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Abstract 

This paper shows that the only self dual lattices in 2 3, ,    are rotations of  , ×   and 
× ×   . 
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1. Introduction 
Let  

[ ] [ ]1 1: , , , : , , ,n nA a a B b b= =   

be nonsingular n n×  real matrices with column vectors 1, , na a  and 1, , nb b , respectively. Let  
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be the lattices in n
  that are generated by the columns of ,A B . The lattice A  will be a subset of the lattice 

B  if and only if the generators 1, , na a  of A  all lie in B , i.e.,  
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for suitably chosen integers lkm . Equivalently, 
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i.e., 
1:M B A−=  

is a matrix of integers. Analogously, the lattice B  is a subset of A  if 1A B−  is a matrix of integers. In this 
way we see that  

A B=   

if and only if both 1M B A−=  and  

( ) 11 1 1A B B A M
−− − −= =  

are matrices with integer elements. When this is the case, det M  and 1det M −  are both integers and since  
1 1det det det det 1,M M MM I− −= = =  

this implies that  
1det det 1.M M −= = ±  

Such a matrix is said to be unimodular. The above analysis (that can be found in [1]) is summarized as 
follows.  

Theorem 1 The lattices ,A B   are identical if and only if  
1:M A B−=  

is a matrix of integers with  
det 1M = ±  

Corollary 1 Lattices are preserved under integer column operations.  
Proof 1 Let [ ]1, , nA a a=   generate the lattice A , and let  
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be a strictly upper triangular matrix of integers. Then I K+  is an upper triangular matrix of integers with a 
unit diagonal, and we can write  

( ) 1I K I L−+ = +  

where  

( ) 12 3 1: 1 n nL K K K K− −= − + − + + −  

is a strictly upper triangular matrix of integers. The columns of  

( ):B A I K= +  

i.e.,  
1 12 1 2 13 1 23 2 3, , ,a k a a k a k a a+ + +   

generate the same lattice as the columns of A. To see this we observe that  
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( ) ( )1 11B A A I K A I K I L
− −− = + = + = +    

is a matrix of integers with unit determinant.  

2. Dual Lattices 
Definition 1 Two linearly independent sets of real n  (column) vectors 1, , na a  and 1, , nb b  are said to be 
biorthogonal if  

T, : , , 1, 2, ,k l k l kla b a b k l nδ= = =   

where klδ  is the Kronecker’s delta, T  denotes the transpose and  denotes the usual inner product. When 
the columns of  

[ ]1: , , nA a a=   

and  

[ ]1: , , nB b b=   

are biorthogonal, we find  
TA B I=  

so that  

( ) 1T T: .B A A
− −= =  

This being the case, given linearly independent vectors 1, , na a  we can form A  and then obtain the 
biorthogonal vectors 1, , nb b  as the columns of T .A−   

 The lattice TA−
  generated by vectors biorthogonal to 1, , na a  is said to be the dual of the lattice A . 

More generally, B  is dual to A  if and only if B  generates the same lattice as TA− , i.e.,  

( ) 1T TA B A B
−− =  

is a matrix of integers with determinant 1± . 
Suppose now that 1 2,A A  generate the same lattice, i.e.,  

1 2
.A A=   

Let  
T T

1 1 2 2,B A B A− −= =  

be the generators of lattices 
1 2
,B B   dual to 

1 2
,A A  , respectively. Since  

( ) ( )1 T1 T T T T 1
2 1 2 1 2 1 1 2B B A A A A A A

−− − − − −= = =  

we see that 1
1 2A A−  will be a matrix of integers with determinant 1±  if and only if the same is true of 1

2 1B B− . 
Thus 

1 2B B=   if and only if 
1 2A A=  . 

We are interested in characterizing those lattices A  that are self dual, i.e.,  

T .A A−
=   

This will be the case if and only if  

( ) 1T TA A A A
−− =  

is a matrix of integers with determinant 1± . Since  

( )2Tdet det ,A A A=  

this will be the case only if  
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Tdet 1A A =  
or equivalently  

det 1.A = ±  
In this way we see that a lattice A  is self dual if and only if TA A  is a matrix of integers with unit 

determinant. The parallelopiped in n
  with vertices 1 2 1 2 1 3 1 20, , , , , , ,n na a a a a a a a a a+ + + + +   , i.e., the 

unit cell of the lattice has the volume  

( )1 2, , , det ,nV a a a A=  

[2] [3]. Thus a lattice can be self dual only if each of its primitive cells, has unit volume. 
Self dual lattices are preserved under orthogonal transformations. Indeed, let Q  be an orthogonal 

transformation on n
 , i.e.,  

T ,Q Q I=  

and let ,A B   be the lattices generated by the columns of a nonsingular n n×  matrix A  and T:B A−= . The 
matrix  

:A QA′ =  

has columns  

1 1 2 2, , , n na Qa a Qa a Qa′ ′ ′= = =  

that generate the lattice A′ . We can use such a matrix Q  to rotate 1 2, , na a a , to reflect one or more vectors 
of the set 1 2, , na a a , to permute 1 2, , na a a , etc. The lattice B′  which is dual to A′  is generated by the 
columns of  

