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Abstract

Considering a sequence of standardized stationary Gaussian random variables, a universal result
in the almost sure central limit theorem for maxima and partial sum is established. Our result ge-
neralizes and improves that on the almost sure central limit theory previously obtained by Marcin
DudzinskKi [1]. Our result reaches the optimal form.
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1. Introduction

In this paper, we let (X , Xn) , be astandardized stationary Gaussian sequence, also let

ne

M, =maxX;,, M, = max X;, S, =YX, o, =yVar(s,), Dn:idk, {d.}

n
I<i<n m+1<i<n o1 k=1

be some sequence of weights, 1(.) and ®(.) denote the indicator function and the standard normal distribu-
tion function, respectively.
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The ASCLT has been first introduced independently by Brosamler [2] and Schatte [3] for partial sum, since
then the concept has already started to receive applications in many fields. For example, Fahrner and Sadtmuller
[4] and Cheng et al. [5] extended this almost sure central limit theorem for partial sums to the case of maxima of
i.i.d. random variables. Under some conditions, they proved as follows:

Iimii%l(ak (S, —b)<x)=G(x) as.,

n—o [nn )
for all xeR, where a, >0 and b, eR satisfy a, (S, —bk)L)G, where G(:) is some non-degenerate
distribution function. Afterwards, Marcin Dudzinski [5] showed the ASCLT in its two-dimensional version, i.e.

IimDiZn:dkl(ak(Mk —bk)sx,s—kg yj:e’cb(y) as.for vx,yeR. (1.2)
n k=1 O,

n—o
k

exp((ln k)ﬂ)

In this paper, we extend the weight d, :% to the weight d, = , 0< < % .

Our purpose is to prove that if (X, X,)
function r(t) fulfills

is a standardized stationary Gaussian sequence, the covariance

neN

r(t):%, a>0 and t=12,--, (1.2)

where L(t) is a positive slowly varying function at infinity. Moreover if the numerical sequence {un} satis-
fies the following relation

limn(1-®(u,))=7 forsome 0<r<w, (1.3)

n—o0

then we have

Iimizn:dkl [ak (M, =b,)< x,S—“s y] =e"®(y) as. forany x,yeR, (1.4)

n—oo Dn k=1 O-k

0 exp((ln k)ﬂ)
where D, =>d, and d, =————

,O£ﬂ<i
k=1 k 2

. . a : .
In the following, denote by a, ~b, if b—”—>1 as n—oo, by a, <b, if there exists a constant ¢ >0

n
such that a, <cb, for sufficiently large n. The c¢ stands for a constant, which may vary from one line to
another.

2. Main Results

Theorem 2.1. Assume that (X, X,)
tion r(t) satisfies (1.2) for some > 0. If the numerical sequence {u,} satisfies (1.3), then (1.4) holds with

be a standardized stationary Gaussian sequence, the covariance func-

neN

s
exp((ln k) ) 1
d =—=, 0<B8<—.
k " B 2
Let D={D,} . be a positive non-decreasing sequence with limD, =o. We say that {x} . is D-
summable to a finite limit x if
lim idexk =X, (2.1)
n—oo Dn k=1

where d, =D, -D, ;.
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Remark 2.1. By a classical theorem of Harly (see Chandrasekharan and Minakshisundaram [6]), if two se-
guences D and D" satisfy D; =O(Dn), then D -summability implies the D"-summability, i.e., if a se-

guence {xn}neN is D -summable to x, then it is also D" -summable to x. These results show that if (2.1)

holds with the weight {d,}, _,thenfor 0<d; <d,, D;— o, (2.1)also holds with the weight {d;}k S0,

keN '
if ASCLT holds with {d, }, ., then for 0<d; <d,, D; -0, ASCLT also holds with {d;| . So, by this,

if we use larger weights, we should expect to get stronger results. Theorem 2.1 remains valid if we extend the

