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Abstract 
Considering a sequence of standardized stationary Gaussian random variables, a universal result 
in the almost sure central limit theorem for maxima and partial sum is established. Our result ge-
neralizes and improves that on the almost sure central limit theory previously obtained by Marcin 
Dudzinski [1]. Our result reaches the optimal form. 
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1. Introduction 
In this paper, we let ( ), n n

X X
∈

 be a standardized stationary Gaussian sequence, also let 
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n k
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D d
=

= ∑ , { }kd  

be some sequence of weights, ( )I .  and ( ).Φ  denote the indicator function and the standard normal distribu- 
tion function, respectively. 
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The ASCLT has been first introduced independently by Brosamler [2] and Schatte [3] for partial sum, since 
then the concept has already started to receive applications in many fields. For example, Fahrner and Sadtmuller 
[4] and Cheng et al. [5] extended this almost sure central limit theorem for partial sums to the case of maxima of 
i.i.d. random variables. Under some conditions, they proved as follows: 

( )( ) ( )
1

1 1lim
ln

n

k k kn k
a S b x G x

n k→∞ =

Ι − ≤ =∑  a.s., 

for all x R∈ , where 0ka >  and kb R∈  satisfy ( ) d
k k ka S b G− → , where G(:) is some non-degenerate  

distribution function. Afterwards, Marcin Dudzinski [5] showed the ASCLT in its two-dimensional version, i.e. 

( ) ( )
1

1lim , e Φ
n

k
k k k kn kn k

S
d I a M b x y y

D
τ

σ
−

→∞ =

 
− ≤ ≤ = 

 
∑  a.s. for ,x y∀ ∈ .           (1.1) 

In this paper, we extend the weight 1
kd

k
=  to the weight 

( )( )exp ln
k

k
d

k

β

= , 
10
2

β≤ < . 

Our purpose is to prove that if ( ), n n N
X X

∈
 is a standardized stationary Gaussian sequence, the covariance  

function ( )r t  fulfills 

( ) ( )L t
r t

tα
= , 0α >  and 1,2,t =  ,                           (1.2) 

where ( )L t  is a positive slowly varying function at infinity. Moreover if the numerical sequence { }nu  satis- 
fies the following relation  

( )( )lim 1 nn
n u τ

→∞
−Φ =  for some 0 τ≤ < ∞ ,                        (1.3) 

then we have 
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S
d I a M b x y y

D
τ

σ
−
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− ≤ ≤ = Φ 

 
∑  a.s. for any ,x y R∈ ,           (1.4) 

where 
1

n

n k
k

D d
=

= ∑  and 
( )( )exp ln

k

k
d

k

β

= , 
10
2

β≤ < . 

In the following, denote by n na b∼  if 1n

n

a
b

→  as n →∞ , by n na b  if there exists a constant 0c >   

such that n na cb≤  for sufficiently large n . The c  stands for a constant, which may vary from one line to 
another. 

2. Main Results 
Theorem 2.1. Assume that ( ), n n

X X
∈

 be a standardized stationary Gaussian sequence, the covariance func- 

tion ( )r t  satisfies (1.2) for some 0α > . If the numerical sequence { }nu  satisfies (1.3), then (1.4) holds with  

( )( )exp ln
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k
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D D
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 be a positive non-decreasing sequence with lim nn
D

→∞
= ∞ . We say that { }k k

x
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summable to a finite limit x if 
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d x x
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where 1.k k kd D D −= −  
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Remark 2.1. By a classical theorem of Harly (see Chandrasekharan and Minakshisundaram [6]), if two se- 
quences D  and *D  satisfy ( )n nD O D∗ = , then D -summability implies the *D -summability, i.e., if a se- 

quence { }n n N
x

∈
 is D -summable to x, then it is also *D -summable to x. These results show that if (2.1)  

holds with the weight { }k k
d

∈
, then for 0 k kd d∗≤ ≤ , nD∗ → ∞ , (2.1) also holds with the weight { }k k

d ∗

∈
. So,  

if ASCLT holds with { }k k
d

∈
, then for 0 k kd d∗≤ ≤ , nD∗ → ∞ , ASCLT also holds with { }k k

d ∗

∈
. So, by this,  

if we use larger weights, we should expect to get stronger results. Theorem 2.1 remains valid if we extend the  

weights from 1
kd

k
=  to 

( )( )exp ln
k

k
d

k

β

= , 
10
2

β< < . When 0β = , the weights 1
kd

k
= . 