( ) ( )T T T T ,B A QA Q A QB− − − −′ ′= = = =  

i.e., by  

1 1 2 2, , , .n nb Qb b Qb b Qb′ ′ ′= = =  

Thus the generators of the dual lattice B  are transformed in the same way as the generators of the lattice 
A . In this way we see that a lattice A  is self dual if and only if the lattice A′  is self dual. Indeed,  

( ) ( )T T TA A QA QA A A′ ′ = =  

so TA A  is a matrix of integers with unit determinant if and only if the same is true of ( )TA A′ ′ . Moreover, 
since  

2 2T T T
2 2Qx x Q Qx x x x= = =  

we see that the orthogonal transformation Q  preserves the Euclidean lengths of a set of generators for the 
lattice A . 

3. Main Results 
We will now show that the only self dual lattices in 2 3, ,    are rotations of , ×   , and × ×   , 
respectively.  

The case n = 1 
Let [ ]1A a=  be a vector in   that generates the lattice A . We do not change the lattice if we assume that  

1 > 0a . Let 1 11b a=  be biorthogonal to A . The lattice B  generated by [ ]1B b=  will be identical to the  
lattice A  if and only if  

1
1

1 ,a
a

=  

i.e., if and only if  
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1 1.a =  

Thus the only self dual lattice in   is the lattice  
.=   

The case n = 2 
Theorem 2 Every self dual lattice in 2

  is some rotation of ×  .  
Proof 2 Let [ ]1 2A a a=  where 1 2,a a  are linearly independent vectors in 2

  and assume that A  is 
self dual. Fix the origin at some lattice point of A  and rotate the axes, if necessary, so that the nearest nonzero 
lattice point of A′  lies on the positive x -axis, i.e.  

[ ]1 2 0
QA A a a

α β
γ

 ′ ′ ′= = =  
 

 

where > 0α  and  
2 2 2 .α β γ≤ +                                     (1.1) 

The lattice A′  does not change if 2a′  is replaced by 2a′−  so we can and do assume that > 0γ . Likewise 
the lattice A′  does not change if 2a′  is replaced by 2 1, 0, 1, 2,a ka k′ ′− = ± ±   since this is the result of an 
integer column operation. Thus we can and do assume that  

2.β α≤                                      (1.2) 

 By hypothesis the lattice A  is self dual so the same is true of A′ . This implies that  
det 1,Aαγ ′= =  

and  

( ) T 0
.A

γ
β α

−  ′ =  − 
 

Since A′  is self dual, the first column of A′  can be expressed as an integral linear combination of the 
columns of ( ) TA −′ , i.e.,  

0
0

n m
α γ

β α
     

= +     −     
 

where ,n m∈ . In this way we see in turn that  

, , ,n n nα γ α α α= = =                               (1.3) 

for some 1,2, ,n =    

, ,n m m nβ α β= =                                   (1.4) 

for some 0, 1, 2, ,m = ± ±   and  

1 1 .nγ α= =                                      (1.5) 

Using these expressions with (1.2) we find  

2
m n
n
≤  

so  

.
2
nm ≤  

Using these expressions with (1.1) we find  
2

2 2 2 1 ,mn
n n

α β γ= ≤ + = +  
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and since  

.
2
nm ≤  

this implies that  
2 4 3.n ≤  

It follows that 1n =  and 0m = . In this way we prove that A I′ = , i.e., the columns of A′  and thus those 
of A  are orthonormal. Thus A  is some rotation of ×  .  

A theorem of Minkowski [1] states that  
1

2 det na N A≤  

where a  is the shortest nonzero vector in a lattice A  in n
 . Within the present context, this leads to the 

bound  

2n α= ≤  
which implies that 1, 2.n =  Our argument gives 2 4 3n ≤  from which we immediatly obtain 1n = . 

Another result in [4] states that if Λ  is a self-dual lattice in n
  then  

{ } [ ]2

2 min , , 0 8 1a u u u u n= ∈Λ ≠ ≤ +  

which leads to  

5 4.α ≤  

The case n = 3 
Theorem 3 Every self dual lattice in 3

  is some rotation of × ×   .  
Proof 3 Let the self dual lattice A  in 3

  be generated by the columns of [ ]1 2 3A a a a=  chosen so 
that 1 2 32 2 2

, ,a a a  are as small as possible subject to the constraint  

1 2 32 2 2
.a a a≤ ≤  

Following the analysis from the previous section, we set  
,A QA′ =  

where Q  is an orthogonal matrix chosen so that  

[ ]1 2 3 0
0 0

A a a a
α β δ

γ ε
ζ

 
 ′ ′ ′ ′= =  
  

 

with  
> 0, > 0, > 0.α γ ζ  

By hypothesis the lattice A  is self dual, and since Q  is orthogonal, the same is true of A′ . This being the 
case 

det det 1.A Aαγζ ′= = =  

Since the lengths of the generators of the lattice A  are preserved under the orthogonal transformation Q , 
it follows that  

2 2 2 2 2 2 .α β γ δ ε ζ≤ + ≤ + +                               (1.6) 

