Characterization of Self Dual Lattices in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3}

Comlan de Souza ${ }^{1}$, David W. Kammler ${ }^{2}$

${ }^{1}$ Department of Mathematics, California State University at Fresno, Fresno, USA
${ }^{2}$ Department of Mathematics, Southern Illinois University at Carbondale, Carbondale, USA
Email: csouza@csufresno.edu, dkammler@siu.edu
Received 19 March 2014; revised 19 April 2014; accepted 26 April 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

This paper shows that the only self dual lattices in $\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}$ are rotations of $\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

Keywords

Self Dual Lattice

1. Introduction

Let

$$
A:=\left[a_{1}, \cdots, a_{n}\right], B:=\left[b_{1}, \cdots, b_{n}\right],
$$

be nonsingular $n \times n$ real matrices with column vectors a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, respectively. Let

$$
\begin{aligned}
& \mathcal{L}_{A}:=\left\{\sum_{k=1}^{n} m_{k} a_{k}: m_{1}, \cdots, m_{n} \in \mathbb{Z}\right\}, \\
& \mathcal{L}_{B}:=\left\{\sum_{k=1}^{n} m_{k} b_{k}: m_{1}, \cdots, m_{n} \in \mathbb{Z}\right\} .
\end{aligned}
$$

be the lattices in \mathbb{R}^{n} that are generated by the columns of A, B. The lattice \mathcal{L}_{A} will be a subset of the lattice \mathcal{L}_{B} if and only if the generators a_{1}, \cdots, a_{n} of \mathcal{L}_{A} all lie in \mathcal{L}_{B}, i.e.,

$$
a_{k}=\sum_{l=1}^{n} m_{l k} b_{l}, k=1,2, \cdots, n
$$

How to cite this paper: De Souza, C. and Kammler, D.W. (2014) Characterization of Self Dual Lattices in $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3}. Applied Mathematics, 5, 1448-1456. http://dx.doi.org/10.4236/am.2014.510137
for suitably chosen integers $m_{l k}$. Equivalently,

$$
\left[a_{1}, \cdots, a_{n}\right]=\left[b_{1}, \cdots, b_{n}\right]\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{21} & m_{22} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n 1} & m_{n 2} & \cdots & m_{n n}
\end{array}\right]
$$

i.e.,

$$
M:=B^{-1} A
$$

is a matrix of integers. Analogously, the lattice \mathcal{L}_{B} is a subset of \mathcal{L}_{A} if $A^{-1} B$ is a matrix of integers. In this way we see that

$$
\mathcal{L}_{A}=\mathcal{L}_{B}
$$

if and only if both $M=B^{-1} A$ and

$$
A^{-1} B=\left(B^{-1} A\right)^{-1}=M^{-1}
$$

are matrices with integer elements. When this is the case, $\operatorname{det} M$ and det M^{-1} are both integers and since

$$
\operatorname{det} M \operatorname{det} M^{-1}=\operatorname{det} M M^{-1}=\operatorname{det} I=1 \text {, }
$$

this implies that

$$
\operatorname{det} M=\operatorname{det} M^{-1}= \pm 1
$$

Such a matrix is said to be unimodular. The above analysis (that can be found in [1]) is summarized as follows.

Theorem 1 The lattices $\mathcal{L}_{A}, \mathcal{L}_{B}$ are identical if and only if

$$
M:=A^{-1} B
$$

is a matrix of integers with

$$
\operatorname{det} M= \pm 1
$$

Corollary 1 Lattices are preserved under integer column operations.
Proof 1 Let $A=\left[a_{1}, \cdots, a_{n}\right]$ generate the lattice \mathcal{L}_{A}, and let

$$
K=\left[\begin{array}{ccccc}
0 & k_{12} & k_{13} \ldots & \ldots & k_{1 n} \\
0 & 0 & k_{23} & \ldots & k_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & k_{n-1 n} \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

be a strictly upper triangular matrix of integers. Then $I+K$ is an upper triangular matrix of integers with a unit diagonal, and we can write

