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Abstract 
Several links between continued fractions and classical and less classical constructions in dynam-
ical systems theory are presented and discussed. 

 
Keywords 
Continued Fractions, Fast and Slow Convergents, Irrational Rotations, Farey and Gauss Maps, 
Transfer Operator, Thermodynamic Formalism 

 
 

1. Introduction 
The connection between Number Theory and Dynamical Systems Theory is receiving recently a considerable 
attention. In this paper, we review some aspects of this connection focusing on the interplay between continued 
fractions and one dimensional dynamics. In Section 2, we review some known facts about fast and slow con-
vergents, highlighting their relations both with irrational rotation dynamics and the ergodic theory of the Gauss 
map. In Section 3, after recalling the construction and the basic properties of the Farey tree, we describe differ-
ent ways of coding the paths on it, as well as their dynamical counterparts obtained by combining fractional li-
near transformations. Deeper insights into these connections are provided by the Minkowski question mark 
function, whose properties are discussed in Section 4. Finally, in Section 5, we present some applications of the 
thermodynamical formalism based on the previous constructions. 

2. Fast and Slow Convergents 
We start by reviewing some well known facts about continued fractions1. 
Let 

 

 

1Good general sources on this subject are [1]-[3]. 
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be the continued fraction expansion of the number [ ]0,1x∈ . By applying Euclid’s algorithm one sees that the 
above expansion terminates if and only if x is a rational number. For x irrational one can construct recursively a 
sequence n np q  of rational approximants of x as 

1 1 1
0 0 1 1

1 1 1 1

0 1, and , 1
1

n n n n

n n n n

p a p p
p q p q n

a q a q q
+ + −

+ + −

+
= = = ≥

+
                        (2.2) 

We can write this recursion in matrix form as follows: letting 

1 0 1 1
: and :

1 1 1 0
A B   
= =   
   

                                (2.3) 

and noting that 

1 1
1 0

k k
BA −  

=  
 

                                            (2.4) 

we have 

11 0

1 0

ap p
A

q q
 

= 
 

                                            (2.5) 

and 

11 21 11

1

, 1nn n aa a

n n

p p
A BA BA n

q q
++ −−

+

 
= ≥ 

 
                        (2.6) 

A short manipulation of (2.2) gives ( )1 1 1 1n n n n n n n nq p q p q p q p+ + − −− = − − . Since 1 0 0 1 1q p q p− = −  one ob- 
tains inductively the Lagrange formula 

( )1 1 1 , 1.n
n n n nq p q p n− −− = − ≥                                 (2.7) 

Another useful formula which can be easily obtained from (2.2) is the following: for all 1r ≥  and 1n ≥ , 

1
1 2 3

1

1, , , , n n
n

n n

rp p
a a a a

r rq q
−

−

+ + = ⋅  + 
                             (2.8) 

Letting r →∞  we get in particular 

[ ]1 2, , , n
n

n

p
a a a

q
= ⋅                                      (2.9) 

Note that 

1

2
1

31

2

1 1
1 1

1

n

n
n n

n
n

nn

n

q
q a aq a qq

q

−

−
−

−−

−

= =
+ +

+

 

and so forth. We thus have the so called mirror formula (some consequences of which have been investigated in 
[4]): 

[ ] [ ]1
1 2 1 1If , , , then , , ,n n

n n n
n n

p q
a a a a a a

q q
−

−= =                    (2.10) 
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The numbers n

n

p
q

 are called continued fraction convergents (CFC) of x and it turns out that the n-th CFC 

n

n

p
q

 is the best rational approximation to x  whose denominator does not exceed nq  [2]. One sees that 

2 2 1

2 2 1

, 0.n n

n n

p p
x n

q q
−

−

< < ∀ >                                   (2.11) 

Putting 1nr a +=  in (2.8) we get 

[ ] 1
1 2 3 1 2 3 1

1 1

1, , , , , , , , , n
n n n

n n

p
a a a a a a a a a

a q
+

+
+ +

 
+ ≡ = ⋅ 

 
                (2.12) 

But what happens if r  in (2.8) takes on an intermediate value 11, 2, , na + ? 

