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Abstract 
We consider two problems from stability theory of matrix polytopes: the existence of common 
quadratic Lyapunov functions and the existence of a stable member. We show the applicability of 
the gradient algorithm and give a new sufficient condition for the second problem. A number of 
examples are considered. 
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1. Introduction 
Consider the switched system 

( ) ( ) { }1 2, , , , Nx t Ax t A A A A= ∈

                              (1) 

where ( ) nx t ∈  , 0t ≥ . In Equation (1), the matrix A  switches among N  matrices 1 2, , , NA A A . 
Switching signal ( )tσ  is piecewise continuous from the right function [ ) { }: 0, 1, 2, , Nσ ∞ →   and the 

switching times are arbitrary. For the switched system (1) with initial condition ( ) 00x x=  and with switching 
signal ( )tσ  denotes the solution by ( )( )0, ,x t x σ ⋅ . 

Definition 1. The origin is uniformly asymptotically stable (UAS) for the system (1) if for every 0ε >  there 
exists 0δ >  such that for every signal ( )tσ  and initial state 0x  with 0x δ< , the inequality 

( )( )0, ,x t x σ ε⋅ <  is satisfied for all 0t >  and uniformly on ( )σ ⋅  

( )( )0lim , , 0.
t

x t x σ
→∞

⋅ =  

If all systems in (1) share a common quadratic Lyapunov function (CQLF) ( ) TV x x Px=  then the switched 
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system is UAS (T denotes the transpose). 
In this case there exists a common 0P >  such that 

( )T 0 1,2, ,i iA P PA i N+ < =                                (2) 

and P  is called a common solution to the set of Lyapunov matrix inequalities (2). 
The problem of existence of common positive definite solution P  of (2) has been studied in a lot of works 

(see [1]-[9] and references therein). Numerical solution for common P  via nondifferentiable convex optimiza-
tion has been discussed in [10]. 

In the first part of the paper, the problem of existence of CQLF is investigated by Kelley’s method. This me-
thod is applied when CQLF problem is treated as a convex optimization problem. 

Second part of the paper is devoted to the following question: 
Let lB ⊂   be a compact, for q B∈  the matrix ( )A q  is a real n n×  matrix. Is there a Hurwitz stable 

member (all eigenvalues lie in the open left half plane) in the family 

( ){ }:A q q B∈  

or equivalently is there *q B∈  such that ( )*A q  is stable? This problem is one of the hard and important 
problems in control theory (see [11]). Numerical solution of this problem is considered in [12]. In this paper we 
reduce this problem to a non-convex optimization problem. 

2. Common Quadratic Lyapunov Function 
For the switched system 

{ }1 2, , , Nx A A A x= 

  

consider the problem of determination of CQLF ( ) TV x x Px=  where 0P > . We are going to investigate it by 
Kelley’s cutting-plane method. This method gives new sufficient condition (Theorem 2) and new algorithm 
(Algorithm 1) which is more effective in comparison with the algorithm from [10]. 

Consider the problem of existence of a common 0P >  such that 

( )T 0 1,2, ,i iA P PA i N+ < =  .                             (3) 

Let rx∈  be ( )T
1 2, , , rx x x x=   and P  be an n n×  symmetric matrix defined as 

( ) ( )
1 2

2 1 2 1

2 1

1
2

n

n n

n n r

x x x
x x x n n

P P x r

x x x

+ −

−

 
  +  = = =     
 





   



 

Define 

( ) ( ) ( )T T T
1 max 1 , 1max max .i N i i i N u i ix A P PA u A P PA uφ λ≤ ≤ ≤ ≤ == + = +

 

                (4) 

If there exists *x  such that ( )* 0P x >  and ( )* 0xφ <  then the matrix ( )*P x  is required solution. This 
problem can be reduced to the minimization of a convex function under convex constraints. 