$$
(I+K)^{-1}=I+L
$$

where

$$
L:=-K+K^{2}-K^{3}+\cdots+(-1)^{n-1} K^{n-1}
$$

is a strictly upper triangular matrix of integers. The columns of

$$
B:=A(I+K)
$$

i.e.,

$$
a_{1}, k_{12} a_{1}+a_{2}, k_{13} a_{1}+k_{23} a_{2}+a_{3}, \cdots
$$

generate the same lattice as the columns of A . To see this we observe that

$$
B^{-1} A=[A(I+K)]^{-1} A=(I+K)^{-1}=I+L
$$

is a matrix of integers with unit determinant.

2. Dual Lattices

Definition 1 Two linearly independent sets of real n (column) vectors a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n} are said to be biorthogonal if

$$
\left\langle a_{k}, b_{l}\right\rangle:=a_{k}^{\mathrm{T}} b_{l}=\delta_{k l}, k, l=1,2, \cdots, n
$$

where $\delta_{k l}$ is the Kronecker's delta, T denotes the transpose and \rangle denotes the usual inner product. When the columns of

$$
A:=\left[a_{1}, \cdots, a_{n}\right]
$$

and

$$
B:=\left[b_{1}, \cdots, b_{n}\right]
$$

are biorthogonal, we find

$$
A^{\mathrm{T}} B=I
$$

so that

$$
B=\left(A^{\mathrm{T}}\right)^{-1}=: A^{-\mathrm{T}}
$$

This being the case, given linearly independent vectors a_{1}, \cdots, a_{n} we can form A and then obtain the biorthogonal vectors b_{1}, \cdots, b_{n} as the columns of A^{-T}.

The lattice $\mathcal{L}_{A^{-T}}$ generated by vectors biorthogonal to a_{1}, \cdots, a_{n} is said to be the dual of the lattice \mathcal{L}_{A}. More generally, $\mathcal{L}_{B}^{\mathcal{L}_{B}^{-T}}$ is dual to \mathcal{L}_{A} if and only if B generates the same lattice as $A^{-\mathrm{T}}$, i.e.,

$$
\left(A^{-\mathrm{T}}\right)^{-1} B=A^{\mathrm{T}} B
$$

is a matrix of integers with determinant ± 1.
Suppose now that A_{1}, A_{2} generate the same lattice, i.e.,

$$
\mathcal{L}_{A_{1}}=\mathcal{L}_{A_{2}} .
$$

Let

$$
B_{1}=A_{1}^{-\mathrm{T}}, B_{2}=A_{2}^{-\mathrm{T}}
$$

be the generators of lattices $\mathcal{L}_{B_{1}}, \mathcal{L}_{\mathrm{B}_{2}}$ dual to $\mathcal{L}_{\mathrm{A}_{1}}, \mathcal{L}_{\mathrm{A}_{2}}$, respectively. Since

$$
B_{2}^{-1} B_{1}=\left(A_{2}^{-\mathrm{T}}\right)^{-1} A_{1}^{-\mathrm{T}}=A_{2}^{\mathrm{T}} A_{1}^{-\mathrm{T}}=\left(A_{1}^{-1} A_{2}\right)^{\mathrm{T}}
$$

we see that $A_{1}^{-1} A_{2}$ will be a matrix of integers with determinant ± 1 if and only if the same is true of $B_{2}^{-1} B_{1}$. Thus $\mathcal{L}_{B_{1}}=\mathcal{L}_{B_{2}}$ if and only if $\mathcal{L}_{A_{1}}=\mathcal{L}_{A_{2}}$.