1 _exp((ln k)ﬂ)

weights from dk:E to d, = , O<,B<%.When P =0, the weights dk=%-

k
Lemma 2.2. Under the same assumptions as in Theorem 2.1, if the numerical sequence {un} fulfills (3),
then there exists some y >0 andforany x,yeR and m<n,
v
E |(Mnsun,s—”syJ—|[ansun,isy] <<(Ej , 2.2)
o, ' o, n
S, S, mY’
Covi I| M, <u,,—<y|,I|M,,Su,—<y||l<|l—], (2.3)
(o ' o, n
where u, :i+bm,u L+bn
am an

3. Proofs
3.1. Proof of Theorem 2.1

Under the assumptions of Theorem 1 on X, X,,---, r(t) and {un} , by Theorem 4.3.3 in Leadbetter et al. [7],

we have limP(M, <u )=e™ for r which is defined in (1.3). Let y be a real number, for each n>1,
nN—o0

Y, denotes a standard normal variable, which is independent of (X,,---,X,) and has the same distribution as

S
30 From the proof of Lemma 2.2, we get that n< yj—P(Mn <u,)P(Y, <y) <<i7—>0, as
o n

n O-n

P(Mnsun,

n — o . Thus we have

lim P(Mn sun,s—”g yj: limP(M, <u,)P(Y,<y)=e"®(y),
n—ow Gn n—w
by Toeplitz Lemma, we obtain

Iimizn:dkP(Mk suk,is yjze*@(y) (3.1)
O,

n—o0 Dn k=1 K

n exp((ln k)ﬂ)
where D, =>'d, and d, =————

k=1

1
, O<f<—.
p 2

To prove Theorem 2.1 for 0< f <% . We should prove the following:

S S
DiZd{l[MkSUk,—kgy}—P[MkSUk,a—kﬁyH—)O as. (3.2)
k

n k=1 Oy

In order to prove (3.2), it suffices to show the following holds (see Lemma 3.1 in Csaki and Gonchigdanzan
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[8]) for some &>0

< yB <« D?(InD,) " (3.3)

|E(§k§,)|:Cov[l[MKSuk,S—ksy],l[M,SU,,—'SyD
Ok 9
Sk | |
<|Cov| I| M, <u,—<y | I| M <uy,—<y||[-1| M, <u,—<y
Ok g |
+Cov(l(Mksuk,isy],l(Mk,su,,isyB
Ok ’ O
<<EI[M,gul,igyj—l(Mk,su,,isy]
0 ' O

+

Cov(l (Mk suk,is yj,l(Mk,, su,,is yB
Ok O

k V4
< (I—) for 1<k <.

We know that

=
~

1gkg|gn,Tg(ln Dy) y 1<k<l<n,

For T, . we have the following estimate:

kY 1 D; D?
T, < > d.d, [—j < > d.d, S — =< n
2 | 2 (InD,)” (InD,)” (InD,)

1sks|sn,lks(ln D)7 1skslsn,$s(ln Dy)

By the elementary calculation, it is easy to see that D, ~ %(In n)~” exp((In n))ﬂ, InD, ~(Inn)”,

IninD, ~Ininn.

For 0<ﬂ<1,wehave g::ﬂ>0 and i:1+g.Then

2 2p 2p3
exp((inn)’) D IninD
T,< > dd < > d. > ( | )<< 5 2.4 Inn Dn<<LnH,n
1gkg|gn,|5>(|n Dn)‘f kS ein Dn)_% (In D, )7 k=t (In D, )7

D IninD, D D}

- 1 1-2p8 1 1+g
(InD,)27 (nD,) s (InD,)zs (INDy)

Then (9) and thus (8) follows from above estimates. By using (7), we complete the proof of Theorem 2.1.
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3.2. Proof of Lemma 2.2
We first consider that (1.2) holds with some O0<a <1.Let 1<i<n, we have