Consider the following convex minimization problem 

( )
( )T

1

minimize.

min 0v

x

v P x v

φ

=

→

>
                                  (5) 

Let nX ⊂   be a convex set and :F X →   be convex function. The vector ng ∈  is said to be a sub-
gradient of ( )F x  at *x X∈  if for all x X∈  

( ) ( ) ( )T
* *F x F x g x x≥ + − . 
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The set of all subgradients of ( )F x  at *x x=  is denoted by ( )*F x∂ . If *x  is an interior point of X  
then the set ( )*F x∂  is nonempty and convex. The following proposition follows from nondifferentiable opti-
mization theory. 

Proposition 1. Let ( )xφ  be defined as 

( ) ( )max ,y Yx f x yφ ∈=                                   (6) 

where Y  is compact, ( ),f x y  is continuous and differentiable in x . Then 

( ) ( ) ( )
,

conv :
f x y

x y Y x
x

φ
∂  ∂ = ∈ 

∂  
 

where ( )Y x  is the set of all maximizing elements y  in (6), i.e. 

( ) ( ) ( ){ }: ,Y x y Y f x y xφ= ∈ = . 

If for a given x  the maximizing element is unique, i.e. ( ) ( ){ }Y x y x=  then ( )xφ  is differentiable at x  
and its gradient is 

( ) ( ),
.

f x y
x

x
φ

∂
∇ =

∂
 

In the case of the Function (4) 

( ) ( )( ) ( )T T T
maxconv : maximizes ,

is a corresponding unit eigenvector .

i i i ix u A P PA u i A P PA
x

u

φ λ∂∂ = + +
∂





 

If for the given x  the maximizing i  is unique and ( )T
max i iA P PAλ +  is a simple eigenvalues, the diffe-

rentiability of φ  at the point x  is guaranteed [13]. 
We investigate problem (5) by Kelley’s cutting-plane method. 
This method converts the problem (5) to the problem 

( ) ( ) ( )

T

1 2

min
0, 0, 1 1 1,2, ,i

c z
c z c z x i r

→

≥ ≥ − ≤ ≤ = 

                       (7) 

where ( )T
1 2, , , ,rz x x x L=  , ( )T0,0, ,0,1c =  , ( ) ( )1c z L xφ= − , ( ) T

2 1min vc z v Pv== . 
Let 0z  be a starting point and 0 1, , , kz z z  be 1k +  distinct points. 
At the ( )1k + th iteration, the cutting-plane algorithm solves the following LP problem 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

T 0 T 0 0 0
1 1 1

T 0 T 0 0 0
2 2 2

T T
1 1 1

T T
2 2 2

minimize

subject to

1 1

k k k k

k k k k

i

L

h z z h z z c z

h z z h z z c z

h z z h z z c z

h z z h z z c z

x

− ≥ − −

− ≥ − −

− ≥ − −

− ≥ − −

− ≤ ≤


                       (8) 

where ( )i
jh z  denotes a subgradient of ( )jc z−  at ( )1,2iz i = . 

Let *
kz  be the minimizer of the problem (8). 

If *
kz  satisfies the inequality ( ) ( ){ }1 * 2 *min ,k kc z c z ε≥ − , where ε  is a tolerance then *

kz  is an approx-  
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imate solution of the problem (7). 
Otherwise define *j  as the index for the most negative ( )*

k
jc z , update the constraints in (8) by including 

the linear constraint 

( ) ( )( )* *
1 T 1 1 0k k k

j j
c z h z z z+ + +− − ≥  

and repeat the procedure. 
Recall that our aim is to find *x  such that ( )* 0P x >  and ( )* 0xφ < , but not the solution of the minimiza-

tion problem (5), (7). 
Theorem 2. If there exists k  such that 

( ) ( )1 * 2 *, 0k k kc z L c z> >  

where ( )* * ,k k kz x L=  is the minimizer of the problem (8), then the matrix ( )*
kP P x=  is a common solution to 

(3). 
Proof: 