We are interested in characterizing those lattices \mathcal{L}_{A} that are self dual, i.e.,

$$
\mathcal{L}_{A}=\mathcal{L}_{A^{-T}} .
$$

This will be the case if and only if

$$
\left(A^{-\mathrm{T}}\right)^{-1} A=A^{\mathrm{T}} A
$$

is a matrix of integers with determinant ± 1. Since

$$
\operatorname{det} A^{\mathrm{T}} A=(\operatorname{det} A)^{2},
$$

this will be the case only if

$$
\operatorname{det} A^{\mathrm{T}} A=1
$$

or equivalently

$$
\operatorname{det} A= \pm 1
$$

In this way we see that a lattice \mathcal{L}_{A} is self dual if and only if $A^{T} A$ is a matrix of integers with unit determinant. The parallelopiped in \mathbb{R}^{n} with vertices $0, a_{1}, a_{2} \cdots, a_{n}, a_{1}+a_{2}, a_{1}+a_{3}, \cdots, a_{1}+a_{2}+\cdots+a_{n}$, i.e., the unit cell of the lattice has the volume

$$
V\left(a_{1}, a_{2}, \cdots, a_{n}\right)=|\operatorname{det} A|
$$

[2] [3]. Thus a lattice can be self dual only if each of its primitive cells, has unit volume.
Self dual lattices are preserved under orthogonal transformations. Indeed, let Q be an orthogonal transformation on \mathbb{R}^{n}, i.e.,

$$
Q^{\mathrm{T}} Q=I,
$$

and let $\mathcal{L}_{A}, \mathcal{L}_{B}$ be the lattices generated by the columns of a nonsingular $n \times n$ matrix A and $B:=A^{-T}$. The matrix

$$
A^{\prime}:=Q A
$$

has columns

$$
a_{1}^{\prime}=Q a_{1}, a_{2}^{\prime}=Q a_{2}, \cdots, a_{n}^{\prime}=Q a_{n}
$$

that generate the lattice $\mathcal{L}_{A^{\prime}}$. We can use such a matrix Q to rotate $a_{1}, a_{2} \cdots, a_{n}$, to reflect one or more vectors of the set $a_{1}, a_{2} \cdots, a_{n}$, to permute $a_{1}, a_{2} \cdots, a_{n}$, etc. The lattice $\mathcal{L}_{B^{\prime}}$ which is dual to $\mathcal{L}_{A^{\prime}}$ is generated by the columns of

$$
B^{\prime}=\left(A^{\prime}\right)^{-\mathrm{T}}=(Q A)^{-\mathrm{T}}=Q^{-\mathrm{T}} A^{-\mathrm{T}}=Q B
$$

i.e., by

$$
b_{1}^{\prime}=Q b_{1}, b_{2}^{\prime}=Q b_{2}, \cdots, b_{n}^{\prime}=Q b_{n} .
$$

Thus the generators of the dual lattice \mathcal{L}_{B} are transformed in the same way as the generators of the lattice \mathcal{L}_{A}. In this way we see that a lattice \mathcal{L}_{A} is self dual if and only if the lattice $\mathcal{L}_{A^{\prime}}$ is self dual. Indeed,

$$
\left(A^{\prime}\right)^{\mathrm{T}} A^{\prime}=(Q A)^{\mathrm{T}} Q A=A^{\mathrm{T}} A
$$

so $A^{\mathrm{T}} A$ is a matrix of integers with unit determinant if and only if the same is true of $\left(A^{\prime}\right)^{\mathrm{T}} A^{\prime}$. Moreover, since

$$
\|Q x\|_{2}^{2}=x^{\mathrm{T}} Q^{\mathrm{T}} Q x=x^{\mathrm{T}} x=\|x\|_{2}^{2}
$$

we see that the orthogonal transformation Q preserves the Euclidean lengths of a set of generators for the lattice \mathcal{L}_{A}.

3. Main Results

We will now show that the only self dual lattices in $\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}^{3}$ are rotations of $\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, respectively.

