1 1 1 1 0 0 0, , 2 , , , 2 , , , , 2 , , , , 2 , , , 2 ,j j j t t tc c a c a c c a c a c c a c a c c a c a c c a c aκ κ κ− − −+ + + + + + + + + + + + +   

and, on the vertices ( )0 1 3 2, , , tW w w w +=   by, similarly, 

0 0 0 1 1 1 1 1 1 0 0 0, , 2 , , , 2 , , , , 2 , , , , 2 , , , 2 ,j j j t t td d b d b d d b d b d d b d b d d b d b d d b d bκ κ κ− − −+ + + + + + + + + + + + +   

where we set 

( )
2

15 1     3              0,1, , 1,

15 2     3 1     0,1, , 1,

3 1.

j

j

a t c jt j t

b t d j t j t

tκ

= − = = −

= − = − = −

= +





, ,

, ,  

All integers are considered modulo 21t. Note that 21E t=  and 23 1tκ = +  are coprime for all positive in-
teger t and that the wrapped-condition (7) is obviously fulfilled. Figure 8 illustrates the definition for the case t = 1. 
 

 
Figure 7. Some wrapped Δ-labelling of ( )3;1H , 21E = , 12V = , 1κ = − . 

 

 
Figure 8. Some wrapped Δ-labelling of ( )3;1H , 21E = , 12V = , 4κ = . 
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We now compute the differences of Δ using the notation from (1): 

( ) ( ) ( )(
( ) ( ))

( )

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

, , 2 2 , , 2 , , 2 ,

                 2 , 2

          0,1, 2,15 1,9 2,6 2,12 4,15 ,6 3 ,

E c d c d a b c d a b c d a c d a c d b c d b

c d a b c d a b

t t t t t t

′∆ = − − + − − + − − + − + − − − −

− + − − + −

= − − + + +

 

( ) ( ) ( )(
( ) ( ))

( )

, , 2 2 , , 2 , ,

                  2 , 2 , 2

          3 ,3 1,3 2,3 15 1,3 9 2,3 6 2,3 12 4,3 15 ,3 6 3
                  for 

j j j j j j j j j j j j j

j j j j j j

E c d c d a b c d a b c d a c d a c d b

c d b c d a b c d a b

j j j j t j t j t j t j t j t

′∆ = − − + − − + − − + − + − −

− − − + − − + −

= + + + − + − + + + + + + +

  1, 2, , 1,j t= −

 

( ) ( ) ( ) ( )( )
( )

1 1 1 1 1 1 1, , 2 , , 2 , 2 2

            3 18 ,3 12 1,3 6 2,3 18 1,3 12 ,3 18 2
                       for   1, 2, , 1,

j j j j j j j j j j j j jE c d c d a c d a c d a b c d a b c d a b

j t j t j t j t j t j t
j t

− − − − − − −′′∆ = − − + − + − + − − + − − + −

= + + − + − + + + + +

= −

 

( ) ( ) ( ) ( )( )
( )

1 1 1 1 1 1 1, , 2 , , 2 , 2 2

             3 3 3,3 9 1,3 15 1,3 3 2,3 9 ,3 3 1
                         for   1, 2, , 1,

j j j j j j j j j j j j jE c d c d b c d b c d a b c d a b c d a b

j t j t j t j t j t j t
j t

− − − − − − −′′′∆ = − − − − − − + − − + − − + −

= + − + − + + + − + + −

= −

 

( ) ( ) ( )(
( ))

( )

1 1 0 1 0 1 0 1 0 1 0

1 0

, , 2 , , 2 ,

                    2 2

             18 1,12 2,6 3,18 ,12 1,18 1 ,

t t t t t t

t

E c d c d a c d a c d a b c d a b

c d a b

t t t t t t

κ κ κ κ κ

κ
− − − − − −

−

′′∆ = − − − − + − − + − − + − − − + −

− − + −

= − − − − +

 

( ) ( ) ( )(
( ))

( )

1 0 1 0 1 0 1 0 1 0 1

0 1

, , 2 , , 2 ,

                       2 2

            6 2,12 ,18 2,6 1,12 1,6 .

t t t t t t

t

E c d c d b c d b c d a b c d a b

c d a b

t t t t t t

κ κ κ κ κ

κ
− − − − − −

−

′′′∆ = + − + − − + − − + − + − + − + −

+ − + −

= − + − +

 