0<00v[xi,s—"j=ic:ov[xi,ixj]=i(1+ijr(i— ey r(j—i)]

O,

On o j=1 n j=1 j=itl 1)
ntL(t
< i+£Z¥ for some O<a <1
o, o, t
By the application of the Karamata’s theorem (see Mielniczuk [9]), we obtain
1
2 E E 1,1
o, ~ —————| L(n)2n 2. 4.2
(e “
From (4.1) and (4.2), for some 0<a <1, we have
1
n-1 | (t L(n)n"“ L(n))?
COV[X“S_”]<< :1' az ta)<< ( T - :( (a))
e 1= £
n L(n)zn 2 (L(n))zn 2 n2
Since L(n) isaslowly varying function at infinity, forany ¢>0, L(n)<n®.So
Cov{Xi,S—”j < na = al forany £>0 andsome O<a <1.Hence,
O, nE n;—s
S, 1 1
0<supCov| X;,~ |«— —>0,as n—w,forsome 0<pB<=, (4.3)
1<i<n o, n? 2
so there exist A, n, suchthat 0<sup Cov(xi i) <A<l,forany n>n,. (4.4)
1<i<n o,
. _L(t) .
By (1.2), tI|mr(t) = tllmt_"‘: 0, thus there exist &, n, such that
0<supr(t)=6<1. (4.5)

t>m
Let y be an arbitrary real number and m < n . Suppose that Y, is a random variable, which has the same

distribution as i,but Y, isindependent of (X,,---,X,),then we have
(o}
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By Theorem 4.2.1 in Leadbetter et al. (1983) and (4.3), (4.4) and (4.5), we get that

. S uy )1 U
A+A <<;Cov[xi,a—jexp( 2(1+/1)]<<nnﬁ,exp[ 2(1+/1)J. (4.6)

n

As we know {u,} fulfills (1.3), which implies that

1

2 1 2 I N
exp[—u?”J~C 2mu, 0, ~(2InnY:, exp[— u? )J«(nn)lz(l 2

n 2(1+ 2 e
combine this and (4.6), we have
1 1
1 (In n)2(1+z) (In n)2(1+/1)
A1+Az<<nn—ﬂ T = T
n1+/1 nl+},
1
Weset f+——-1>0, thus
1+4
1 mY 1
A+A «<—<|—| forsome O<y<f+——-1. 4.7
n’ n 1+2

Next, we estimate A, .

< P(an SUn)— [T @(u,)+P(M, <u,)-T]®(u,)
i=m+1 i=1 . (4.8)
+ ig[lq)(un)—gd)(un)
=B +B,+B,

Let & is defined as in (4.5), set 6 < Za such that li+a—2 >0. By Theorem 4.2.1 in Leadbetter et
-a +

al. and (1.3), we have

! 1
2 n 5 n L
B, +B, < nexp| ——_ Sr(t)< (In r21)1 s $ L(t) (In n)zi 5 L(n),
1+6 )3 ﬁ71 il N
nt n

1
since L(n) and Inn are slowly varying functions at infinity, we have (Inn)ws L(n)<n® for any &>0,
then

1 mY
B, +B, «—< o for some y >0. (4.9)
n

. . . . m
Meanwhile, following from the elementary inequality x"™™ —x" <—, 0<x<1.We get
n

V4
B, < L [mj form<n. (4.10)
n n

By (4.8), (4.9) and (4.10), if (1.2) holds with 0< a <1, then (2.2) holds.

