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Abstract 
In this paper, a reaction-diffusion equation with discrete time delay that describes the dynamics of 
the blood cell production is analyzed. The existence of the traveling wave front solutions is demon-
strated using the technique of upper and lower solutions and the associated monotone iteration. 
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1. Introduction 
It is well know that the traveling wave theory was initiated in 1937 by Kolmogorov, Petrovskii, Piskunov [1] 
and Fisher [2]. Now, the theory of traveling wave solutions to reaction-diffusion equations is one of the fast de-
veloping areas of modern mathematics and has attracted much attention due to its significance in biology, che-
mistry, epidemiology and physics, see [3] [4] and the reference cited therein. In recent years, the traveling wave 
problem for reaction-diffusion systems with delay has been widely studied. For example, Gomez and Trofim-
chuk [5] considered the Fisher-KPP equation and their results showed that each monotone traveling wave could 
be found via an iteration procedure by using the special montone integral operators. Schaaf [6] systematically 
studied two scalar reaction-diffusion equations with a single discrete delay by using the phase plane technique, 
the maximum principle for parabolic functional differential equations and the general theory of ordinary diffe-
rential equations. The degree theory has been adopted in [7] [8]. 

In this paper we consider the following reaction-diffusion equation with a discrete time delay: 

( ) ( ) ( ) ( )
( )

, ,
, , .

1 ,n

N t x N t x
N t x N t x

t N t x
β τ

δ
τ

∂ −
= ∆ − +

∂ + −
                     (1.1) 
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When N  is independent on the spatial variable x , the above equation reduces to the following ordinary diffe-
rential equation 

( ) ( ) ( )
( )

,
1 n

N t
N t N t

N t
β τ

δ
τ

−
′ = − +

+ −
                            (1.2) 

which was first proposed by Mackey and Glass [9] to describe the dynamics of blood cell production. Here, 
( )N t  denotes the density of mature stem cells in blood circulation and τ  is the time delay between the pro-

duction of immature stem cells in bone marrow and their maturation for release in the circulating blood stream; 
( ),  0,δ β ∈ +∞  and ( )1,n∈ +∞  are positive constants that represent some specific meanings in blood circula-  

tion. For instance, δ  is the lost rate of the cells from the circulation. The term 
( )
( )1 n

N t
N t

β τ
τ

−

+ −
 shows that the  

flux of the cells into the circulation from the stem cell compartment depends on the number of cells N  at time 
t τ− . For more details about Hematopoiesis model, we refer the readers to the articles of Mackey [9]-[11] and 
the references given in them. 

Equation (1.2) has been studied by many authors such as in [12]-[14]. Weng and Dai [13] proved that the pos-
itive equilibrium to Equation (1.2) could be a global attractor under some conditions. Wu, Li and Zhou [14] de-
rived a sufficient and necessary condition that guarantees the existence of positive periodic solutions of Equation 
(1.2) with periodic coefficients. 

Equation (1.2) can be generalized as the following functional differential equation 

( ) ( ) ( ) ( )( ),
, , , .

u t x
u t x u t x f u t x

t
δ τ

∂
− ∆ = − + −

∂
                         (1.3) 

Wang [15] investigated the generalized equation with Neumann boundary condition and obtained the oscilla-
tory behavior of solutions about the positive equilibrium of (1.3). Further, they derived the sufficient and neces-
sary conditions for global attractivity of the zero solution. In addition, global attractivity of the positive equili-
brium of (1.3) was investigated by Gopalsamy and Kulenvic [16]. Cheng and Zhang [17] and Jiang et al. [18] 
( n -dimentional case) instead investigated the existence of positive periodic solutions of Equation (1.3) by using 
the Krasnosel skii fixed point theorem. 

The aim of this paper is to consider the existence of traveling wave front solutions for (1.1) in the case of one 
dimensional space. 

This paper is outlined as follows. The next section, we will introduce the technique of upper and lower solu-
tions developed by Wu and Zou [19]. The conditions for establishing the positive equilibria and obtaining the 
existence of traveling waves are derived in Section 2. 

To investigate the existence of traveling wave fronts of (1.1), we describe briefly the technique of upper and 
lower solutions developed by Wu and Zhou [19]. 