Lemma 2.2. Under the same assumptions as in Theorem 2.1, if the numerical sequence { }nu  fulfills (3),  
then there exists some 0γ >  and for any ,x y∈  and ,m n<  

,, ,n n
n n m n n

n n
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σ σ
     ≤ ≤ − ≤ ≤     
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n

γ

σ σ
      ≤ ≤ ≤ ≤             

                  (2.3) 

where , .m m n n
m n

x xu b u b
a a

= + = +  

3. Proofs 
3.1. Proof of Theorem 2.1  

Under the assumptions of Theorem 1 on 1 2, , ,X X   ( )r t  and { }nu , by Theorem 4.3.3 in Leadbetter et al. [7], 

we have ( )lim en nn
P M u τ−

→∞
≤ =  for τ  which is defined in (1.3). Let y  be a real number, for each 1n ≥ , 

nY  denotes a standard normal variable, which is independent of ( )1, , nX X  and has the same distribution as 

n

n

S
σ

. From the proof of Lemma 2.2, we get that ( ) ( ) 1, 0n
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by Toeplitz Lemma, we obtain 
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To prove Theorem 2.1 for 
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2

β< < . We should prove the following: 
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In order to prove (3.2), it suffices to show the following holds (see Lemma 3.1 in Csaki and Gonchigdanzan 
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[8]) for some 0ε >  
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For 1nT , we have the following estimate: 
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. 

Then (9) and thus (8) follows from above estimates. By using (7), we complete the proof of Theorem 2.1. 
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3.2. Proof of Lemma 2.2  
We first consider that (1.2) holds with some 0 1α< < . Let 1 i n≤ ≤ , we have 

( ) ( )
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1 1 1

1
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By the application of the Karamata’s theorem (see Mielniczuk [9]), we obtain 
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From (4.1) and (4.2), for some 0 1α< < , we have 
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Since ( )L n  is a slowly varying function at infinity, for any 0ε > , ( )L n nε
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Let y  be an arbitrary real number and m n< . Suppose that nY  is a random variable, which has the same  
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By Theorem 4.2.1 in Leadbetter et al. (1983) and (4.3), (4.4) and (4.5), we get that 
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As we know { }nu  fulfills (1.3), which implies that  
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combine this and (4.6), we have 
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Next, we estimate 3A . 
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Let δ  is defined as in (4.5), set 
2
αδ
α

<
−

 such that 2 2 0
1

α
δ
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+
. By Theorem 4.2.1 in Leadbetter et  

al. and (1.3), we have 
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since ( )L n  and ln n  are slowly varying functions at infinity, we have ( ) ( )
1

1ln n L n nεδ+
  for any 0ε > ,  

then  

1 2
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Meanwhile, following from the elementary inequality n m n mx x
n

− − ≤ , 0 1x≤ ≤ . We get  

3 form mB m n
n n

γ
 ≤ < 
 

 .                                (4.10) 

By (4.8), (4.9) and (4.10), if (1.2) holds with 0 1α< < , then (2.2) holds. 

Provided (1.2) also holds with some 1α ≥ , since ( ).r  is positive, we get ( )
1
2Varn nS nσ = ≥ , this imply  
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By (4.5), set 1,
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kα

σ σ σ

σ σ σ

= + = + = = = +

−

= = + − = = =

 
= − = − 

 

=

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑∑ ∑ 

 

( )

( )
( )

( ) ( )( ) ( ) ( )

2

3
1

2

1

1 12
2 2 1

1 1
1 2

2

exp ,
2 1

exp
2 1

1 ln

for 0
2

n
n m

i
i m m

n
n

km

u S
E Cov X

L ku m
k

m L n L m n
n

n

m m
n n

α

α

µ
α

µ

α γ

µ σ

µ σ

αγ

= +

=

+
+ −

+

   
−    +   
 
−  + 

 
 
 

    < <   
   

∑

∑







 

. 

2 2 2 2
4

2 2

1 2 3

,

:

m n m m m n n m m

m n m n n

m n n m m

m n n

S S S S S S S
E Cov E E

S S S S
E E

F F F

σ σ σ σ σ

σ σ σ

+ +

+

     − −
+ −     

     
   −

− −   
   

= + +



.                (4.12) 
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Since ( )L t
tα

 is monotonic decreasing, so for 1 i m≤ ≤ , ( ) ( )r j i r j m− ≤ − , by (4.2), Karamata’s theorem  

and the property of the slowly varying function, we obtain 

( )

( ) ( )

( ) ( )
( )

2 2

1
1 2 1 1 2 1

2

1 2 1 1

1
221

1 1 1 1
2 22 2

2 4

1 1,

1

( )
( )

1for 0
4 4

m m n m m n

i j
i j m i j mm n m n

m m n n

i j m km n m n

F Cov X X r j i

mr j m r k

m m L nL n n
n L m

L m L n m n

m n m
n m n

α

α
α α

α α γ

σ σ σ σ

σ σ σ σ

αγ

+ +

== = + = = +

+

= = + =

−

− −

 
= − 

 

≤ −

  
  

   

      < < <     
     

∑ ∑ ∑ ∑

∑ ∑ ∑





 

 

. 