1
Provided (1.2) also holds with some « >1, since r() is positive, we get o, :JVar(Sn) >n?, this imply
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L) LW _ .

noL(t n
0< Cov(xi, S j ilz o LAs Y t(“ ) is a slowly varying function infinity, we get Zt_“ <n® for
0 5 t= t=1 t=1
n n2

any ¢ >0. We obtain that (4.3) and (4.4). By using Theorem 4.2.1 in Leadbetter et al. and by (4.6)-(4.10), let

14
A - A bereplaced by C, - C, in(4.3), wealsoget C,+C, < (%j ,let D, - D, be replaced by B;-

]Zn: (< (Inn): n* <<[%)y for some y>0,

B, in (4.8), we also obtain that D, +D, <« nexp[
=1
n1+5

4 4
like (4.11), D, sm« (mj ,weget C, < (mj , at last , we obtain when (1.2) holds with « >1, then (2.2)
n n n

also holds.
Next, we prove (2.3). First we consider the situation of some O<a <1.Let i>m+1. Since L(t) is a posi-

L(t)

1
tive slowly varying function, then we have (L(m))z <m* for any &>0, e is monotonic decreasing,

S0 Z ( ) z Lt(at) , by (1.2) and (4.2), we obtain

t=i-m t=1
i—1 i1
0<Cov(xi,5_mj<<i 'Z '-g) < } _ 'z L&t)
Onm O t=i-m t L(m)Z ml 5 t=i-m t
m 1-a 2z
< 1 ZL t) < L(m)m _ L m) |
123t 1 a
L(m)zm 2 L(m)zm 2 m?
< m <<i for some 0<77<£
o m?” 2
m2

then there exist numbers g, m,, such that 0< sup Cov [X S—j u<1 for all m>m,. By the Normal
O,

i>m+1

Comparison Lemma, we obtain

mew%Fwwm —jj

oo e ) 2 s, U
<X 3 r(i-i)exp| —or ot [ .Cov| X, lexp) - - 1D
i=1 j=m+l ( + (J - I)) =1 n 2(14— COV[Xi ,Snj]

O-n

n 2
+ ) Cov[xi,s—mjexp - t +Cov(s—m,ij
i=m+1 Gm 2( (x Sm ]j Gm Gn

=E+E,+E +E,
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<1, then i+oa—2>0,we have

By (4.5), set 5 < i

&S uZ +u’ u2 +u? |, oo
E — _ S e _Zm T t
1 Zzlr(J I)exp[ 2(1+r J_I))J<<exp( 2(1+5)jz r()
2 2 n-i L 2 2 n L
< mexp[— u"‘+u”J > g <<mexp{— Uy + Uy jz g)
+

2(1+5) temali 2(1 6) ot
m) s 1 m Y 4
<|— ER L(n) < - — forsome 0< y <1
1+6

By (4.4), set A <i<1, then —,B+1—L< 0, we have
1-5 1+ 4

up

E, _ZCov[ Sy jexp -
i=1 O_n S
2(1+00v(xi,“D
o-n

1
1—
u; m Sn m L+ 1
<<exp(—2(1+l)j;Cov(Xi,G—J<< 7 (Inm)ziei)
1

1 B 4
<<—mﬁ M(Inm) (1+2) <<[mj <<[mj for 0<7<,B<%
n n

and

i=m+1 m i=m+1 j=1 m i=l j=m+1
1 o, nd 1 oo an(k)

= r(k)<— r(k
P P I I T e e

m % 1 1 1

< (F] 1 .a L(n)(L(m))z (In n)2(1+”)

I+u 2
N Y )
< (—j < (—j for 0<y<—=
n n 5
E, <<Cov(s_m MJ+ E[S_ij[i_MJ

(o™ O, (o™ o, o,

_E(S_ij(i_M]
Om Oy o,

=FR+F,+F

(4.12)
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Since% is monotonic decreasing, so for 1<i<m, r(j—i)s r(j—m), by (4.2), Karamata’s theorem

