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Abstract 
In this paper, we present a comparative study between the He-Laplace and Adomain decomposi-
tion method. The study outlines the significant features of two methods. We use the two methods 
to solve the nonlinear Ordinary and Partial differential equations. Laplace transformation with 
the homotopy method is called He-Laplace method. A comparison is made among Adomain de-
composition method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms 
of differential equation can be easy handled by the use He’s polynomials and provides better re-
sults. 
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1. Introduction 
This paper outlines a reliable Comparison between two powerful methods that were recently developed. The 
first is Adomain decomposition method (ADM) developed by Adomain in [1] [2], and used heavily in the lite-
rature in [3]-[10] and the references therein. The second is He-Laplace method, an elegant combination of the 
Laplace transformation, the homotopy perturbation method and He’s polynomials. The use of He’s polynomial 
in nonlinear term was first introduced by Ghorbani [11]. The proposed algorithm provides the solution in a rapid 
convergent series which may lead to the solution in a closed form. The two methods give rapidly convergent se-
ries with specific significant features for each scheme. Some of the classical analytic methods are lyapunov’s ar-
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tificial small parameter method [12] perturbation techniques [13] [14] and Hiroa bilinear method [15] [16]. In 
recent years, many authors have paid attention to study the solution of nonlinear partial differential equation by 
using various methods. Variational iteration method, He’s semi inverse method [17] and the differential trans-
form method, etc. are among these. The main objective is to introduce a comparative study to nonlinear ordinary 
differential and partial differential equations by using adomain decomposition method and He-Laplace method. 

This paper contains basic idea of homotopy pertaturbation method and He-Laplace method in Section 2, 
Adomain decomposition method in 3, Application in 4 and conclusion and discussions in 5 respectively. 

2. Basic Idea of Homotopy Perturbation Method and He-Laplace Method 
2.1. Homotopy Perturbation Method 
Consider the following nonlinear differential equation 

( ) ( ) 0,A y f r r− = ∈Ω                                (1) 

with boundary conditions of 

, 0,yB y r
n
∂  = ∈Γ ∂ 

                                (2) 

where A, B, ( )f r  and Γ  are a general differential operator, a boundary operator, a known analytic function 
and the boundary of the domain Ω , respectively. 

The operator A can generally be divided into a linear part L and a nonlinear part M. Equation (1) may there-
fore be written as: 

( ) ( ) ( ) 0L y M y f r+ − =                                (3) 

By the homotopy technique, we construct a homotopy ( ) [ ], : 0,1v r p R× →Ω  which satisfies: 

( ) ( ) ( ) ( ) ( ) ( )0, 1 0H v p p L v L y p A v f r = − − + − =                       (4) 

or 

( ) ( ) ( ) ( ) ( ) ( )0 0, 0H v p L v L y pL y p M v f r= − + + − =                     (5) 

where [ ]0,1p∈  is an embedding parameter, while 0y  is an initial approximation of Equation (1), which sa-
tisfies the boundary conditions. Obviously, from Equatons (4) and (5), we will have: 

( ) ( ) ( )0,0 0H v L v L y= − =                             (6) 

( ) ( ) ( )0,1 0H v L v L y= − =                             (7) 

The changing process of 𝑃𝑃 from zero to unity is just that of ( ),v r p  from 0y  to ( )y r . In topology, this is 
called deformation, while ( ) ( )0L v L y−  and ( ) ( )A v f r−  are called homotopy. If the embedding parameter 
pis considered as a small parameter, applying the classical perturbation technique, we can assume that the solu-
tion of Equations (4) and (5) can be written as a power series in :p  

2 3
0 1 2 3v v pv p v p v= + + + + +∞

                          (8) 

Setting 1p =  in Equations (8), we have 

0 1 21
lim
p

y v v v v
→

= = + + +                              (9) 

The combination of the perturbation method and the homotopy method is called the HPM, which eliminates 
the drawbacks of the traditional perturbation methods while keeping all its advantages. The series (9) is conver-
gent for most cases. However, the convergent rate depends on the nonlinear operator ( )A v . Moreover, He [18] 
made the following suggestions: 
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1) The second derivative of ( )M v  with respect to must be small because the parameter may be relatively 
large, i.e. 1.p →  

2) The norm of 1 ML
v

− ∂ 
 ∂ 

 must be smaller than one so that the series converges. 

