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Abstract

To solve the equation for gravity-gyroscopic waves in a rectangular domain, the distinguished al-
gorithm for the solution of the Cauchy problem for a second-order transient equation is proposed.
This algorithm is developed by using the time-varying finite element method. The space deriva-
tives in the gravity-gyroscopic wave equation are approximated with finite differences. The stabil-
ity and accuracy of the method are estimated. The procedure for the implementation of the me-
thod is developed. The calculations were performed for determining the steady-state modes of
fluctuations of the solutions of the gravity-gyroscopic wave equation depending on the problem
parameters.

Keywords

Finite Element Method, Difference Scheme, Error Estimate, Gravity-Gyroscopic Waves

1. Introduction

The strengthening of requirements for solving complex problems in scientific and technological researches re-
sults in the improvement of existing numerical computation algorithms. This improvement is of particular im-
portance in studying complex nonstationary processes, for example, the propagation of gravity-gyroscopic
waves.

The mathematical statement of problems in the theory of internal waves, including gravity-gyroscopic waves,
and methods for solving such problems are discussed in publications [1]-[6]. In publications [1]-[3], the equa-
tions for describing the propagation of internal waves are derived using the Bussinesk approximation. Various
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analytical methods of solving problems in the linear theory of gravity-gyroscopic waves are proposed in publi-
cations [3]-[6]. Specifically, in publications [4] [5], the modes of steady-state oscillations associated with gravi-
ty-gyroscopic waves are defined depending on the coefficients of equations describing the propagation of gravi-
ty-gyroscopic waves in response to a harmonic disturbance in the unbounded medium.

Since analytical methods not always allow solutions of problems for arbitrary data and solution regions to be
obtained, numerical methods are used. In solving nonstationary problems, semidiscrete methods are used, that is,
the methods with initial approximation only for spatial variables followed by the solution of the Cauchy problem
by using finite-difference algorithms. These methods provide an order of accuracy not higher than the second
one [7] [8].

To enhance the calculation accuracy, it is necessary to use numerical algorithms providing a higher order of
accuracy [9]. This is possible due to the finite element method. Among numerous publications for the finite
element method, we refer to publications [10]-[12] which specify the methods and algorithms for solving statio-
nary and nonstationary problems in the mathematical physics. In publication [13], an algorithm for solving
second-order nonstationary equations, which provides the fourth order of accuracy, is proposed. According to
publications [14]-[18], this algorithm was used and substantiated in solving various problems in the mathemati-
cal physics which are described by equations for oscillations. The methods for the implementation of this algo-
rithm were developed, as well as the stability and convergence of the algorithm in the classes of Soboliev func-
tions were proved.

2. Problem Statement

Consider the following problem:

2
%(Lu)+a)§Llu+a2L3u:—f(x,t), ()
(X,t)EQT :{X:(Xl,x3)ch Rz,te(O,T]}, )
u=0,xel=0Q,te(0,T],
ou =
u(x,0)=u0(x),E(x,o)zul(x),XeQ, (3)
2 2 2
where Lu:a—lzj+a—l:, Lmu:a—tzj,and Q={0<x,<l,,m=13}.
oX;, 0% oX:,

Equation (1) is obtained from the set of hydrodynamic equations in Boussinesq approximation [1]-[5]. This
equation describes small oscillations of stratified fluid with density p,(x,) and « being twice the speed of

(X
fluid rotation around ox, axis. The quantity ? (x3) = —pOE 3; denotes the square of the Brent-Visala fre-
PolXs
. L . ou du .
quency. The fluid velocity is calculated using the formula v = = o ) We will also assume that the
X 0K

Brent-Vaiséla frequency «, is constant. Equation (1) is not classical and belongs to the Sobolev equations of
composite type [1]-[3].

Let us define the generalized solution of problem (1)-(3) as a function u(x,t)e H =W, (Q), that has a de-
2
rivative Zt—l; eWzl(Q) foreach te[0,T] and satisfies the following relationships for te[0,T] [1]:

a(%(t),3j+a)§a1(u(t),3)+azas(u(t),g)=(f (t).9),
N @
V9eH, u(0)=uo,a(0)=ul.

where
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Ha_”ﬁdx m=13, V9eH, (19.19)=iam(19,9):||‘9||f>0'
m=1

and u(t) is a function of abstract argument t e [O,T] with values in H. The issues of the solution existence
and its properties were discussed in the works [1]-[3].