Consider a scalar reaction-diffusion equation with time delay: 

( ) ( ) ( )( )
2

2

, ,
,t

u t x u t x
D f u x

t x
∂ ∂

= +
∂ ∂

                            (1.4) 

where 0,  ,  t x u≥ ∈ ∈  , and 0D >  is the diffusion coefficient. The function [ ]( ): ,0 ,f C τ− →   is 
continuous and ( )tu x  is an element in [ ]( ),0 ,C τ− →   parameterized by x∈  and given by 

( )( ) ( ) [ ], ,     ,0 ,  0,  .tu x s u t s x s t xτ= + ∈ − ≥ ∈  

Looking for traveling wave solutions of the form ( ) ( ),u t x x ctφ= +  leads to a second-order functional dif-
ferential Equation 

( ) ( ) ( ) 0,     ,c tD t c t f tφ φ φ′′ ′− + = ∈                           (1.5) 

where [ ]( ): ,0 ,c cf X C cτ∆= − →   is define by 

( ) ( ) ( ) ( ) [ ],   ,     ,0 .c c
cf f s cs sψ ψ ψ ψ τ= = ∈ −  
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Now we assume that 
A1. There exists 0K >  such that ( ) ( )ˆ ˆ0 0c cf f K= =  and ( )ˆ 0cf u ≠  for ( )0,u K∈ , where û  denotes 

the constant function taking the value u  on [ ],0cτ− . 
A2. There exists 0α ≥  such that 

( ) ( ) ( ) ( )0 0 0c cf fφ ψ α φ ψ− + − ≥    

for ,  cXφ ψ ∈  with ( ) ( ) [ ]0 ,  ,0s s K s cψ φ τ≤ ≤ ≤ ∈ − . 
If for some 0c > , (1.5) has a monotone solution φ  defined on   such that 

( ) ( )lim 0,     lim ,t tt t Kφ φ→−∞ →∞= =                            (1.6) 

then ( ) ( ),u t x x ctφ= +  is called a traveling wave front of (1.4) with a wave speed c . 
Define a profile set for traveling wave fronts of (1.1) by 

( ) ( )
( ) ( ) ( )

  is nondecreasing in ,
, : .

 lim 0,  lim ,
n

t t

i
C

ii t t K
φ

φ
φ φ→−∞ →∞

  Γ = ∈ = =  



   

The upper and lower solution for (2.1) are defined as follows: 
Definition 1 The piecewise smooth functions φ  and φ  in ( ),C    are called upper and lower solution of 

(1.4) if φ φ≥  and if 

( ) ( ) ( ) ,     c tc t D t f tφ φ φ′ ′′≥ + ∈  

and φ  satisfies the above differential inequalities in reversed order. 
Now we are in the position to state a scalar version of [19] (Theorem 3.6). 
Theorem 1 If the conditions (A1) and (A2) hold, suppose that (1.5) has an upper solution φ  in Γ  and a 

lower solution φ  (which is not necessarily in Γ ) with ( ) ( )0 t t Kφ φ≤ ≤ ≤  and ( ) 0tφ ≡/  in  , then the 
problem (1.4) admits a traveling wave front. 

2. Existence of Traveling Wave Fronts 
Assume that β δ> , and we can get two equilibria of (1.1) 

1

1 20, 1 0.
n

k k β
δ

 = = − > 
 

 

We will tackle the existence of solutions of (3.1) with the asymptotic boundary condition 

( ) ( )1 2lim , lim ,
t t

t k t kφ φ
→−∞ →−∞

= =  

which corresponds to the traveling wave fronts of (1.2) connecting 1k  and 2k . 
Substituting ( ) ( ),u t x sφ=  into (1.2), and denoting the movingvariable s  still by t , the resulting wave 

equation becomes 

( ) ( ) ( ) ( )
( )

.
1 n

t c
c t t t

t c
βφ τ

φ φ δφ
φ τ

−
′ ′′− = − +

+ −
                         (1.7) 

Define the function 

( ) ( ) ( )
( )

0 .
1c n

c
f

c
βφ τ

φ δφ
φ τ

= − +
+

 

Lemma 1 If β δ> , then ( ) ( )2
ˆ0̂ 0c cf f k= = , and ( )ˆ 0cf K ≠ , for any ( )1 2,K k k∈ , where K̂  denotes 

the constant function taking the value K  on [ ],0cτ− . 
Next we show that ( )cf φ  satisfies quasi-monotonicity condition with some assumptions. 
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Lemma 2 If 1
1

n
n

β
δ

> >
−

, ( )1,n∈ ∞ , then ( )cf φ  satisfies the following quasi-monotonicity condition: 

Take α δ≥ , and we have 

( ) ( ) ( ) ( )0 0 0c cf fφ ψ α φ ψ− + − ≥    

for all [ ]( ),  ,0 ,C cφ ψ τ∈ −   with ( ) ( )1 2k s s kψ φ≤ ≤ ≤ , [ ],0s cτ∈ − . 