2.2. He-Laplace Method 
Consider the following nonlinear differential equation (IVP): 

( ) ( )1 2 3y p y p y p f y f x′′ ′+ + + =                               (10) 

( ) ( )0 , 0y yα β′= =                                    (11) 

where 1 2 3, , , ,p p p α β  are constant. ( )f y  is a nonlinear function and ( )f x  is the source term. Taking 
Laplace transformation (denoted throughout this paper by L ) on both side of Equation (10), we have  

[ ] [ ] [ ] ( ) ( )1 2 3L y L p y L p y L p f y L f x′′ ′+ + + =                             (12) 

By using linearity of Laplace transformation, the result is 

[ ] [ ] [ ] ( ) ( )1 2 3L y Lp y Lp y Lp f y L f x′′ ′+ + + =                              (13) 

Applying the formula on Laplace transform, we obtain 

( ) ( ) [ ] ( ){ } [ ] ( ) ( )2
1 2 3[ ] 0 0 0s L y sy y p L sL y y p L y p L f y L f x′− − + − + + =                  (14) 

Using initial conditions in Equation (14), we have 

( ) [ ] ( ) ( ) ( )2
1 1 2 3s p s L y s p p L y p L f y L f xα β α+ = + + − − +                       (15) 

Or 

[ ] ( )
( ) ( ) [ ] ( ) ( ) ( )1 32

2 2 2
1 1 1

s p ppL y L y L f y L f x
s p s s p s s p s

α β α+ +
= − − +      + + +

             (16) 

Taking inverse Laplace transform, we have 

( ) ( ) [ ] ( )1 13 3
2 2

1 1

p p
y x F x L L y L L f y

s p s s p s
− −   

= − −      + +   
                   (17) 

where ( )F x  represents the term arising from the source term and the prescribed initial conditions. 
Now, we apply homotopy perturbation method [12], 

( ) ( )
0

n
n

n
y x p y x

∞

=

= ∑                                    (18) 

where the term ny  are to recursively calculated and the nonlinear term ( )f y  can be decomposed as 

( ) ( )
0

n
n

n
f y p H y

∞

=

= ∑                                   (19) 

for some He’s polynomial nH  (see [11] [19]) that are given by 

( ) ( )0 1 2
0 0

1, , , , 0,1, 2,3,
!

n
i

n n in
i P

H y y y y f p y x n
n p

∞

= =

 ∂  
= =  ∂   

∑   

Substituting Equations (18) and (19) in (17), we get 
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( ) ( ) ( ) ( )1 1 32
2 2

0 0 01 1

n n n
n n n

n n N

ppp y x F x p L L p y x L L p H y
s p s s p s

∞ ∞ ∞
− −

= = =

       
= − +        − +       

∑ ∑ ∑      (20) 

which is the coupling of the Laplace transformation and the homotopy perturbation method using He’s polyno-
mials. Comparing the coefficient of like powers of ,p  the following approximations are obtained: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0
0

1 1 1 32
1 0 02 2

1 1

2 1 1 32
2 1 12 2

1 1

3 1 1 32
3 2 22 2

1 1

: ,

:

:

:

p y x F x

ppp y x L L y x L L H y
s p s s p s

ppp y x L L y x L L H y
s p s s p s

ppp y x L L y x L L H y
s p s s p s

− −

− −

− −

=

    
= − +           + +    

    
= − +           + +    

  
= − +        + +  

 
   



             (21) 

3. A Domain Decomposition Method 
A domain decomposition method [3] [4] define the unknown function ( )u x  by an infinite series 

( ) ( )
0

,n
n

u x u x
∞

=

= ∑                                     (22) 

where the components ( ) ,nu x  are usually determined recurrently. The nonlinear operator ( )F u  can be de-
composed into an infinite series of polynomials given by 

( )
0

n
n

F u A
∞

=

= ∑                                       (23) 

where nA  are the so-called Adomain polynomial of 0 1 2, , , nu u u u  defined by  

( )
0

1 d , 0,1,2,
! d

n
i

n inA F u n
n λ

λ
λ =

 = =  
                            (24) 

or equivalently 
( )
( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

1 1 0

2
2 2 0 1 0

3
3 3 0 1 2 0 1 0

iv2 2 4
4 4 0 1 3 2 0 1 2 0 1 0

,

,
1 ,
2

1 ,
3

1 1 1 .
2 2 24

A F u

A u F u

A u F u u F u

A u F u u u F u u F u

A u F u u u u F u u u F u u F u

=

′=

′ ′′= +

′ ′′ ′′′= + +

 ′ ′′ ′′′= + + + + 
 



                (25) 

It is now well known that these polynomials can be generated for all classes of nonlinear according to specific 
algorithms defined by (24). Recently, an alternative algorithm for constructing Adomain polynomials has been 
developed by Wazwaz [6]. 