We now compute the difference list ( )E∆ : 

( ) ( )0 0,1, 2 ,E′∆ ⊃                                                                     (1) 

( ) { } { }1

=1
3 ,3 1,3 2 1 1 3,4,5, ,3 1 ,t

jj
E j j j j t t− ′∆ ⊃ + + ≤ ≤ − = −



                               (2) 

( ) { } { }1

=1
3 3 3,3 3 2,3 3 11 1 3 ,3 1,3 2, ,6 4 ,t

jj
E j t j t j t j t t t t t− ′′′∆ ⊃ + − + − + − ≤ ≤ − = + + −



           (3) 

( ) ( )1 6 3 ,tE t−′′∆ ⊃ −                                                                    (4) 

( ) ( )1 6 2,6 1,6 ,tE t t t−′′′∆ ⊃ − −                                                             (5) 

( ) { } { }1
1=1

3 6 2 1 6 1 ,t
jj

E j t j t−
−′′∆ ⊃ + − = = +



                                               (6) 

( ) ( ) ( )0 1 6 2,6 3 ,E t t′∆ − ⊃ + +                                                            (7) 

( ) ( ) { } { }1
1=1

6 3 6 2 2 1 6 4,6 7,6 10, ,9 5 ,t
jj

E j t j t t t t t−
−′′∆ − ⊃ + − ≤ ≤ − = + + + −



                (8-1) 

( ) ( ) { } { }1

=1
2 3 6 2,3 6 3 1 2 6 5,6 6,6 8,6 9, ,9 4,9 3 ,t

jj
E j t j t j t t t t t t t− ′∆ − ⊃ + + + + ≤ ≤ − = + + + + − −



(8-2) 



T. Adachi, D. Kikuchi 
 

 
203 

( ) ( )( ) ( ) ( )( )
( ) ( )

{ } { }
( )

1 1
1=1 1

6 2

    8 1 8 2

    3 6 2 2 1 3 6 2,3 6 3 1 2

    6 4,6 5,6 6,6 7,6 8,6 9,6 10, ,9 5,9 4,9 3 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t t

− −
− =
′′ ′∆ − ∪ ∆ −

⊃ − ∪ −

= + − ≤ ≤ − ∪ + + + + ≤ ≤ −

= + + + + + + + − − −

 

                      (8-3) 

( ) ( ) ( ) ( )0 1 7 9 2 ,E t′∆ − − ⊃ −                                                              (9) 

( ) ( ) ( ) { } ( )1

1
2 8 2 3 6 2,3 6 3 1 9 1,9 ,t

jj
E j t j t j t t t−

=
′∆ − − − ⊃ + + + + = − = −



                        (10) 

( ) ( ) ( ) ( ) { } ( )1

1
2 8 2 10 3 9 2 1 1 9 1,9 4,9 7, ,12 5 ,t

jj
E j t j t t t t t−

=
′∆ − − − − ⊃ + − ≤ ≤ − = + + + −



       (11-1) 

( ) ( ) { } ( )1
11

3 3 9 1,3 9 1 1 9 2,9 3,9 5,9 6, ,12 4,12 3 ,t
jj

E j t j t j t t t t t t t−
−=
′′′∆ − ⊃ + − + ≤ ≤ − = + + + + − −



(11-2) 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )
{ } { }
( )

1 1
11 1

2 8 2 10 3

    11 1 11 2

    3 9 2 1 1 3 9 1,3 9 1 1

    9 1,9 2,9 3,9 4,9 5,9 6, ,12 5,12 4,12 3 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t

− −
−= =

′ ′′′∆ − − − − ∪ ∆ −

⊃ − ∪ −

= + − ≤ ≤ − ∪ + − + ≤ ≤ −

= + + + + + + − − −

 

                        (11-3) 

( ) ( ) ( )1 4 12 2,12 1 ,tE t t−′′∆ − ⊃ − −                                                          (12) 

( ) ( ) ( )1 5 12 ,12 1 ,tE t t−′′′∆ − ⊃ +                                                            (13) 

( ) ( ) ( ) { } ( )1
11

6 8 1 3 12 1,3 12 1 12 2,12 3 ,t
jj

E j t j t j t t−
−=
′′∆ − − − ⊃ + − + = = + +



                      (14) 