Definition 2.1 For 1n ≥  the sets 1

1

n n

n n

rp p
rq q

−

−

 +
 

+ 
 for 11 nr a +≤ ≤  are the n’th Farey convergents (FC) for  

the real number [ )0,1x∈ . 
Example. Let [ ]2 1,2,1,1,4,1,1,6,x e= − =  . The first five CFC are 

1

1

1 1
pn
q

= =  

2

2

1 22
1 31
2

pn
q

= = =
+

 

3

3

1 33
1 41 12

1

p
n

q
= = =

+
+

 

4

4

1 54
1 71 12 11

1

pn
q

= = =
+

+
+

 

5

5 1 235
1 321 12 11 11

4

n
q

= = =
+

+
+

+

 

On the other hand, within the same accuracy, there are 2 1 1 4 8+ + + =  FC’s. They are  

1,1 1 0

1,1 1 0

11, 1,
2

t p p
n r

s q q
+

= = = =
+

 

1,2 1 0

1,2 1 0

2 21, 2,
2 3

t p p
n r

s q q
+

= = = =
+

 

2,1 2 1

2,1 2 1

32, 1,
4

t p pn r
s q q

+
= = = =

+
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3,1 3 2

3,1 3 2

53, 1,
7

t p p
n r

s q q
+

= = = =
+

 

4,1 4 3

4,1 4 3

84, 1,
11

t p p
n r

s q q
+

= = = =
+

 

4,2 4 3

4,2 4 3

2 134, 2,
2 18

t p p
n r

s q q
+

= = = =
+

 

4,3 4 3

4,3 4 3

3 184, 3,
3 25

t p p
n r

s q q
+

= = = =
+

 

4,4 4 3

4,4 4 3

4 234, 4,
4 32

t p p
n r

s q q
+

= = = =
+

 

We now need some notions.  

Definition 2.2 The Farey sum over two rationals a
b

 and a
b
′
′

 is the mediant operation given by 

:a a a a a
b b b b b

′ ′ ′′+
⊕ = = ⋅

′ ′ ′′+
                                    (2.13) 

It is easy to see that a
b
′′
′′

 falls in the interval ,a a
b b

′ 
 ′ 

2. We say that a
b

 and a
b
′
′

 are Farey neighbours if  

1ab a b′ ′− = ± . Two Farey neighbours define a Farey interval and each Farey interval can be labeled uniquely  

according to the mediant (child) a a a
b b b
′′ ′+
=

′′ ′+
 of the neighbours. 

Observe that given a pair of consecutive FC’s, say 

( )
( )

, , 1 11

, 1 , 1 1

1
and

1
n r n r n nn n

n r n n n r n n

t t r p prp p
s rq q s r q q

+ −−

− + −

+ ++
= =

+ + +
 

for some 1n ≥  and 11 nr a +≤ < , we have 

, 1 ,

, 1 ,

n r n r n

n r n r n

t t p
s s q

+

+

= ⊕ ⋅                                     (2.14) 

Moreover 

( )
, , 1 1

1 nn n n n

n r n r n n

q p q p
t s p q− −

− = − = −                            (2.15) 

by Lagrange’s formula. Therefore, for every 1n ≥ , each FC ,

,

n r

n r

t
s

 for 11, , nr a +=   is a Farey neighbour of  

n

n

p
q

, the corresponding Farey interval getting smaller and smaller as r  increases. More precisely, using again  

Lagrange’s formula, one easily obtains    

( )
1

1 1

1n n n

n n n n n n

p rp p
q rq q q rq q

−

− −

+
− = ⋅

+ +
                          (2.16) 

We therefore see that the FC ,

,

n r

n r

t
s

 is the best one-sided rational approximation to x  whose denominator  

 

 