This powerful technique handles both linear and nonlinear equations in unified manner without any need for 
the so-called Adomain polynomials. However, Adomin decomposition method provides the component of the 
exact solution, where these components should follow the summation given in (22), whereas ADM requires the 
evaluation of the Adomain polynomials that mostly require tedious algebraic work. 
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4. Applications 
4.1. Example 1 
Consider the following nonlinear PDE [20]: 

2 42uu y x
y

 ∂
∇ + = + ∂ 

                                  (26) 

with the following conditions: 

( ) ( ) ( )
( ) ( )

,0 , ,1 ,

0, 0, 1,

u x ax u x x x a

u y u y y a

= = +

= = +
                             (27) 

4.1.1. Using He-Laplace Method 
Equation (22) can be written as 

22 2
4

2 2 2u u u y x
yx y

 ∂ ∂ ∂
+ + = + ∂∂ ∂  

                              (28) 

By applying the Laplace transform to both sides of Equation (24) subject to the initial condition, we have 

[ ] [ ]( ) ( )4 2
2

1 12 xx xxL u L y L x L u u
s s

 = + − +                          (29) 

The inverse of the Laplace transform implies that 

( )
6

2 1 2
2 2

1 1,
30 yy y
xu x y x y pL L u L u

s s
−    = + − +     

                     (30) 

Now, we apply the homotopy perturbation method, we have 

( ) ( )
6

2 1
2 2

0 0 0

1 1,
30

n n n
n n n

n n n

xp u x y x y pL L p u L p H u
s s

∞ ∞ ∞
−

= = =

     
= + − +           

∑ ∑ ∑             (31) 

where ( )nH u  are He’s polynomials. The first few com-ponents of He’s polynomials are given by  

( )
( )
( )

2 2
0 0

1 0 1

2
2 1 0 2

2

2 0

y

y y

y y y

H u y x

H u y y

H u y y y

= =

=

= + =

                               (32) 

Comparing the coefficient of like powers of p, we have ( )
6

0 2
0: , ,

30
xp u x y x y= +  but we consider 

( )
6

2
0 ,

30
xu x y x y xα= + +  

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

6
1 1

1 0 02

2 1
2 1 12

3 1
3 2 22

1: ,
30

1: , 0

1: , 0

yy

yy

yy

xp u x y L L y L H y
s

p u x y L L y L H y
s

p u x y L L y L H y
s

−

−

−

  = − + = −      
  = − + =      
  = − + =      



                  (33) 
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So that the solution ( ),u x y  is given by 

( )
6 6

2 2
0 1 2 3, 0 0

30 30
x xu x y u u u u x y ax x y ax= + + + + = + + − + + + = + 

           (34) 

which is the exact solution of the problem. 

4.1.2. Adomain Decomposition Method 
We first rewrite Equation (26) in an operator L  is 

22 2
4

2 2 2u u u y x
yx y

 ∂ ∂ ∂
+ + = + ∂∂ ∂  

 

( )2 42xx yy yL u L u L u y x+ + = +  

( )242xx yy yL u y x L u L u= + − −                               (35) 

( ) ( ) ( ),0 , ,1u x ax u x x x a= = +  

( ) ( )0, 0, 1,u y u y y a= = +  

where the differential operators , &xx yy yL L L  are 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2. . , . . & . .xx yy yL L L
yx y

∂ ∂ ∂
= = =

∂∂ ∂
                       (36) 

The inverse 1
xxL−  are assumed as an integral operator given by 

( ) ( )
0

1

0

d d. ,.
x

xx

x

x xL− = ∫ ∫                                   (37) 

Appling the inverse operator 1
xxL−  on both sides of (35) and using initial condition we find 

( ) ( )( )22 6 11,
30 xx yy yu x y yx x ax L L u L u−= + + − +                        (38) 

Substituting (22) into the function Equation (38) gives 

( ) ( ) ( )
2

2 6 1

0 0 0

1, , ,
30n xx yy n y n

n n n
u x y yx x ax L L u x y L u x y

∞ ∞ ∞
−

= = =

  
 = + + − +     

∑ ∑ ∑               (39) 

This can be rewrite at the form 

( ) ( )( )( )
0 1 2

22 6 1
0 1 2 0 1 2

1
30 xx yy y

u u u

x y x ax L L u u u L u u u−

+ + +

= + + − + + + + + + +



 

             (40) 

In view of (39), the following recursive relation  

( ) ( ) ( )( )( )
2 6

0

21
1

1
30

, , , , 0k xx yy k y k

u x y x ax

u x y L L u x y L u x y k−
+

= + +

= − + ≥
                     (41) 

follows immediately. Consequently, we obtain 
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( ) ( )( )( )
( ) ( )( )( )

2 6
0

21
1 0 0

21
2 2 2

1
30

, ,

, ,

xx yy y

xx yy y

u x y x ax

u L L u x y L u x y

u L L u x y L u x y

−

−

= + +

= − +

= − +



                         (42) 

According to Adomain [19], and approximate solution can be obtained [12]. 