The case $\mathrm{n}=1$

Let $A=\left[a_{1}\right]$ be a vector in \mathbb{R} that generates the lattice \mathcal{L}_{A}. We do not change the lattice if we assume that $a_{1}>0$. Let $b_{1}=1 / a_{1}$ be biorthogonal to A. The lattice \mathcal{L}_{B} generated by $B=\left[b_{1}\right]$ will be identical to the lattice \mathcal{L}_{A} if and only if

$$
a_{1}=\frac{1}{a_{1}}
$$

i.e., if and only if

$$
a_{1}=1 .
$$

Thus the only self dual lattice in \mathbb{R} is the lattice

$$
\mathcal{L}=\mathbb{Z} .
$$

The case $n=2$

Theorem 2 Every self dual lattice in \mathbb{R}^{2} is some rotation of $\mathbb{Z} \times \mathbb{Z}$.
Proof 2 Let $A=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ where a_{1}, a_{2} are linearly independent vectors in \mathbb{R}^{2} and assume that \mathcal{L}_{A} is self dual. Fix the origin at some lattice point of \mathcal{L}_{A} and rotate the axes, if necessary, so that the nearest nonzero lattice point of $\mathcal{L}_{A^{\prime}}$ lies on the positive x-axis, i.e.

$$
Q A=A^{\prime}=\left[\begin{array}{ll}
a_{1}^{\prime} & a_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\alpha & \beta \\
0 & \gamma
\end{array}\right]
$$

where $\alpha>0$ and

$$
\begin{equation*}
\alpha^{2} \leq \beta^{2}+\gamma^{2} . \tag{1.1}
\end{equation*}
$$

The lattice $\mathcal{L}_{A^{\prime}}$ does not change if a_{2}^{\prime} is replaced by $-a_{2}^{\prime}$ so we can and do assume that $\gamma>0$. Likewise the lattice $\mathcal{L}_{A^{\prime}}$ does not change if a_{2}^{\prime} is replaced by $a_{2}^{\prime}-k a_{1}^{\prime}, k=0, \pm 1, \pm 2, \cdots$ since this is the result of an integer column operation. Thus we can and do assume that

$$
\begin{equation*}
|\beta| \leq \alpha / 2 . \tag{1.2}
\end{equation*}
$$

By hypothesis the lattice \mathcal{L}_{A} is self dual so the same is true of $\mathcal{L}_{A^{\prime}}$. This implies that

$$
\alpha \gamma=\operatorname{det} A^{\prime}=1,
$$

and

$$
\left(A^{\prime}\right)^{-\mathrm{T}}=\left[\begin{array}{cc}
\gamma & 0 \\
-\beta & \alpha
\end{array}\right] .
$$

Since $\mathcal{L}_{A^{\prime}}$ is self dual, the first column of A^{\prime} can be expressed as an integral linear combination of the columns of $\left(A^{\prime}\right)^{-T}$, i.e.,

$$
\left[\begin{array}{c}
\alpha \\
0
\end{array}\right]=n\left[\begin{array}{c}
\gamma \\
-\beta
\end{array}\right]+m\left[\begin{array}{c}
0 \\
\alpha
\end{array}\right]
$$

where $n, m \in \mathbb{Z}$. In this way we see in turn that

$$
\begin{equation*}
\alpha=n \gamma, \alpha=n / \alpha, \alpha=\sqrt{n}, \tag{1.3}
\end{equation*}
$$

for some $n=1,2, \cdots$,

$$
\begin{equation*}
n \beta=m \alpha, \beta=m / \sqrt{n}, \tag{1.4}
\end{equation*}
$$

for some $m=0, \pm 1, \pm 2, \cdots$, and

$$
\begin{equation*}
\gamma=1 / \alpha=1 / \sqrt{n} . \tag{1.5}
\end{equation*}
$$

Using these expressions with (1.2) we find

$$
\frac{|m|}{\sqrt{n}} \leq \frac{\sqrt{n}}{2}
$$

so

$$
|m| \leq \frac{n}{2} .
$$

Using these expressions with (1.1) we find

$$
n=\alpha^{2} \leq \beta^{2}+\gamma^{2}=\frac{m^{2}}{n}+\frac{1}{n},
$$

and since

$$
|m| \leq \frac{n}{2}
$$

this implies that

$$
n^{2} \leq 4 / 3
$$

It follows that $n=1$ and $m=0$. In this way we prove that $A^{\prime}=I$, i.e., the columns of A^{\prime} and thus those of A are orthonormal. Thus \mathcal{L}_{A} is some rotation of $\mathbb{Z} \times \mathbb{Z}$.