2The origin of these names traces back to Cauchy, who proved this property after it was observed by John Farey in 1816 [5], and named 
“Farey series” the numbers obtained in this way. 
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does not exceed ,n rs  (although, if 1nr a +< , there might be a CFC with denominator less than ,n rs  and closer 
to x  on the other side of x). Increasing r, once we arrive at 1nr a +=  we hit a new CFC on the current side of 
x , closer than the previous CFC. Finally, using matrix notation, the FC’s can be expressed in terms of 
intermediate products in (2.5) for 1n ≥  as 

1 2, 11 1
1

,
, 1 .nn r n aa a r

n
n r n

t p
A BA BA BA r a

s q
−− −

+

 
= ≤ ≤ 

 
                (2.17) 

The algorithm which produces the sequence of FC ‘s of a given real number is called  slow continued 
fraction algorithm (see, e.g., [6] [7]). 

Remark 2.3 The set 


  of Farey fractions of order   is the set of irreducible fractions in [ ]0,1  with de-  

nominator ≤  , listed in order of magnitude (see [8]). Thus, 1
0 1,
1 1

 =  
 

 , 

2 3 4
0 1 1 0 1 1 2 1 0 1 1 1 2 3 1, , , , , , , , , , , , , ,
1 2 1 1 3 2 3 1 1 4 3 2 3 4 1

     = = =     
     

      

and so on. In particular ( )
2

21

32
πk kϕ

=
− = ∑







  with Euler totient function  

( ) ( ){ }0 : gcd , 1k i k i kϕ = < ≤ = . Then we see that each ,

,

n r

n r

t
s

 for 11, , nr a +=   is consecutive to n

n

p
q

 in 


   

for , , 1n r n rs s +< ≤ . 

2.1. Connection to Rotations of the Circle 
One can interpret the above construction in terms of a kind of renormalization procedure for rotations of the 
circle [ )0,1  through an angle x . With no loss we take the initial point to be the origin 0 and set [ ]0 0,J x= .  

Since 1
1a
x

 =   
 we have ( )1 11 1a x a x≤ < +  and thus 

1 0 11 a J J= +  

with 

1 1 1 11 .J a x p xq= − = −                                 (2.18) 

Moreover we have 

[ ]1
1 2 3

0

1 , ,
J

a a a
J x

= − =   

and therefore ( )2 1 0 2 11a J J a J≤ < +  or, which is the same, 

0 2 1 2J a J J= +  

with 

( )2 2 1 2 21 .J x a a x q x p= − − = −                         (2.19) 

Iterating this procedure, we construct a family of nested intervals (see Figure 1) nJ , 0n ≥ , such that 

[ ]1 2
1

, ,n
n n

n

J
a a

J + +
−

=                                   (2.20) 

and 

1 1 1 , 0,n n n nJ a J J n− + += + ≥                           (2.21) 

where we have set [ ]1 0,1J− = . Using (2.18), (2.19) and (2.21) one gets inductively the formula 
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Figure 1. The construction of nested intervals.    

 

( ) ( ): 1 .n
n n n n n nf J q x p q x p= = − = − −                       (2.22) 

Note that 

1 11 , 1.n n n nq f q f n− −= + ∀ ≥                                 (2.23) 

Now, if we denote by d  the euclidean metric on [ )0,1  then 

( )0, 0 min : .r

p
d T rx p rx

∈
= − =


                              (2.24) 

Therefore 

( )0, 0nq
n n n nd T q x q x p f= = − =                             (2.25) 

That is, the sequence of arc-lengths nf  is but the sequence of successive closest distances to the initial point. 
This can be seen in the following way: starting from 0 and iterating 1a  times one ends up at the point 