( ) ( ) ( ) ( ) ( )0 1 7 9 12 4 ,E t′∆ − − − ⊃ +                                                        (15) 

( ) ( ) ( ) ( ) { }
( )

1
11

6 8 1 14 3 12 1,3 12 2 1

           12 5,12 6,12 8,12 9, ,15 4,15 3 ,

t
jj

E j t j t j t

t t t t t t

−
−=
′′∆ − − − − ⊃ + − + ≤ ≤ −

= + + + + − −

                          (16-1) 

( ) ( ) ( ) ( ) ( ) { } ( )1

1
2 8 2 10 11 1 3 12 4 1 2 12 7,12 10, ,15 2 ,t

jj
E j t j t t t t−

=
′∆ − − − − − − ⊃ + + ≤ ≤ − = + + −



 (16-2) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

{ } { }
( )

1 1
11 1

6 8 1 14 2 8 2 10 11 1 16 1 16 2

    3 12 1,3 12 2 1 3 12 4 1 2

    12 5,12 6,12 7,12 8,12 9,12 10, ,15 4,15 3,15 2 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t

− −
−= =
′′ ′∆ − − − − ∪ ∆ − − − − − − ⊃ − ∪ −

= + − + ≤ ≤ − ∪ + + ≤ ≤ −

= + + + + + + − − −

 

 (16-3) 

( ) ( ) ( ) ( ) ( ) ( )0 1 7 9 15 15 1,15 ,E t t′∆ − − − − = −                                                 (17) 

( ) ( ) ( ) ( ) ( ) ( ) { } ( )1

1
2 8 2 10 11 1 16 2 3 12 4 1 15 1 ,t

jj
E j t j t t−

=
′∆ − − − − − − − − ⊃ + + = − = +



             (18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

{ }
( )

1

1
2 8 2 10 11 1 16 2 18

    3 15 1,3 15 1 1

    15 2,15 3,15 5,15 6, ,18 4,18 3 ,

t
jj

E

j t j t j t

t t t t t t

−

=
′∆ − − − − − − − − −

= + − + ≤ ≤ −

= + + + + − −



                                   (19-1) 
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( ) ( ) ( ) { } ( )1
11

3 11 2 3 15 11 1 15 4,15 7, ,18 2 ,t
jj

E j t j t t t t−
−=
′′′∆ − − − = + + ≤ ≤ − = + + −



       (19-2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )
{ } { }
( )

1 1
11 1

2 8 2 10 11 1 16 2 18 3 11 2

    19 1 19 2

    3 15 1,3 15 1 1 3 15 11 1

    15 2,15 3,15 4,15 5,15 6,15 7, ,18 4,18 3,18 2 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t

− −
−= =

′ ′′′∆ − − − − − − − − − ∪ ∆ − − −

= − ∪ −

= + − + ≤ ≤ − ∪ + + ≤ ≤ −

= + + + + + + − − −

 

  (19-3) 

( ) ( ) ( ) ( )1 4 12 18 1,18 ,18 1 ,tE t t t−′′∆ − − = − +                                             (20) 

( ) ( ) ( ) ( )1 5 13 18 2 ,tE t−′′′∆ − − = +                                                     (21) 

( ) ( ) ( ) ( ) { }

( )

1

1
1

6 8 1 14 16 1 3 18 ,3 18 1,3 18 2 1 1

                                                                 18 3,18 4,18 5, , 21 1 .

t

j
j

E j t j t j t j t

t t t t

−

−
=

 
′′∆ − − − − − − = + + + + + ≤ ≤ − 

 
= + + + −



       (22) 

From this one easily checks that the twenty-two lists cover all numbers in 21tZ  exactly once. Thus, Δ defines 
a wrapped Δ-labelling and by applying Proposition 4 we get the following result. 

Theorem 10. Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipartite 
graph 21 ,21t tK  with 21d =  and 12f = . 

Using the same edge ordering of 21 ,21t tK  one gets the following theorem by enlarging the window d. 
Theorem 11. Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipartite 

graph 21 ,21t tK  with 21d s r= +  and ( ) ( )6 1 min ,6f s r= + + , 0s > , 0,1, , 20r =  . 
For example, we get a (21, 12)-cluttered ordering of 21 ,21t tK . For the graphs 21 ,21t tK , this is a much better 

ordering than the (21, 16)-cluttered ordering from Theorem 6. 