By ( )Varn nSσ = , then we get 
2

1m

m

S
E

σ
 

= 
 

, by the stationary of the sequence ( ), n n
X X

∈
, we get  

2 2

d

n m n mS S S+ − = , thus ( ) ( )2 2
2 2n m n mE S S E S+ − =  and by the fact that 0i jEX X >  for all ,i j  and (4.2), we  

deduce that  
2 2

2 2 2 2
2

1 21 1
2 22 ( ) for some 1

( )

m n m n m m n m m

m n n m n

m

n

S S S S S S S
F E E E E

m L m m m
n L n n n

α α γ

σ σ σ σ σ

σ
γ

σ

+ +

− −

   − −
≤ − ≤    

   

       <      
      

   

, 

where the second inequality follows from Jensen inequality. 
For 3F , we have 

2 2
3 0m n n m m

m n n

S S S S
F E E

σ σ σ
+   −

= − − =   
   

, so we prove (2.3) for some 0 1α< < . 

Next, we prove (2.3) for some 1α > . 

, 1 2 3 4, , , :m n
m m m n n

m n

S S
Cov I M u y I M u y G G G G

σ σ
    

≤ ≤ ≤ ≤ = + + +         
, 

where 1G  - 4G  are defined as 1E  - 4E  in (4.11), but for (1.2) holds for 1α > . Similarly as the proof of  

1E  - 4E , it is easy to check that 1 2 3
mG G G
n

γ
 + +  
 

  for some 0γ > . 

Define 4 1 2 3:G H H H= + +  as in (4.12), by Karamata’s theorem, we get  

( ) ( )

( ) ( )

2 2 1

1 1 1 1 1
1 2 1 1 12 2 2 2

1
2 2

1 1 1
12 2

1 1

1 1for 0
2

m m n m m n

i j m i t m

m n

t m

H r j i r t
m n m n

m m mr t L m
n nm

m n

γ

α γ

+ + −

= = + = = +

+

−
= +

≤ −

    < <   
   

∑ ∑ ∑ ∑

∑



  

. 

By the definition of nσ  and Karamata’s theorem, it is easy to obtain that 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
2

1 1 1 1 1
2 2 2 2 2α α ασ

− − − − ∞

= = = = =

≤ = + − = + − × + + +∑ ∑ ∑ ∑ ∑
n n n n

n
t t t t t

L t L t L t
n n n t r t n n t r t n n n n n cn

t t t
   , 
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then we have ( )1 2
n O nσ = . Similarly as the proof of 2F , 

1
22

2
m

n

m mH
n n

γσ
σ

   
   
   

    for 
10
2

γ< < , 

by the stationary of the sequence ( ), n n
X X

∈
, it is easy to see that 2 2

3 0m n n m m

m n n

S S S S
H E E

σ σ σ
+   −

= − − =   
   

. 

So we have proved (2.3) for the case of 1α > . 
Finally we should prove (2.3) for 1α = . 

, 1 2 3 4, , , :m n
m m m n n

m n

S S
Cov I M u y I M u y I I I I

σ σ
    

≤ ≤ ≤ ≤ = + + +         
, 

where we replaced 1E  - 4E  by 1I  - 4I  as in (4.11), but for (1.2) holds for some 1α = . 

Similarly, it is easy to check that 1 2 3
mI I I
n

γ
 + +  
 

  for some 0γ > . Define 4 1 2 3:I J J J= + + . Since 

( )r t  is monotonic decreasing, define ( ) ( )
1

1

ˆ 1 2
n

t
L n r t

−

=

= + ∑ , by the application of the proposition (Potter’s TH) 

of the slowly varying function, for any 1
10
2

δ< < , we have 

( ) ( ) ( )

( )( ) ( )( )
( )( )
( )( )

( )( )
( )( )

1 2

1 1

2 1 1

1 1 1 1 1
1 1 2 2 2 2

1 1
1 12 2
2 2

1 1
2 2

1 1
2 2

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

2 1for some 0

m n m n

t m tm n m n

mL n mm mJ r t r t
L m L n m n

L n m L n mm m n m n m
n n m n

L m L n

m n m m n m
n m n m n

δ δ

δ δ γ

σ σ σ σ

γ

+ + + +

= + =

+

+ + + +       =        
       

+          < <         
         

∑ ∑  



  

2

. 

( )

( )

1
11 1
22 22

2 1
2

ˆˆ
ˆ ˆ

m

n

L mm m m mJ
n n n nL n

δ γσ
σ

−
       
       
       

     for some 
10
2

γ< < . 

Similarly as 3 0F =  when 0 1α< < , we have 3 0J = , So we have 4
mI
n

γ
 
 
 

 . Finally, we get that  

1 2 3 4
mI I I I
n

γ
 + + +  
 

  for some 0γ > , when 1α = . 
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