1 1a x q x=  which lies on the left of 0 and is the point closest to 0 up to now, being distant 1J  from it. Iterating 
1a  more times one ends up at the point xqxa 11 2=2  which lies on the left of 0 at distance 12 J , ... iterating 
2 1a a  times one ends up at the point ( )2 1 2 1 2 1a a x a q x q x= = −  which still lies on the left of 0, at distance 
2 1a J . One more iterate yields the point 2q x  which now lies on the right of 0 at distance 2J  and is the 

point closest to 0 up to now, and so on and so forth (for more details see [9]). The above implies that the first 
return map in the interval nJ  (which is [ ]0, nf  or [ ]1 ,1nf−  according whether n  is even or odd) is the 
rotation through the angle ( ) 1

1 1 11 n
n n nf q x p+
+ + +− = − . Finally, one has the equivalence: 

[ ]10 , , n
n n

n

p
f x a a

q
≈ ⇔ ≈ = ⋅                               (2.26) 

In addition, for each 11, , nr a +=  , it holds 

,
1 1

,

1, , n r
n n n

n r

t
f f r x a a

r s−
 ≈ ⇔ ≈ + = ⋅  

                         (2.27) 

The three distance theorem. The points { }kα  with 0 k≤ ≤   partition the unit circle into 1+  intervals. A 
classical result (see e.g. [10]), which can be easily obtained by induction using the above construction, is that the 
possible lengths of these intervals are organized according to the Farey convergents in the following way: 
• If 10 q< ≤  then there are two distinct lengths: 0f  and 01 f−   (which become 0f  and 1f  when 

1q= ). 
• If ( )1 11n n n nrq q r q q− −+ ≤ < + +  for some 1n ≥  and 11 nr a +≤ ≤  then there are at most three lengths: 

nf , 1n nf rf− −  and ( )1 1n nf r f− − − , the last of which disappears when ( ) 11 1n nr q q −= + + − . 
We point out that in the second case above there are two intervals, chosen from among those having the 

smallest lengths: 

( ) ( )1 1 1andn n n n n n n n nf q x p f rf rq q x rp p− − −= − − = + − +  
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which have 0 as their common endpoint. We then see that the approximations (26) and (27) are the same as  

shrinking one of these intervals to zero. Moreover, the fractions n

n

p
q

 and 1

1

n n

n n

rp p
rq q

−

−

+
+

 are the two successive  

elements of n
  having x  between them (see also Remark 2.3). 

2.2. Growth of Denominators 
The Gauss map [ ] [ ]: 0,1 0,1G →  is defined as 

( ) { } ( )1 for 0 and 0 0.G x x x G= > =                      (2.28) 

It is well known that G  has an a.c. invariant ergodic probability measure µ  given by 

( ) ( )
1 dd

log 2 1
xx
x

µ =
+

                                  (2.29) 

A short reflection shows that ( )1 2, , , n
nx a a a G x = +   or else 

( )( )
( )( )

1

1

1

1

n
n n

n
n n

G x p p
x

G x q q

−

−

−

−

+
= ⋅

+
                                (2.30) 

From this we obtain at once 

( )
1 1 1

,n n n n

n n n

q x p f
G x

q x p f− − −

−
= − = −

−
                           (2.31) 

where the numbers nf  have been introduced in (2.22). Therefore  

( )
0

n
k

n
k

f G x
=

=∏  

and, by the ergodic theorem, we have for µ -almost all [ ]0,1x∈  and then almost everywhere, 

( )
21

0

1 πlim log log d
12log 2nn

f x x
n

µ
→∞

= = − ⋅∫                      (2.32) 

Since ( )( ) 1

1
n

nG x a
−

+
  =  

 and thus ( )( ) 1

1 1 1n
n na G x a

−

+ +< < +  another consequence of (2.30) is that 

1 1 1 1

1 1
2

n n
n n

n n n n n

q q
q f

a q q q a+ + + +

< < < <
+ +

 

and therefore using (2.31) 

1
1 1.
2 n nq f −< <                                     (2.33) 

Putting together (2.32) and (2.33) we get the classical theorem of Lévy  
2log π almost everywhere