6. Conclusion 
In conclusion, we give a new sequence for construction of wrapped Δ-labellings. Figure 7 and Figure 8 are the 
same as a graph, but they are different as a sequence. Cluttered orderings given by two sequences construct the 
different orderings for the complete bipartite graph 21,21K . 

Acknowledgements 
We thank the Editor and the referee for their comments. 

References 
[1] Hellerstein, L., Gibson, G., Karp, R., Katz, R. and Patterson, D. (1994) Coding Techniques for Handling Failures in 

Large Disk Arrays. Algorithmica, 12, 182-208. http://dx.doi.org/10.1007/BF01185210 
[2] Chen, P., Lee, E., Gibson, G., Katz, R. and Ptterson, D. (1994) RAID: High-Performance, Reliable Secondary Storage. 

ACM Computing Surveys, 26, 145-185. http://dx.doi.org/10.1145/176979.176981 
[3] Chee, Y., Colbourn, C. and Ling, A. (2000) Asymptotically Optimal Erasure-Resilient Codes for Large Disk Arrays. 

Discrete Applied Mathematics, 102, 3-36. http://dx.doi.org/10.1016/S0166-218X(99)00228-0 
[4] Cohen, M. and Colbourn, C. (2000) Optimal and Pessimal Orderings of Steiner Triple Systems in Disk Arrays. Lecture 

Notes in Computer Science, 1776, 95-104. http://dx.doi.org/10.1007/10719839_10 
[5] Cohen, M. and Colbourn, C. (2001) Ordering Disks for Double Erasure Codes. Proceedings of the Thirteenth Annual 

ACM Symposium on Parallel Algorithms and Architectures, 229-236. 
[6] Cohen, M., Colbourn, C. and Froncek, D. (2001) Cluttered Orderings for the Complete Graph. Lecture Notes in Com-

puter Science, 2108, 420-431. http://dx.doi.org/10.1007/3-540-44679-6_48 
[7] Cohen, M. and Colbourn, C. (2004) Ladder Orderings of Pairs and RAID Performance. Discrete Applied Mathematics, 

138, 35-46. http://dx.doi.org/10.1016/S0166-218X(03)00268-3 
[8] Adachi, T. and Uehara, H. (2014) Construction of Wrapped ρ-Labellings for RAID. Journal of Mathematics and Sys-

http://dx.doi.org/10.1007/BF01185210
http://dx.doi.org/10.1145/176979.176981
http://dx.doi.org/10.1016/S0166-218X(99)00228-0
http://dx.doi.org/10.1007/10719839_10
http://dx.doi.org/10.1007/3-540-44679-6_48
http://dx.doi.org/10.1016/S0166-218X(03)00268-3


T. Adachi, D. Kikuchi 
 

 
205 

tem Science, 4, 750-754. 
[9] Mueller, M., Adachi, T. and Jimbo, M. (2005) Cluttered Orderings for the Complete Bipartite Graph. Discrete Applied 

Mathematics, 152, 213-228. http://dx.doi.org/10.1016/j.dam.2005.06.005 
[10] Adachi, T. (2007) Optimal Ordering of the Complete Tripartite Graph K9,9,9. Proceedings of the Fourth International 

Conference on Nonlinear Analysis and Convex Analysis, 1-10. 
[11] Bosák, J. (1990) Decompositions of Graphs. Kluwer Academic Publishers, Dordrecht. 

http://dx.doi.org/10.1016/j.dam.2005.06.005


http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	Some Sequence of Wrapped Δ-Labellings for the Complete Bipartite Graph
	Abstract
	Keywords
	1. Introduction
	2. A Cluttered Ordering
	3. Construction of Cluttered Orderings of 
	4. Sequences of Wrapped -Labellings for H(1; t), H(2; t) and H(h; 1)
	4.1. A Sequence for H(1; t)
	4.2. A Sequence for H(2; t)
	4.3. A Sequence for H(h; 1)

	5. Our Result: A Sequence of a Wrapped -Labelling for  
	6. Conclusion
	Acknowledgements
	References