A theorem of Minkowski [1] states that

$$
\|a\|_{2} \leq \sqrt{N}|\operatorname{det} A|^{1 / n}
$$

where a is the shortest nonzero vector in a lattice \mathcal{L}_{A} in \mathbb{R}^{n}. Within the present context, this leads to the bound

$$
\sqrt{n}=\alpha \leq \sqrt{2}
$$

which implies that $n=1,2$. Our argument gives $n^{2} \leq 4 / 3$ from which we immediatly obtain $n=1$.
Another result in [4] states that if Λ is a self-dual lattice in \mathbb{R}^{n} then

$$
\|a\|_{2}^{2}=\min \{\langle u, u\rangle \mid u \in \Lambda, u \neq 0\} \leq[n / 8]+1
$$

which leads to

$$
\alpha \leq \sqrt{5 / 4}
$$

The case $n=3$
Theorem 3 Every self dual lattice in \mathbb{R}^{3} is some rotation of $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.
Proof 3 Let the self dual lattice \mathcal{L}_{A} in \mathbb{R}^{3} be generated by the columns of $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$ chosen so that $\left\|a_{1}\right\|_{2},\left\|a_{2}\right\|_{2},\left\|a_{3}\right\|_{2}$ are as small as possible subject to the constraint

$$
\left\|a_{1}\right\|_{2} \leq\left\|a_{2}\right\|_{2} \leq\left\|a_{3}\right\|_{2} .
$$

Following the analysis from the previous section, we set

$$
A^{\prime}=Q A
$$

where Q is an orthogonal matrix chosen so that

$$
A^{\prime}=\left[\begin{array}{lll}
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
\alpha & \beta & \delta \\
0 & \gamma & \varepsilon \\
0 & 0 & \zeta
\end{array}\right]
$$

with

$$
\alpha>0, \gamma>0, \zeta>0
$$

By hypothesis the lattice \mathcal{L}_{A} is self dual, and since Q is orthogonal, the same is true of $\mathcal{L}_{A^{\prime}}$. This being the case

$$
\alpha \gamma \zeta=\operatorname{det} A^{\prime}=|\operatorname{det} A|=1
$$

Since the lengths of the generators of the lattice \mathcal{L}_{A} are preserved under the orthogonal transformation Q, it follows that

$$
\begin{equation*}
\alpha^{2} \leq \beta^{2}+\gamma^{2} \leq \delta^{2}+\varepsilon^{2}+\zeta^{2} \tag{1.6}
\end{equation*}
$$

The columns of A (and thus the columns of A^{\prime}) have been chosen to be as small as possible subject to the above constraints, so we must have

$$
\begin{equation*}
|\beta| \leq \alpha / 2,|\delta| \leq \alpha / 2,|\varepsilon| \leq \gamma / 2 \tag{1.7}
\end{equation*}
$$

It can be verified that A^{\prime} has the inverse

$$
\left(A^{\prime}\right)^{-1}=\left[\begin{array}{ccc}
1 / \alpha & -\beta /(\alpha \gamma) & -\delta /(\alpha \zeta)+\beta \varepsilon /(\alpha \gamma \zeta) \\
0 & 1 / \gamma & -\varepsilon /(\gamma \zeta) \\
0 & 0 & 1 / \zeta
\end{array}\right]
$$

and after using $\alpha \gamma \zeta=1$ to simplify the components we obtain

$$
\left(A^{\prime}\right)^{-\mathrm{T}}=\left[\begin{array}{ccc}
1 / \alpha & 0 & 0 \\
-\beta \zeta & 1 / \gamma & 0 \\
-\delta \gamma+\beta \varepsilon & -\alpha \varepsilon & 1 / \zeta
\end{array}\right]
$$