( ) ( )* 1 * 0,k k kx L c zφ = − <  

( ) ( )T
2 * *1

0 mink k

v
c z v P x v

=
< =  

and by (5), ( )* 0kP x >  is a common solution to (3). 
For the problem (5), (7) Kelley’s method gives the following 
Algorithm 1. 
Step 1. Take an initial point ( )T0 0 0,z x L= . Compute ( )0xφ  and ( )0

2c z . If ( )0 0xφ <  and ( )0
2 0c z >  

stop; otherwise continue. 
Step 2. Determine *

kz  by solving LP problem in (8). If ( )1 *
k kc z L>  and ( )2 * 0kc z >  then stop; otherwise 

continue. Set 1
*

k kz z+ = , update the constraints in (8) and repeat the procedure. 
Example 1. Consider the switched system 

{ }1 2 3, ,x A A A x∈  

where 

1 2 3

2 5 6 8 17 27 4 9 2
0 8 0 , 9 44 27 and 6 8 4
5 2 20 22 41 2 1 10 6

A A A
− − − − −     
     = − = − = − −     
     − − − − − − −     

 

are Hurwitz stable matrices. 
Choose the initial point ( ) ( )

T T0 0 0 0 0 0 0 0
1 2 3 4 5 6, , , , , , 1,0,0,1,0,1,1z x x x x x x L= = , then 

( )0

1 0 0
0 1 0 ,
0 0 1

P x
 
 =  
 
 

 

( )0
1 7.5247c z = − , ( )0

2 1c z =  and ( )
{ }

( ) ( )( )0 T 0
max 01,2,3

max 8.5247 0.i ii
x A P x P x Aφ λ

∈
= + = >  

We obtain ( )T1 1,1,1,1, 1,1, 27.9933z = − − −  by solving LP problem in (8). Calculations give the following 
Table 1, and 

( ) ( )
T T15 15 15, 0.7811,0.6268, 0.1283,1, 0.1254,0.2383, 0.8206 .z x L= = − − −  

Since ( )15 15
1 0.0287 0L c z− = − <  and ( )15

2 0.2075 0c z = > , 



Ş. Yılmaz, T. Büyükköroğlu 
 

 
2654 

Table 1. Kelley’s algorithm for Example 1. 

k kL  ( )1
kc z  ( )2

kc z  

1 27.9933−  ‒209.7383 1.9999−  

2 24.4038−  ‒127.1153 2.3326−  

3 14.2596−  ‒106.2473 1.8092−  

4 10.0497−  ‒63.4433 1.8878−  

        

14 0.8465−  1.1881−  0.2694 

15 0.8206−  0.7919−  0.2075 

 

( )15

0.7811 0.6268 0.1283
0.6268 1 0.1254
0.1283 0.1254 0.2383

P P x
− 

 = = − 
 − − 

 

is a common positive definite solution for 

( )T 0 1, 2,3 .i iA P PA i+ < =  

3. Stable Member in a Polytope 
This part is devoted to the following question: Given a matrix family ( ){ }:A q q B∈  where lB ⊂   is a 
compact, is there a stable matrix in this family? 

In [12], a numerical algorithm has been proposed for a stable member in the affine matrix family 
( ){ }: lA q q∈ . In this algorithm the uncertainty vector q  varies in the whole space l . On the other hand 

we consider the case where q  varies in a box lB R⊂  and use the gradient algorithm for minimization of the 
nonconvex maximum eigenvalue function. By choosing appropriate step-size, we obtain the convergence. 