Proof 1 Consider the function ( )
1 n

yh y
y

=
+

, and it is obvious that 

( ) ( )
( )

1

2

1 1 1= 0,    for   0 .
11

n
n

n

n y
h y y

ny

+ −  ′ ≥ ≤ ≤  − +
 

If 1
1

n
n

β
δ

> >
−

, then 

( ) ( )
1 1

2
10 1

1
n n

t t k
n

βψ φ
δ

   ≤ ≤ ≤ = − ≤   −   
 

since 1n > . 
It demonstrates that the function ( )h y  is increasing on [ ]1 2,k k . A direct computation shows that 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )( ) ( )
( )

( )
( )

( ) ( )( )

0 0
1 1

                      0 0
1 1

                      0 0 ,

c c n n

n n

c c
f f

c c

c c
c c

βφ τ βψ τ
φ ψ δφ δψ

φ τ ψ τ

φ τ ψ τ
δ φ ψ β

φ τ ψ τ

δ φ ψ

− = − + + −
+ +

 
= − − + −  + + 

≥ − −

 

and then 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0 0 0 .c cf fφ ψ α φ ψ α δ φ ψ− + − ≥ − −  

Therefore, if choosing α δ≥ , we have 

( ) ( ) ( ) ( )( )0 0 0c cf fφ ψ α φ ψ− + − ≥ . 

This completes the proof. 

Remark 1 If 1n = , the function ( )
1

yh y
y

=
+

 is increasing for all 0y > . When β δ>  the condition (A2)  

is hold. 
Define the profile set 

( ) ( )
( ) ( ) ( )1 2

  is nondecreasing in ,
, : .

 lim ,  lim ,t t

i
C

ii t k t k
φ

φ
φ φ

∗

→−∞ →∞

  Γ = ∈ = =  



   

Next we will discuss the existence problem by using the method of upper and lower solutions that are defined 
as follows: 

Definition 2 The piecewise smooth functions φ  and φ  in ( ),C    are called upper and lower solution of 
(3.1) if φ φ≥  and if 
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( ) ( ) ( ) ( )
( )

 in 
1 n

t c
c t t t

t c
βφ τ

φ φ δφ
φ τ

−
′ ′′− ≥ − +

+ −
  

and φ  satisfies the above differential inequalities in reversed order. 
Define 

( ) 2 e c
c c λτλ λ λ δ β −∆ = − − + , 

then we have the following lemmas. 
Lemma 3 There exists 0c∗ >  such that for c c∗> , ( ) 0c λ∆ =  has two positive real roots, 1 20 λ λ< <  

and 

( ) ( )
2

1 2

1

0, for ,
0, for , ,
0, for .

c

λ λ
λ λ λ λ

λ λ

> >
∆ = < ∈
> <

 

Since the proof of this lemma is similar to that of Claim 2.3 of [19], we omit it. Next we first construct the 
upper solution of (3.1). 

Lemma 4 Assume c c∗> , then ( ) { }1
2min ,e tt k λφ =  is an upper solution of (3.1) and φ ∗∈Γ . 

Proof 2 It is easy to verify that φ ∗∈Γ . We show that φ  is an upper solution of (3.1). 
Let 0t  be such that 1 0

2e t kλ = . 
i) For 0t t≥ , ( ) 0tφ′ = , ( ) 0tφ′′ = , ( ) 2t kφ = , ( ) 2t c kφ τ− ≤ . thus 

( ) ( ) ( ) ( )
( )

( )
( )2 0.

1 1n n

t c t c
t c t t k

t c t c
βφ τ βφ τ

φ φ δφ δ
φ τ φ τ

− −
′′ ′− − + ≤ + ≤

+ − + −
 

ii) For 0t t< , ( ) 1e tt λφ =  and ( ) ( )1e t ct c λ τφ τ −− = , thus 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )1 1 12
1 1 1

1

                                                            e e e 0.

n

t c t
c

t c
t c t t t c t t t c

t c

cλ λ τ λ

βφ τ
φ φ δφ φ φ δφ βφ τ

φ τ

λ λ δ β λ−

−
′′ ′ ′′ ′− − + ≤ − − + −

+ −

≤ − − + = ∆ =

 

According to the discussion above, we know that φ  is an upper solution of (1.5). This completes the proof. 
We now give the lower solution to (1.5). Let >c c∗  and 1 20 λ λ< <  be the same as those given in Lemma 

3.2. Take 0ε >  such that 1 1 2ε λ λ ε λ< < + < . Define ( ){ }1max 0, 1 e e ttM λεφ = − , where the constant 1M >  
is to be determined. 