( ) ( ) ( ) ( )
4

51 1, 1 1
2 2 3 30

x y xu x y x xy a y y x
  +  = + + − + + −   

     
                (43) 

the exact solution is given by ( ) ( ), .u x y x xy a= +  

4.2. Example 2 
Consider the following non-homogeneous nonlinear PDE [20]: 

2
2 1

4
u ux
t x

∂ ∂  = −   ∂ ∂  
                                 (44) 

with the following condition: 
( ),0 0u x =                                       (45) 

4.2.1. Using He-Laplace Method 
By applying the Laplace transform method subject to the initial condition, we have 

( )
2

21,
4 x

L x
y x s L u

s s

    = −                                (46) 

The inverse of the Laplace transform implies that 

( ) 2 1 21,
4 xu x t x t L L u

s
−   = −    

                            (47) 

Now, we apply the homotopy perturbation method, we have 

( ) ( )2 1

0 0

1,
4

n n
n n

n n
p u x t x t p L L p u u

s

∞ ∞
−

= =

    
= −          

∑ ∑                    (48) 

where ( )nH u  are He’s polynomials. The first few components of He’s polynomials are given by 

( )

( )

( )

2 2 2
0 0

2 4

1 0 1

2 3 2 6
2

2 1 0 2

4

82
3

2 162
9 15

x

x x

x x x

H u u x t

x tH u u u

x t x tH u u u u

= =

= = −

= + = +

                        (49) 

Comparing the coefficient of like powers of p  we have  

( )

( ) ( ){ }

( ) ( ){ }

0 2
0

2 3
1 1

1 0

2 5
2 1

2 1

: ,

1: ,
4 3
1 2: ,
4 15

p u x t x t

x tp u x t L L H u
s

x tp u x t L L H u
s

−

−

=

 = − =    

 = − =    

                      (50) 
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Proceeding in a similar manner, we have 

( )
2 7

3
3

17: ,
315
x tp u x t = −



 

So that the solution ( ),u x t  is given by 

( )
2 3 2 5 2 7

2
0 1 2 3

2 17,
3 15 315

x t x t x tu x t u u u u x t= + + + + = − + − + 
               (51) 

4.2.2. Adomain Decomposition Method 
We first rewrite Equation (44) in an operator L  is 

( )22 1
4t xL u x L u= −                                   (52) 

( ),0 0u x =  

where the differential operators are define as; 

( ) ( ) ( ) ( ),t xL L
t x
∂ ∂

⋅ = ⋅ ⋅ = ⋅
∂ ∂

 

And the inverse operator 1,tL−  provided that it exists, is defined as: 

( ) ( )1
0

d
t

tL t− ⋅ = ⋅∫                                     (53) 

Appling the inverse operator on both the sides of (52) and using the initial condition, yields: 

( ) ( ) ( )21 1 2 11
4t t t t xL L u L x L L u− − −= −  

( ) ( )22 11,
4 t xu x t x t L L u−= −                                (54) 

Now, we decompose the unknown function ( ),u x t  as a sum of components defined by the series (22): 

( ) ( )
0

, ,n
n

u x t u x t
∞

=

= ∑                                    (55) 

where 0u  is identified as ( );0u x . The components ( ),nu x t  are obtained by the recursive formula: 

( ) ( )
2

2 1

0 0

1, ,
4n t x n

n n
u x t x t L L u x t

∞ ∞
−

= =

  
= −   

  
∑ ∑                         (56) 

Or 

( ) 2
0 ,u x t x t=                                    (57) 

( ) ( )( )( )21
1

1, , , 0
4k t x ku x t L L u x t k−

+ = − ≥                         (58) 

We note that the recursive relationship is constructed on the basis that the component ( )0 ,u x t  is defined by 
all terms that arise from the initial condition and from integrating the source term. The remaining components 

( ),ku x t , can be completely determined recursively. 
Accordingly, considering the first few terms, Equations (14) and (15) give: 
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( )( )( ) ( )( )
( )( )( )

2
0

21 1 2
1 0

2 721

2 2

2 2

1 1,
4 4
1

3

3

,
4 6

t x t x

t x

u x t

u L L u x t L L x t

x tu L u

t

t

x

L x

− −

−

= = −

=

= − −

= − = −



 