Since $\mathcal{L}_{A^{\prime}}$ is self dual, the columns of $\left(A^{\prime}\right)^{-\mathrm{T}}$ generate the same lattice as the columns of A^{\prime} so we can write

$$
\left[\begin{array}{l}
\alpha \\
0 \\
0
\end{array}\right]=n\left[\begin{array}{c}
1 / \alpha \\
-\beta \zeta \\
-\delta \gamma+\beta \varepsilon
\end{array}\right]+m\left[\begin{array}{c}
0 \\
1 / \gamma \\
-\alpha \varepsilon
\end{array}\right]+l\left[\begin{array}{c}
0 \\
0 \\
1 / \zeta
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
0 \\
0 \\
1 / \zeta
\end{array}\right]=p\left[\begin{array}{l}
\delta \\
\varepsilon \\
\zeta
\end{array}\right]+q\left[\begin{array}{l}
\beta \\
\gamma \\
0
\end{array}\right]+r\left[\begin{array}{l}
\alpha \\
0 \\
0
\end{array}\right]
$$

for suitably chosen $n, m, l, p, q, r \in \mathbb{Z}$. In this way we see in turn that

$$
\begin{align*}
\alpha^{2} & =n \text { so that } \alpha=\sqrt{n} \tag{1.8}\\
\frac{1}{\zeta^{2}} & =p \text { so that } \zeta \tag{1.9}
\end{align*}=\frac{1}{\sqrt{p}}, ~ l
$$

for some $n=1,2, \cdots, p=1,2, \cdots$, and

$$
\begin{equation*}
1=\alpha \gamma \zeta=\sqrt{n} \gamma \frac{1}{\sqrt{p}} \text { so that } \gamma=\frac{\sqrt{p}}{\sqrt{n}} . \tag{1.10}
\end{equation*}
$$

We also have

$$
\begin{align*}
& 0=-n \beta \zeta+\frac{m}{\gamma} \text { so that } \beta=\frac{m}{\sqrt{n}} \tag{1.11}\\
& 0=p \varepsilon+q \gamma \text { so that } \varepsilon=\frac{-q}{\sqrt{p n}} \tag{1.12}
\end{align*}
$$

for some $m=0, \pm 1, \pm 2, \cdots, q=0, \pm 1, \pm 2, \cdots$, and

$$
0=n(-\delta \gamma+\beta \varepsilon)-m \varepsilon \alpha+\frac{l}{\zeta}=-\delta \sqrt{n p}+l \sqrt{p}
$$

so that

$$
\begin{equation*}
\delta=\frac{l}{\sqrt{n}} \text { for some } l=0, \pm 1, \pm 2, \cdots \tag{1.13}
\end{equation*}
$$

Using (1.7) and (1.8)-(1.12) we find

$$
\begin{equation*}
2|m| \leq n, 2|q| \leq p, 2|l| \leq n . \tag{1.14}
\end{equation*}
$$

Using (1.6) and (1.7) we see that,

$$
\alpha^{2} \leq \beta^{2}+\gamma^{2} \leq\left(\frac{\alpha}{2}\right)^{2}+\gamma^{2}
$$

which implies that

$$
\gamma \geq \frac{\sqrt{3}}{2} \alpha
$$

Again using (1.6) and (1.7) we see that,

$$
\gamma^{2} \leq \beta^{2}+\gamma^{2} \leq \delta^{2}+\varepsilon^{2}+\zeta^{2} \leq\left(\frac{\alpha}{2}\right)^{2}+\left(\frac{\gamma}{2}\right)^{2}+\zeta^{2}
$$

which implies that

$$
\zeta^{2} \geq \frac{3}{4} \gamma^{2}-\frac{1}{4} \alpha^{2} \geq \frac{9}{16} \alpha^{2}-\frac{1}{4} \alpha^{2}=\frac{5}{16} \alpha^{2}
$$

so that

$$
\zeta \geq \frac{\sqrt{5}}{4} \alpha
$$

Since $\alpha \gamma \zeta=1$ we must have

$$
1=\alpha \gamma \zeta \geq \alpha\left(\frac{\sqrt{3}}{2} \alpha\right)\left(\frac{\sqrt{5}}{4} \alpha\right)=\frac{\sqrt{15}}{8} \alpha^{3}
$$