Lemma 5 For 
( )
( )

1
22

1

e 1 ec c

c

M
λ τ ε τβ

λ ε

− −+
>

−∆ +
, ( ) ( ){ }1max 0, 1 e e ttt M λεφ = −  is a lower solution for Equation (3.1). 

Proof 3 Let 1
1 1lnt

Mε
 =  
 

, then 1 0t <  for 1M >  and 

( ) ( ) 1

1

1

0, for ,

1 e e , for .tt

t t
t

M t tλεφ
>=  − <

 

i) For 1t t> , ( ) ( ) ( )0,  0,  0t t c tφ φ τ φ′= − = = , and ( ) 0tφ′′ = . Hence 

( ) ( ) ( )
( )
( )

0
1 n

t c
c t t t

t c
βφ τ

φ φ δφ
φ τ

−
′ ′′− + − =

+ −
 

ii) For 1t t< , we have 
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( ) ( )

( ) ( )

( ) ( ) ( )

1

1

1

1 1

22
1 1

e e ,

e e ,

1 e e .

tt

tt

t c t c

t M

t M

t c M

λε

λε

ε τ λ τ

φ λ ε λ

φ λ ε λ

φ τ − −

 ′ = − + 

 ′′ = − + 

 − = − 

 

It is easy to check that ( )( ) ( )10 1 e e < 1t c t cM ε τ λ τ− −≤ − . It follows that 11
1

nφ
φ

+ <
−

. Therefore 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( )

1 1 1

1 1

1 1

22
1 1 1 1

2
1 1

1

  1

  e e e e 1 e e

       1 e e 1 1 e e

  e e e

n

n

t t tt t t

t c t c t c t c

t c
c c

t c
t c t t

t c

t c t t t c t c

M c M M

M M

M

λ λ λε ε ε

ε τ λ τ ε τ λ τ

λ λε

βφ τ
φ φ δφ

φ τ

φ φ δφ βφ τ φ τ

λ ε λ λ ε λ δ

β

λ λ ε β

− − − −

−

−
′′ ′− − +

+ −

 ′′ ′≥ − − + − − − 

   = − + − − + − −  

  + − − −   

= ∆ − ∆ + − ( )( )
( ) ( )( )

( ) ( ) ( )( )

1

1 1

1 1

2
1

2
1

e 1 e

  e e e e 1 e

  e e 1 e .

t c

t ct ct t
c

t t cc
c

M

M M

M M

ε ττ λ τ

ε τλ λ τε ε

λ ε ε τλ τ

λ ε β

λ ε β

−

−−

+ −−

 − 

 ≥ − ∆ + − − 

 = − ∆ + − − 

 

Note that 
( )

( )

1

1

1 e 1 e e 1 e ,

1 e 1 e e 1 e .

t c t c c

t c t c c

M M

M M

ε τ ε ε τ ε τ

ε τ ε ε τ ε τ

− − −

− − −

− > − = −

− < + < +
 

Since 1 10,  t t ε λ< < < , we have ( ) ( )2 2
1 e 1 et c cM ε τ ε τ− − < −  . Thus 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )( )

( ) ( )
( )
( )

1 1

1

1

2
1

22

1
1

e e 1 e
1

e 1 e
                                                            e .

t t cc
cn

c c
t

c
c

t c
t c t t M M

t c

M M

λ ε ε τλ τ

λ τ ε τ
λ ε

βφ τ
φ φ δφ λ ε β

φ τ

β
λ ε

λ ε

+ −−

− −
+

−  ′′ ′− − + = − ∆ + − − + −

 + ≥ − ∆ + −    −∆ +
 

 

If we choose 

( )
( )

1
22

1

e 1 e
,

c c

c

M
λ τ ε τβ

λ ε

− −+
>

−∆ +
 

then ( ) ( ) ( )
( )
( )

0
1 n

t c
t c t t

t c
βφ τ

φ φ δφ
φ τ

−
′′ ′− − + ≥

+ −
. Thus φ  is a lower solution of (3.1). 

It is clear that 1 2k kφ φ≤ ≤ ≤ . Summarizing the above conclusions, we give our main result of this paper 
below. 

Theorem 2 If 1
1

n
n

β
δ

> >
−

, ( )1,n∈ ∞ , or 1,  n β δ= > , then for every c c∗> , the problem (1.2) has a 

traveling wave front which connects the equilibria 1 0k =  and 
1

2 1
n

k β
δ
 = −  

. 
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