The columns of A  (and thus the columns of A′ ) have been chosen to be as small as possible subject to the 
above constraints, so we must have  

2, 2, 2.β α δ α ε γ≤ ≤ ≤                              (1.7) 
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 It can be verified that A′  has the inverse  

( )
( ) ( ) ( )

( )1
1

0 1 ,
0 0 1

A
α β αγ δ αζ βε αγζ

γ ε γζ
ζ

−
− − + 

 ′ = − 
  

 

and after using 1αγζ =  to simplify the components we obtain  

( ) T
1 0 0

1 0 .
1

A
α
βζ γ

δγ βε αε ζ

−
 
 ′ = − 
 − + − 

 

Since A′  is self dual, the columns of ( ) TA −′  generate the same lattice as the columns of A′  so we can 
write  

1 0 0
0 1 0
0 1

n m l
α α

βζ γ
δγ βε αε ζ

       
       = − + +       
       − + −       

 

and  

0
0 0

1 0 0
p q r
δ β α
ε γ

ζ ζ

       
       = + +       
              

 

for suitably chosen , , , , , .n m l p q r∈  In this way we see in turn that  
2   so that n nα α= =                                 (1.8) 

2

1 1 so that p
p

ζ
ζ

= =                                 (1.9) 

for some 1,2, , 1, 2, ,n p= =   and  

11  so that .
p

n
p n

αγζ γ γ= = =                          (1.10) 

We also have  

0  so that m mn
n

βζ β
γ

= − + =                              (1.11) 

0  so that ,qp q
pn

ε γ ε −
= + =                              (1.12) 

for some 0, 1, 2, , 0, 1, 2, ,m q= ± ± = ± ±   and  

( )0 ln m np l pδγ βε εα δ
ζ

= − + − + = − +  

so that  

 for some 0, 1, 2, .l l
n

δ = = ± ±                             (1.13) 

Using (1.7) and (1.8)-(1.12) we find  

2 , 2 , 2 .m n q p l n≤ ≤ ≤                               (1.14) 

Using (1.6) and (1.7) we see that,  
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2
2 2 2 2

2
αα β γ γ ≤ + ≤ + 
 

 

which implies that  

3 .
2

γ α≥  

Again using (1.6) and (1.7) we see that,  
2 2

2 2 2 2 2 2 2

2 2
α γγ β γ δ ε ζ ζ   ≤ + ≤ + + ≤ + +   
   

 

which implies that  

2 2 2 2 2 23 1 9 1 5
4 4 16 4 16

ζ γ α α α α≥ − ≥ − =  

so that  

5 .
4

ζ α≥  

Since 1αγζ =  we must have  

33 5 151
2 4 8

αγζ α α α α
  

= ≥ =    
  

 

or  
1 3

8 1.2735 .
15

n α  
= ≤ = … 

 
 

In this way we see in turn that 1n =  and 0m l= =  so that 1, 0, 0.α β δ= = =  Finally, we again use (1.6) 
with (1.13), (1.12), (1.9) to write  

2 2 2 2
2 2 2 2 1 1 1 .

4
l q q pp
n pn p p p p p

γ δ ε ζ= ≤ + + = + + = + ≤ +  

It follows that 4 3p ≤  so we must have 1, 0p q= =  and 0, 1.ε γ ζ= = =  In this way we see that the 
columns of A′  ( and thus those of A ) must be orthonormal. Thus A  is some rotation of × ×   .  

Suppose now that 1 2,a a  are linearly independent vectors in 2  and that   

( ) ( ) ( )
1 2, 1 2grid :

A
a a

m n a
x x ma na x aδ δ

∞ ∞

=−∞ =−∞ ∈

= − − = −∑ ∑ ∑


 

where [ ]1 2: a a= . We know that   

( ) [ ] ( ) [ ] ( )
1 2 1 2ˆ , 1 2 , 1 2grid det grid deta a A A

a T
s A A s A A s aδ

∈ −

= = −∑


 

where the biorthogonal vectors 1 2,A A  are the columns of T− . In this way we see that 

1 2 1 2ˆ , ,grid grida a a a=  

if and only if A  is self dual, where [ ]21=4 aapt . This proves the following.  
Theorem 4 Let 1 2,a a  be linearly independent vectors in 2 . Then  

1 2 1 2ˆ , ,grid grida a a a=  

if and only if  

1 2 1 2, ,grid grida a a a′ ′=  
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for some orthonormal choice of the vectors 1 2,a a′ ′ .  
Analogously, we can prove the following 3-dimensional generalization.  
Theorem 5 Let 1 2 3, ,a a a  be linearly independent vectors in 3 . Then  

1 2 3 1 2 3ˆ , , , ,grid grida a a a a a=  

if and only if  

1 2 1 2 3, , ,grid grida a a a a′ ′ ′=  

for some orthonormal choice of the vectors 1 2 3, ,a a a′ ′ ′ .  
These results correspond to the familiar identity  

III˄ = III 

from univariate Fourier analysis. The possibility of rotations (other than reflections) in 32 ,  slightly 
complicates the generalization of this result. 
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