12log 2
nq

n
→  

On the other hand we may expect the growth of FC’s denominator to be subexponential. Indeed, let  
,

,

n rm

m n r

tt
s s

≡  with 2
n

kkm a r
=

= +∑  be the m-th FC. Its denominator satisfies 1n m nq s q +< ≤ . It is a result of  

Khinchin and Lévy (see [1]) that 

1

1 1 in measure
log log 2

n

k
k

a
n n =

→∑  
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Combining the above we get the following 
Lemma 2.4 

2log π in measure
12log

ms
m m

  

Of course there are special behaviours: take ( ) [ ]5 1 2 1,1,1,x = − =  , then n ns q=  and both are equal to 
the n-th Fibonacci number. Hence 1 log nn q−  converge to 1x− . 

3. A Walk on the Farey Tree 
Having fixed 1≥ , let 



  be the ascending sequence of irreducible fractions between 0 and 1 constructed  

inductively in the following way: set first 1
0 1,
1 1

 =  
 

 , then 


  is obtained from 1−  by inserting among 

each pair of neighbours a
b

 and a
b
′
′
 in 1−  their child a

b
′′
′′

 as in (2.13). Thus 

2 3 4
0 1 1 0 1 1 2 1 0 1 1 2 1 3 2 3 1, , , , , , , , , , , , , , , ,
1 2 1 1 3 2 3 1 1 4 3 5 2 5 3 4 1

     = = =     
     

    

and so on. The elements of 


  are called again Farey fractions. Evidently ⊇
 

  . 

Remark 3.1 It has been shown in ([11], Thm 2.6) that the set { }log ab F
b

 ∈ 
 



 becomes equidistributed as 

→∞ . More specifically, the probability measure { }1 log
1

2 1 bab δ
+∈+ ∑


 
 converges to the Lebesgue measure on  

[ ]0,1 . 
Definition 3.2 For 1≥  we say that a Farey fraction x  has rank   if 1x +∈

 

  . 

We also define the 0 1rank rank 0
1 1

   = =   
   

. For 1≥  there are exactly 12 −  Farey fractions of rank    

and their sum is equal to 22 − . Recall that every rational number ( )0,1x∈  has a unique finite continued 
fraction expansion [ ]1, , nx a a=   with 1na >  [2]. The validity of the following relation will arise straight- 
forwardly in the sequel: 

Lemma 3.3 

[ ] ( )1
1

, , rank 1
n

n i
i

x a a x a
=

= → = −∑  

Remark 3.4 Note that, according to the above Lemma, the cardinality 12 −  of 1+ 

   can be interpreted 
as the number of choices of integers 1, , na a , with 1 n≤ ≤   and so that 1ia ≥  for 1, , 1i n= −

, 1na >   

and 1 1n
ii a

=
= +∑  . Indeed, for each fixed n  the number of such choices is 

1
1n

− 
 − 



, then sum over  

1, ,n =  
. 

It is also easy to realize that all Farey fractions which fall in the interval 
1 1,

1
 
 +  

 have rank greater than or  

equal to 1+ , whereas their continued fraction expansion starts with 1a =  . 
An interesting object is the  Farey tree   whose vertex-set is ( )0,1  and which is constructed as 

follows (see Figure 2): 
• every column in   contains one entry (vertex or node);  
• for 1≥  the  -th row is 1+ 

  ;  

• the node a a
b b

′+
′+

, representing the interval ,a a
b b

′ 
 ′ 

, is connected by edges to its left child 2
2
a a
b b

′+
′+

 and 

right child 2
2

a a
b b

′+
′+

 in the underlying row. 
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Figure 2. The first four levels of the Farey tree.                       

 

Note that the fractions 0
1

 and 1
1

 play the role of ancestors when using the Farey sum to obtain one row  

from the previous one. Besides the Farey sum, an alternative way to construct recursively the entries of   is 
as follows.  