and the property of the slowly varying function, we obtain

m 2m+n 1 m  2m+n
F< Cov| X X;, X X, |= > > (i)
mOn =1 j=2m+1 OOy i=l j=2m+1
m 2m+n n
> 2 r(i-m<——>r(k)
O'mO'n i=1 j=2m+1 O'mO'n k=1
a 1
2 2
< - ml ——L(n)n"* <« (mjz [&J
12 2 n m
L(m)z L(n)2 m Zn 2 (m)
myz(n) (mY a 1
<|—| |—| <|— for O<y<—<=
n m n 4 4
2
S .
By o, =4Var(S,), then we get E[—m] =1, by the stationary of the sequence (X,X,) ., we get
m
d
Snizm —Sn =Som» thus E(S,,,m —S, )2 =E(S;n )2 and by the fact that EX;X; >0 forall i,j and (4.2), we
deduce that
2 2
F <E S_m E Sn+2m _Sn _Sﬂ <\/E[S_mj E(Snﬂm_SZm]
, < <
m O-n O-n Gl’ﬂ O-ﬂ

o L(m) mY2  (mY
« A« ( ) < (—j < (—J for some y <1
o, n L(n) n n

where the second inequality follows from Jensen inequality.
For F,, we have

F, = _E(S_m]E(i—M] =0, so we prove (2.3) forsome 0<a<1.
n

o o, o

Next, we prove (2.3) for some « >1.

Cov[l [Mm gum,s—”‘g yj, I (Mm,n Sun,is yD
O-m O-ﬂ

where G, - G, are defined as E, - E, in (4.11), but for (1.2) holds for « >1. Similarly as the proof of

=G, +G,+G; +G,,

4
E, - E,, itiseasytocheckthat G, +G, +G, <« (mj forsome y>0.
n

Define G, =H,+H,+H, asin (4.12), by Karamata’s theorem, we get

m 2m+n m 2m+n-1

1— 1 12 Z ( ) 1 12 Z ()
m n2 i=1 j=2m+1 m nz i=1 t=m+l
1 .
2m+n 2 1 m ¥ 1
L — for 0 =
z it%‘u (t)< (nj m*! (m)«(nj orb<r<3

m2n
By the definition of o, and Karamata’s theorem, it is easy to obtain that

n-1

n<o—2=n+22(n—t)r(t)=n+2nniﬂ—2nitxr(t)<<n+2nniL() <n+2nz L(t) <Ln+cen,
ST el oot

t=1
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then we have o, =O(n¥*). Similarly as the proof of F,,

1

Py Y
H, < Tam <<(mJ2 <<(m) for 0<;/<%,

O, n n

n

by the stationary of the sequence (X, Xn) L Itis easy to see that Hj =—E(S—mJE[i_MJ =0.

ne o o o

m n

So we have proved (2.3) for the case of a >1.
Finally we should prove (2.3) for « =1.

Cov(l [Mm gum,s—ms yj,l(Mm'n sun,is yD
O-m O-ﬂ

where we replaced E, - E, by I, - 1, asin(4.11), but for (1.2) holds for some «=1.

=L+, +1+1,,

/4
Similarly, it is easy to check that I, +1,+1, < (mj for some y>0. Define 1, =J,+J,+J,. Since
n

~ n-1
r(t) is monotonic decreasing, define L(n)=1+ Zgr(t), by the application of the proposition (Potter’s TH)

of the slowly varying function, for any 0< 9, < % , we have

2m+n+1 m m+n+1 ml: n+m
J1<<o-cr > r(t)<<aa dor(t)< - l(A z T1
mOn t=m+l mOn t=L (L(m))Z(L(n) 2 m2n2

1 ; 1 5
mYz(n+m)* m\z( 2n mY 1
<|— <l —||—| «|= forsome O<y<—
n m n m n 2

1 A 1 1
Gom _(myL(mz  (mYz(m\* (mY 1
<< —| —<|—| || <|—| forsome O<7<E.
o, n L(n)E n n n

V4
Similarlyas F,=0 when 0<a<1,wehave J,=0,Sowehave |, <« [mj . Finally, we get that
n

4
m
I1+I2+I3+I4<<(—) forsome y>0,when a=1.

n
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