Let ( )
1 2

1
, , ,

2r

n n
Z Z Z r

+ 
= 

 
  be a basis for the subspace of n n×  symmetric matrices and 

( ) ( ) ( ) ( )( )T ,i i i iQ q Z A q Z Z A q= − ⊕ +  

( ) ( )max
1

,
r

i i
i

x q x Q qφ λ
=

 
=  

 
∑  

where ( )T
1 2, , , rx x x x=  , ( )T

1 2, , , kq q q q=  . 
Consider the problem 

( )
( )T

1,

, minimize.

min 0
x q Q

x q

v P x v

φ

= ∈

→

>
 

Theorem 3. There is a stable matrix in the family ( )A q  if and only if ( ) ( )*
,min , 0.x q x qφ φ= <  

Proof: 

( ) ( )* * * * *

1
0 there exists , such that 0

r

i i
i

x q x Q qφ
=

< ⇔ <∑  

( ) ( )* T * * * *

1 1 1
0

r r r

i i i i i i
i i i

x Z A q x Z x Z A q
= = =

      
⇔ − ⊕ − + − <      

      
∑ ∑ ∑  
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( ) ( ) ( ) ( ) ( )T* * * * * *

1
0 and 0.

r

i i
i

P x x Z A q P x P x A q
=

⇔ = > + <∑  

By Lyapunov theorem, the matrix ( )*A q  is stable. 
Example 2. Consider the family of matrices 

( ) [ ]0 1 1 2 2 3 3 1 2 3, , , 1,1A q A q A q A q A q q q= + + + ∈ −  

where 

0 1 2 3

1 0 2 0 2 0 3 0 1 0 2 0 1 0 0 1
2 0 3 0 1 0 3 2 3 1 3 0 1 2 3 2

, , , .
5 1 1 0 3 3 1 0 3 2 1 2 1 2 0 1
3 1 0 2 4 1 0 2 2 1 0 2 0 2 1 5

A A A A

− − −       
       − − − − − − − − − −       = = = =
       − − − − − − − −
       
− − − − − − − − − − −       

 

For ( )T0,0,0q = , ( ) 0A q A=  is unstable. We apply the gradient algorithm to find a stable member in the 
family. 

Let 
T

0 1 1 1 1,0,0,0, ,0,0, ,0,
2 2 2 2

x  =  
 

 and ( )T0 1,0,0q = . So 

( )
T

0 0 0 1 1 1 1, ,0,0,0, ,0,0, ,0, ,1,0,0 .
2 2 2 2

a x q  = =  
 

 

Then 

( )
( )

( ) ( ) ( ) ( )

0
10

0 0
T0 0 0 01

0

0

1 2 0 0 0 0 0 0 0
0 1 2 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0
0 0 0 1 2 0 0 0 0

.
0 0 0 0 1 0 5 0
0 0 0 0 3 0 6 2
0 0 0 0 8 4 2 0
0 0 0 0 7 2 0 4

i i
i

P x
x Q q

A q P x P x A q=

 −
 =   + 
− 
 − 
 −
 

− =  −
 

− − 
 − −  − − − 

∑

 

Maximum eigenvalue of this matrix and its corresponding unit eigenvector are 

( )T
max 2.1866, 0,0,0,0,0.7644, 0.4480, 0.1668, 0.4324vλ = = − − −  

respectively. Gradient of the function φ  at 0a  is 

( )0
T2.44, 1.86, 11.04, 2.78,1.93,7.50,4.30,2.52,7.46,2.35,0.28,0.50, 2.73 .aφ∇ = − − − − −  

The first tencomponent of the vector 0
1 0

aa a t φ= − ⋅∇  should be on the ten dimensional unit sphere. There-
fore 0.01531t =  and 

( )T1 0.53,0.02,0.16,0.04,0.47, 0.11, 0.06,0.46, 0.11,0.46,0.99, 0.007,0.04 .a = − − − −  

After 4 steps, we get 

( ) ( )T4 4 4, 0.59,0.03,0.04,0.009,0.41, 0.05, 0.04,0.49, 0.15,0.45,0.98, 0.03,0.08a x q= = − − − −  
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and ( )4 4, 0.2585 0x qφ = − < . Therefore ( )4A q  is stable. 

4. Conclusion 
Two important problems from control theory are considered: the existence of common quadratic Lyapunov 
functions for switched linear systems and the existence of a stable member in a matrix polytope. We obtain new 
conditions which give new effective computational algorithms. 
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