Definition 3.5 Given a
b
∈  its descendants are the symmetrical entries of   given by a

a b+
 and b

a b+
,  

respectively. 
Lemma 3.6 The collection of all descendants of the entries of a given row in   is precisely the underlying 

row. 

Proof. If [ ]1, , n
a a a
b
=   then [ ]1 1, , n

a a a
a b

= +
+


 and [ ]11, , , n

b a a
a b

=
+


. Therefore  

rank rank rank 1a b a
a b a b b

     = = +     + +     
 and the claim follows. ♦  

Remark 3.7 If [ ]1 2, , n
a a a a
b
= 

 and [ ]1 1, , ,n n
a a a a
b −

′
=

′


 then rank ranka a
b b

′   =   ′   
 and b b′= .  

3.1. The { },L R  Coding 
Every rational number in ( )0,1  appears exactly once in the above construction and corresponds to a unique  

finite path on   starting at the root node 1
2

 and whose number of vertices equals the rank of the rational  

number. We can code this path in the following way: first, any l
r
∈  can be uniquely decomposed as3 

with 1l m n ns mt
r s t
= ⊕ − =                                 (3.1) 

and the unimodular relations 

 

 

3All fractions are supposed in lowest terms. 
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1sl rm rn lt ns mt− = − = − =                              (3.2) 

plainly hold. The neighbours m
s

 and n
t

 are thus the ‘parents’ of l
r

 in   and we may accordingly identify 

n ml
t sr

 
⇔ ∈ 

 
                                       (3.3) 

with 

0 ,0 , 1
a b

a c b d ad bc
c d

   = < ≤ ≤ < − = ⋅  
   

                  (3.4) 

Note that the left column bears on the right parent and viceversa. Thus 

1 01
1 12
 

⇔  
 

                                        (3.5) 

On the other hand, any l
r

 as above has a unique pair of (left and right) children, given by 

andm m n m n n
s s t s t t

+ +
⊕ ⊕

+ +
                               (3.6) 

respectively. In order to generate them we set 

1 0 1 1
: and :

1 1 0 1
L R   
= =   
   

                              (3.7) 

Note that for k ∈  
1 0 1

: and :
1 0 1

k k k
L R

k
   

= =   
   

                            (3.8) 

and also 

1 0 1
with .

1 0
k kR S SL S S −  

= = =  
 

                           (3.9) 

Moreover, we have 

1 0
1 1

n m m n m m m n
t s s t s s s t

+     +
= ⇔ ⊕    + +    

                    (3.10) 

and 
1 1
0 1

n m n m n m n n
t s t s t s t t

+     +
= ⇔ ⊕    + +    

                     (3.11) 

In other words, the matrices L and R, when acting from the right, move to the left and right child in  , 
respectively. Moreover, it is plain that given Y ∈  we have YR∈  and YL∈ . We have thus proved the 
following 

Proposition 3.8 To each entry x∈  there corresponds a unique element X ∈  which, in turn, can be 
uniquely presented as 

i
i

X L M= ∏                                          (3.12) 

where the number of terms in the product iiL M∏  is equal to ( )rank x  and Mi = L or Mi = R according  

whether the i-th turn, along the descending path in   which starts from the root node 1
2

 and reaches x,  

goes left or right. 



S. Isola 
 

 
1077 

Remark 3.9 By the way, the matrices L and R induce the so called Farey tesselation of the upper half plane 
{ }: Im 0H z z= >  (see [12]).  

Example. 3
10

 is the right child of 2
7

, which is the right child of 1
4

, which is the left child of 1
3

, which is 

the left child of 1
2

. Thus 

1 23
3 710

LLLRR 
⇔ = 

 
 

For 3
11

, which is the left child of 2
7

, we find 

2 13
7 411

LLLRL 
⇔ = 

 
 

Note that 
3 3rank rank 5

10 11
   = =   
   

. 