3. Spatial and Time Approximation

Let us construct a subspace H, — H that approximates H. Let us also introduce a mesh @, = @, x @, , where
@, {x =i h,, i, =0,N_, h, :Im/Nm},

m=13.Inthiscase H, =W; (a,)-is a space of mesh functions v(x,,x;) withthe norm

b= 3.3 o ) <,

it =1ig=1

where constant M is independent of h,h, [7].
Ni N3
With the use of the corresponding quadrature formulae ay (u,, %)= hhu.. 4. , we approximate
i1=Lig=1

a, (u,9) onthe mesh and derive an approximated mesh solution from Equation (4):
d%u
a" [?Zh(t),gJ+a)§a1h (1 (). 8) + @l (, (1),9) =( (1), &),
V9eH,, u,(0)=U,, 01}%(0) —Uy,.

The problem defined by Equation (5) corresponds to the following Cauchy problem for the function u, (t):

%+Auh (t)="f, (1),

®)

D
(6)

where

2
Dv= _Vxlil - x3x3 Av = a)O Vxlxl -a Vx3i3
Vxlil = (Vi1+1|3 2V|1|3 +V|1 1|3 / hl
Vx3i3 = (Vi1i3+1 2V|1|3 +V|1|3—1 /h3

Vi, = V(ihyishs,t).

U]

Also
D=D">0, A=A >0, D>min(ef,a*)A (8)

where u,, =PRu,,m=01, B, isa projection operator P,:H —H, and f, (t)=P,f(t). Difference oper-
ators D, A approximate differential operators —L and -w(L, —a’L, witha second order error.

Now let us consider a discretization of the Cauchy problem for the time variable (6). Let
o, = {tn =nr,n= 0,1,2,-~-} be a mesh on the time segment t e [O,T] (for simplicity we assume the uniform
mesh). From equation (6) the following identity can be deduced for each segment (t,,t,,,)€[0,T]:

o =T e, va)en, ©)

Let us seek an approximate solution of problem (6) in the form of the Hermitian spline of the third order si-

()

T(—Duhé+ Au,0)dt+ Dy, 0

tn
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milarly to [10] [11]:
Uy (1) = y (1) = Y"0bo (1) + ¥l (1) + Y0y (1) + ¥y (1),

where

n o dy
= t y :—t ,

oo (1) =287 -3¢ +1,
oo (1) =387 +287,
o (t)=7(&° -2 +¢),
Ph(t)=7(&-&), e=(t-t,)/r.
Selecting the various weight functions 6(t), namely:
6,(£)=05,
0,(&)=57(£-05)+5,7(&° ~1.5° +0.5¢)

and choosing the parameters s, =1804—40«, s, =16804 — 280« , the following two parameter vector differ-
ence scheme can be obtained from Equation (9) [13] [14]:

(D—}/TZA)¥+ A%zq)l,

<>

(D-azA) ‘y—(D—ﬁrzA)¥:¢2, (10)

T
0 0
Y =Ugp, Y =Upp.

where

y:‘:'j_i’, y=112, ¢ =[f(t,+75)8,(£)de k=12.

The parameters «,f are subject to the fourth order approximation condition for Scheme (10) [14].
a-pB=112. (11)
For definiteness, assume the following values of parameters, « =1/8, 5 =1/24.
4. Scheme Implementation Algorithm

For implementation of Scheme (10), it is necessary to solve the system of two equations with respect to un-
known variables ¥,y :

m11§/+ m,y=®,, m21f/+ my,y=,,
m, =D-z*A, m, =0.5zA,
m,, =-0.57(D - Bz*A), m,, = D-ar’A, (12)
®, =7, -057Ay +(D-7°yA)Y,
®, =7p, +(D—ar’A)y+0.5z(D- Bz’ A)y.
Let us assume that condition (11) holds. Excluding 37 from Equations (12) we obtain an equation to find ¥ :
Cy=F, (13)

where

()
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C =m,m, —m,m,, =D’ —(a+y-1/4)c’ AD +(ay - B/4)c*A?,
R =m,;®, -m,®,.