or

$$
\sqrt{n}=\alpha \leq\left(\frac{8}{\sqrt{15}}\right)^{1 / 3}=1.2735 \ldots
$$

In this way we see in turn that $n=1$ and $m=l=0$ so that $\alpha=1, \beta=0, \delta=0$. Finally, we again use (1.6) with (1.13), (1.12), (1.9) to write

$$
p=\gamma^{2} \leq \delta^{2}+\varepsilon^{2}+\zeta^{2}=\frac{l^{2}}{n}+\frac{q^{2}}{p n}+\frac{1}{p}=\frac{q^{2}}{p}+\frac{1}{p} \leq \frac{p^{2}}{4 p}+\frac{1}{p} .
$$

It follows that $p \leq \sqrt{4 / 3}$ so we must have $p=1, q=0$ and $\varepsilon=0, \gamma=\zeta=1$. In this way we see that the columns of A^{\prime} (and thus those of A) must be orthonormal. Thus \mathcal{L}_{A} is some rotation of $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

Suppose now that a_{1}, a_{2} are linearly independent vectors in \mathbb{R}^{2} and that

$$
\operatorname{grid}_{a_{1}, a_{2}}(x):=\sum_{m=-\infty}^{\infty} \sum_{=-\infty}^{\infty} \delta\left(x-m a_{1}-n a_{2}\right)=\sum_{a \in \mathcal{C}_{A}} \delta(x-a)
$$

where $\mathcal{A}:=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$. We know that

$$
\operatorname{grid}_{\hat{a}_{1}, a_{2}}(s)=\left|\operatorname{det}\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\right| \operatorname{grid}_{A_{1}, A_{2}}(s)=\left|\operatorname{det}\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\right| \sum_{a \in \mathcal{\mathcal { L } _ { \mathcal { A } } - T}} \delta(s-a)
$$

where the biorthogonal vectors A_{1}, A_{2} are the columns of \mathcal{A}^{-T}. In this way we see that

$$
\operatorname{grid}_{\hat{a}_{1}, a_{2}}=\operatorname{grid}_{a_{1}, a_{2}}
$$

if and only if \mathcal{L}_{A} is self dual, where $4 p t \mathcal{A}=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$. This proves the following.
Theorem 4 Let a_{1}, a_{2} be linearly independent vectors in \mathbb{R}^{2}. Then

$$
\operatorname{grid}_{\hat{a}_{1}, a_{2}}=\operatorname{grid}_{a_{1}, a_{2}}
$$

if and only if

$$
\operatorname{grid}_{a_{1}, a_{2}}=\operatorname{grid}_{a_{1}^{\prime}, a_{2}^{\prime}}
$$

for some orthonormal choice of the vectors $a_{1}^{\prime}, a_{2}^{\prime}$.
Analogously, we can prove the following 3-dimensional generalization.
Theorem 5 Let a_{1}, a_{2}, a_{3} be linearly independent vectors in \mathbb{R}^{3}. Then

$$
\operatorname{grid}_{\hat{a}_{1}, a_{2}, a_{3}}=\operatorname{grid}_{a_{1}, a_{2}, a_{3}}
$$

if and only if

$$
\operatorname{grid}_{a_{1}, a_{2}}=\operatorname{grid}_{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}}
$$

for some orthonormal choice of the vectors $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}$.
These results correspond to the familiar identity

$$
\mathrm{III}^{\wedge}=\mathrm{III}
$$

from univariate Fourier analysis. The possibility of rotations (other than reflections) in $\mathbb{R}^{2}, \mathbb{R}^{3}$ slightly complicates the generalization of this result.

References

[1] Kannan, R. (1987) Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of Operations Research, 12, 415-440.
[2] Strang, G. (1976) Linear Algebra and Its Applications. Academic Press, Inc., New York.
[3] Senechal, M. (1995) Quasicrystals and Geometry. Cambridge University Press, New York.
[4] Conway, J.H., Odlyzko, A.M. and Sloane, N.J.A. (1978) Extremal Self-Dual Lattices Exit Only in Dimensions 1 to 8, $12,14,15,23$, and 24.