Finally, using (55) we obtain the solution in series form: 

( ) 0 1 2 3,u x t u u u u= + + + +                              (59) 
That is: 

( )
2 3 2 7

2,
3 63

x t x tu x t x t= − − +                             (60) 

4.3. Example 3 
Consider the following first order nonlinear differential equation [19] 

2 0, 0y y y′ + = ≥                                  (61) 
With the following condition: 

( )0 1y =                                      (62) 

4.3.1. Using He-Laplace Method 
By applying the aforesaid method subject to the initial condition, we have 

( ) 21 1L y x L y
s s

 = −                                   (63) 

The inverse of Laplace transform implies that 

( ) 1 211y x L L y
s

−     
=


−                               (64) 

Now we apply the homotopy perturbation method, we have  

( ) ( )1

0 0

11n n
n n

n n
p y x p L L p H y

s

∞ ∞
−

= =

   
= −        

∑ ∑                      (65) 

where ( )nH y  are He’s polynomials. The first few components of He’s polynomials are given by 

( )
( )
( )

2
0 0

1 0 1

2 2
2 1 0 2

1

2 2

2 3

H y y

H y y y x

H y y y y x

= =

= = −

= + =

                             (66) 

Comparing the coefficient of like powers of p, we have 

( )

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

0
0

1 1
1 0

2 1 2
2 1

3 1 3
3 2

: 1

1:

1:

1:

p y x

p y x L L H y x
s

p y x L L H y x
s

p y x L L H y x
s

−

−

−

=

 = − = −    
 = − =    
 = − = −    



                       (67) 
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So that the solution ( )y x  is given by  

( )
( )

0 1 2 3

2 31

y x y y y y

y x x x x

= + + + +

= − + − +





                             (68) 

which is converging to 1
1 x
 
 + 

 i.e. exact solution. 

4.3.2. Adomain Decomposition Method 
We first rewrite Equation (61) in an operator L  is 

2Ly y= −                                       (69) 

( )0 1y =  

where the differential operators are define as; 

( ) ( )L
t
∂

⋅ = ⋅
∂

                                    (70) 

And the inverse operator 1L−  provided that it exists, is defined as 

( ) ( )1
0

d
t

L t− ⋅ = ⋅∫                                    (71) 

Appling the inverse operator on both the sides of (69) and using the initial condition yields: 

( ) ( )1 1 2L Ly L y− −= −  

( ) ( )1 21y x L y−= −                                   (72) 

Now, we decompose the unknown function ( )y t  as a sum of components defined by the series (22): 

( ) ( )
0

n
n

u x u x
∞

=

= ∑                                    (73) 

where 0y  is identified as ( )0y . The components ( )ky t  are obtained by the recursive formula: 

( ) 1 2

0 0
1n n

n n
y t L y

∞ ∞
−

= =

  
= −   

  
∑ ∑                                (74) 

Or 
0 1y =  

( ) ( )1 2
1k ky t L y−
+ = −                                  (75) 

We note that the recursive relationship is constructed on the basis that the component ( )0y t  is defined by 
all terms that arise from the initial condition and from integrating the source term. The remaining components 

( )ky t , can be completely determined recursively. 
Accordingly, considering the first few terms, Equations (72) and (73) give: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

1 2 1
1 0

3
1 2 1 2

2 1

6 7
1 2 1

3 2

1

1

3

9 63

y

y t L y L t

ty t L y L t

t ty t L y L

− −

− −

− −

=

= − = − = −

= − = − = −

 
= − = − = − 
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Finally, using (55) we obtain the solution in series form: 

( ) 0 1 2 3y x y y y y= + + + +                               (76) 

That is: 

( )
3 7

1
3 63
t ty x t= − − −  

5. Discussions 
The main goal of this work is to conduct a comparative study between Adomain decomposition method and the 
He-Laplace method. The two methods are powerful and efficient methods that both give approximations of 
higher accuracy and closed form solutions if existing. 

An important conclusion can be made here. Adomain decomposition method for solving nonlinear ordinary 
and partial differential equations, the same problems are solved by He-Laplace method. Adomain decomposition 
method provides the components of exact solution, where these components should follow the summation given 
in (22). However, He-Laplace is an elegant combination of the Laplace transformation, the homotopy perturba-
tion method and He’s polynomials. Moreover, the ADM requires the evaluation of the Adomain polynomial that 
mostly require tedious algebraic calculations. The ADM provides the solution in successive components that 
will be added to get the series solution. 
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