The first algorithm of implementation of Scheme (12) is a direct solving Equation (13) with further calcula-
tionof y from the first equation in System (12):

(D-7%yA)y = ®, —0.5¢A .
The second algorithm of implementation of Scheme (12) is reduced to solving the following two equations
[13] [14] for each time increment:
Cyn+1 — F1| Cyl’Hl — Fz
where C=D?—(a-1/6)r*AD+(a/12- B/4)c* A%, F, =m,,®, —m,,®,.
The matrix C can be factorized: C =C,C, =(D-0,A)(D-0,A),where o,,0, are the roots of the equation
o’ +(a+y-1/4)o+(ay-p/4)=0.

For instance, if o =1/8,5=1/24, we have o, =-1/24,0,=0.
Then

yn+1 — C—l I:1 — Cz—lcl—l F1,
yrH—l — C:Z—].Cl—ll:2 .
For inversion of the matrices C;,C, the direct square root method was used once at the initial time. For all
other layers the solutions were obtained by multiplying the matrix C™* =C,'C;* by vectors F,F,.
5. Stability and Convergence
Theorem 1. [13] [14].If A"=A>0, D'=D>0 and a-p=1/12,

D-6r°A2¢D, Ve e(0,1), 5 = max{a, 5,1/12,0}, (14)

then the solution y(t) of scheme (10) converges to the solution of Problem (5) u, (t)eC®[0,T] and the fol-
lowing estimate holds:

Jlun (6) =y (©)], +[un ()= (V)] , <Mz

The proof of the statement is based on the separate transformation of two layer scheme (10) to a three layer
scheme for both solution y and its derivative y . Condition (14) for the chosen values of the parameters (o =1/8,
S =1/24 and the corresponding value & =1/8) gives the following restriction on the time increment:

rﬁi,V0<g<l. (15)
wy(1-¢)

For evaluation of the accuracy of Scheme (10) the error z=u, —u shall be estimated. Applying the
procedure used in the theory of finite difference schemes for such estimates [8] the final result can be for-
mulated.

Theorem 2. If stability condition (15) of Scheme (10) holds the solution y(t) converges to a sufficiently
smooth solution of Problem (1)-(3) and the following estimate holds:

Ju(t)=y ()], <M (h*+7*).

6. Computational Experiments

Let us proceed to the description of the computational experiment. The asymptotic amplitude problem for the
solution of Equation (1) under the uniform initial conditions on the plane

{—oo<X1<00,—oO<X3<oo},
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was studied in the works [2] [3]. As a source of excitation the oscillations in the vicinity of a thin plate of 2 in
length inclined at angle & with ox, axis were assumed. The law of plate oscillations as a rigid body im-
mersed in a liquid is as follows: f (s,t)=7(s,t)exp(iet), where 1(0)=0 and with t>t),7(t)=0.

It has been proven that the asymptotic amplitude w(x, x3) = tIir;rzou (x,t) exists and satisfies the equation

o°w o’'w
2 2 2 2 _
(0) —C()O)a—Xlz‘f'(O! —a)o)a—xg—o. (16)

When o <min(w,,«) and o >max(w, «a) Equation (16) is an elliptic one. Under the condition of
min(@,, o) < @ < max(w,, ), Equation (16) is of the hyperbolic type. It means that there are differences in the
behavior of the solution u(x,X,,t) in its way to the steady state. Furthermore, it has been shown that when

t— oo the solution decays according the following law  |u (X’t)”c(RZ) <C/t.

Let us consider the right-hand member of Equation (1) as an excitation factor of the fluid motion that is acting
on a small segment of 2A in length which is small compared to the overall length of the domain:

F (%% t) = (X% ) o (t)

L =1/2<A % =1,/2,
D(X,X;)=
(%) {0, otherwise.

and during the finite period of time:

sin(at), 0<t<t,,
t =
ot {0, t>t,.

The initial conditions are uniform:
Up(X)=u,(x)=0.

The dimensions of the domain are |, =1, =10, A=1 and 0<t<10. The mesh parameters are as follows:
N,=N,=20, h=h,=05, r=0.1.

The results of the simulations are shown in Figures 1-16. For all simulations the frequency of induced oscil-
lations is @ = /2 =1.57080.

For the equation parameters @, and o such values were used at which the type of Equation (16) was el-
liptic or hyperbolic or singular due to fulfillment of the following equalities: either o, =w,0r a=w.