To any given irrational number [ ]0,1x∈  we may associate a unique infinite path on  , and thus a unique 
semi-infinite word in { },L R  . Bearing in mind the continued fraction expansion (2.1) of x, let 

1,1

1,1 1

1
1

t
s a

=
+

 

the first FC of x. In order to reach it from the top of   we need the block 1 1aL − . Whence we code x through 
the map [ ] { }: 0,1 ,L Rφ →   defined by 

( ) 1
1 2

ax L M Mφ =                                  (3.13) 

where iM L=  or iM R=  according whether the i-th turn along the infinite path in   which starts from  
1,1

1,1

t
s

 and approaches x along the sequence of successive FC’s goes left or right. This coding is faithful to the  

binary structure of   but apparently not so much to the continued fraction expansion of x. To make the latter 
more transparent we may note that, according to the characterization of the FC’s given above (see (2.15) and 
(2.16)), the symbols L and R in (3.13) come in blocks whose lengths are given by nothing but the partial 
quotients ia  of x . More precisely, a short reflection shows that the following rule is in force: the first block is 
such that iM R=  if 21 i a≤ ≤ . Moreover, for 2k ≥  let 

2
,

k

k i
i

b a
=

= ∑  

then we have 

2 2 2 1

2 1 2

, if ,
, if .

k k
i

k k

L b i b
M

R b i b
− −

−

< ≤
=  < ≤

 

In other words, we have the coding 

[ ] ( ) 31 2
1 2 3, , , = aa ax a a a x L R Lφ= ↔                       (3.14) 

Furthermore we set ( )0 Lφ ∞=  and ( )1 LRφ ∞= . More generally, we note that each rational x has two 
infinite paths which agree down to node x : they are those starting with the finite sequence coding the path to 
reach x from the root node and terminating with either RL∞  or LR∞ . We shall agree that ( )xφ  terminates 
with RL∞  or LR∞  according whether the number of its (finite) partial quotients is even or odd. On the other 
hand, for notational simplicity’ sake we shall assume this agreement only implicitly. We summarize the above in 
the following 

Theorem 3.10 To [ ]0,1x∈  with continued fraction expansion [ ]1 2 3, , ,x a a a=   there corresponds a uni- 
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que sequence ( ) { },x L Rφ ∈   given by ( ) 31 2 aa ax L R Lφ =   which represents an infinite path on   whose 
sequence of vertices starting from the 1a -th is precisely the sequence ( ) 1m m m

t s
≥  of FC’s of x. Moreover, if   

denotes the lexicographic order on { },L R   then 

( ) ( ).x y x yφ φ> ⇒   

An simple consequence of the above construction is the following result.  
Proposition 3.11 Let [ ]1, , nx a a=   with 1na >  and n  even. Then its left and right children in   are 

given by [ ]1, , 1, 2nx a a′ = −  and [ ]1, , 1nx a a′′ = + , respectively. If instead n  is odd the expansions for 
x′  and x′′  have to be interchanged.  

Proof. Since n  is even we can write 

[ ] ( ) 1 2 1
1, , .naa a

nx a a x L R Rφ −= ↔ =                          (3.15) 

Therefore 

( ) ( )1 2 1 211 1andn na aa a a ax L R R L x L R Rφ φ−− −′ ′′= = 
 

which yield the claim. A similar reasoning applies for n  odd. ♦  

3.2. The {A, B} Coding 
Using (3.9) we can write 

3 31 2 1 2a aa a a aL R L L SL SL=                                  (3.16) 
On the other hand we have L A≡  and (see (2.4)) 

11
1 0

k kk
SL BA − 

= = 
 

                                    (3.17) 

This defines a recoding [ ] { }: 0,1 ,A Bψ →   so that 

[ ] ( ) 31 2 11
1 2 3, , , aa ax a a a x A BA BAψ −−= ↔ =                   (3.18) 

The FC , 1

, 1

n r

n r

t
s

+

+

 of x , which has rank 1
n

ii a r
=

= +∑ , will then be expressed as 

1 2

1 2

, 1

, 1

, odd,

, even,

n

n

aa a r
n r

aa a r
n r

t L R L R n
s L R R L n

φ +

+

  =      





                         (3.19) 

or else 

1 2, 1 11 1

, 1

.nn r aa a r

n r

t
A BA BA BA

s
ψ + −− −

+

 
=  

 
                         (3.20) 

Note that both expansions have exactly   terms and the latter agrees with (2.17) once we interpret the l.h.s. of  

(2.17) as the FC , 1

, 1

n r

n r

t
s

+

+

 of x, that is taking the Farey sum of the columns in the same spirit as (3.3). 