The plot of the time variation of the amplitude f(x,,x,t) at the point x, =1,/2, x, =1,/2 is shown in
Figure 1. The plot shows that the time of the external influence on the medium is limited by the segment
0<t<8 forall alternative simulations.

The simulation plots for five different combinations of the parameters @, ®,,« that have resulted in the in-

teresting solutions with a typical behavior (as follows from the results not included in this work) are shown be-

2 2
o° —w,

2 2"
O —a
For the first case @, =a <@ andso b* =1. This result is trivial in a certain sense. In this case, Equation (1)
can be written as an ordinary differential equation:
o°v
a?-i-(l)gv = P(X)(D(t) s

low. Let us introduce the parameter b* =

where P(x) is the solution of the Dirichlet problem for the Poisson elliptic equation:
P o°P

2T T

ox; 0%

—0(X, %) -

Figure 2 shows the plot of the amplitude oscillations at the middle point of the domain Q,i.e.at x =1I,/2,
X, =l,/2 forthe values @, =a=1.
Figure 3 and Figure 4 show the simulation plots for two instants of time with the positive and negative solu-

tion values.
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The next plots (Figures 5-7) show the solutions for a hyperbolic case (the problem parameters are described
in the caption of Figure 5).

Let us consider an elliptic case, noting that @, # o <@ (Figures 8-10).

The following results correspond to the singular cases with a=w (Figures 11-13) and @, = (Figures
14-16).

0.5

10 20 30 40 50

0.5

1.0

Figure 1. Function ¢(t).

1.0

0.5}

10 0 30 4 50
0.5

1.0¢

1.5F

Figure 2. Function y(L/2,L,/2,t), @,=1, @ =
157080, =1, b*=1.

Figure 3. Solution y(X,X,,t) for t=385.
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Figure 4. Solution y(X,X,,t) for t=>50.

y

Figure 5. Function y(L,/2,L,/2,t), @, =2, o =
157080, =1, b*=-0.957459.

Figure 6. Solution y(X,X,,t) for t=475.
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Figure 8. Function y(L,/2,L,/2,t), @, =1, o =
157080, «=0.5, b®=1.51111.

Figure 9. Solution y(x,X,,t) for t=45.
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y

0.4¢

0.2¢

0.2
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0.6;

Figure 11. Function y(L,/2,L,/2,t), @,=2, o =
157080, « =1.57080, b?=0.

Figure 12. Solution y(x,,X,,t) for t=36.5.
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Y
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0.2

0.4r

Figure 14. Function y(L,/2,L,/2,t), @, =1.57080,
©=157080, a=2, b*=ow.

Figure 15. Solution y(x,,X,,t) for t=36.5.
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Figure 16. Solution y(x,X,,t) for t=43.

7. Conclusions

The following conclusions can be drawn on the basis of the comparative analysis of the simulation results:

o for all parameter combinations the solution achieves a steady state regime (Figures 3-16);

o there are no significant differences between the parameter sets of hyperbolic or elliptic types (Figure 6,
Figure 7 and Figure 9, Figure 10): in both cases the form of the solution form is determined by the shape of
spatial domain;

o the singular cases show that the steady state regime corresponds to equation of asymptotic amplitude (14):
the solution shown in Figure 12, Figure 13 is “stretched” along ox; axis in the middle region and corres-

2
ponds to the asymptotic equation (a)z —wg)‘2—2=o; similarly in Figure 15, Figure 16 the solution is
Xl

) N . o’w

“stretched” along the ox; axis and corresponds to the limiting equation, (a2 -} )— =
°) ox?

3

e for t— oo no decay of the solution amplitude u(x,t) is observed.

The last observation can be explained as follows. For the solution of problem (1)-(3) the following law of
energy conservation holds:
1
E(t)zEa(%u,gt—u]+a)gai(u,u)+a2a3(u,u):E(to), t>t,,
this conservation law can be obtained from identity (4) by simple manipulations assuming 9 =u. The same
conservation law holds for the Cauchy problem solution of Equation (1) in the entire plane (x1 xg). However,
along the entire plane the energy has no constraints in the form of the domain boundaries thus it is dissipated
along the infinite plane (xl,x3) leading to the following behavior of the solution as a function of t, as was

shown in [3]: ||u(x,t)||C(Rz) <C/t.
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