Example. The example with [ ]2 1,2,1,1,4,1,1,6,x e= − =   discussed above, which yields  

( ) ( )2 or else 2e LRRLRLLLLRL e ABABBBAAABBφ ψ− = − =   

can be used to check step by step what we are claiming here. For example its FC [ ]4,2

4,2

13 1,2,1,1,2
18

t
s

= = , which  

has rank 6, can be expressed as 

13 13or else
18 18

LRRLRL ABABBBφ ψ   = =   
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3.3. The Farey Shift and Its Relatives 
So far, a sequence in { },L R   starting with the symbol R has no image in [ ]0,1  with 1φ− . Let us make the 
identification 

3 3 31 2 1 2 1 2n n nn n n n n nR L R SL R L L R L= ≡                       (3.21) 
and denote by Σ  the half-space of { },L R   so obtained. We can write 

{ },L R SΣ = 
/                                       (3.22) 

We see that the map φ  is a bijection between [ ]0,1  and Σ . 
Let :Φ Σ→ Σ  be the Farey shift map defined by 

( )3 31 2 4 1 2 41a aa a a a a aL R L R L R L R−Φ =                        (3.23) 

Note that, besides L∞  the only fixed point of Φ  is given by the sequence LRLRLR  which is the image 
with φ  of [ ]1,1,x =  , the golden mean. This map acts on points in   by reducing their rank of one unit.  

For example, since 
13
18

LRRLRLφ   = 
 

, with the identifications made above we have 

13 5
18 13

RRLRL LLRLRφ φ    Φ = ≡ =    
    

 

5 5
13 8

LRLRφ φ    Φ = =    
    

 

5 3
8 5

RLR LRLφ φ    Φ = ≡ =    
    

 

3 2
5 3

RL LRφ φ    Φ = ≡ =    
    

 

2 1
3 2

R Lφ φ    Φ = ≡ =    
    

 

Let us define the Farey map [ ] [ ]: 0,1 0,1F →  given by 

( )

1, if 0 ,
1 2
1 1, if 1.

2

x x
xF x
x x

x

 ≤ ≤ −=  − < ≤


                               (3.24) 

Its name can be related to the easily verified observation that the set of pre-images { }0 0k
k F −
=





 coincides  

with 


  for all 1≥ . Note also that the  -th row of the Farey tree is precisely ( )1 1
2

F − −  
 
 

 . In particular,  

this implies that { } [ ]0 0 0,1k
k F∞ −
=

= 



 . 

Proposition 3.12 Let [ ]: 0,1φ → Σ  be the coding described above. Then  

.Fφ φΦ = 
 

Proof. If 1 2 1x< ≤  then 1 1a =  and ( ) 1
1F x a
x

= − . If instead 0 1 2x< ≤  then 1 1a >  and  

( ) 11 1F x
x

 = − 
 

. Therefore, 

[ ] ( ) [ ]1 2 3 1 2 3if , , , then 1, , , ,x a a a F x a a a= = −                      (3.25) 

with [ ] [ ]2 3 2 30, , , , ,a a a a≡  . The claim now follows from (3.23) and (3.21). ♦  
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3.3.1. The Gauss and Fibonacci Maps 
The map F has (at least) two induced versions: the first one is the Gauss map [ ] [ ]: 0,1 0,1G →  already intro- 
duced in (2.28), which for 0x >  can be written as 

( ) [ ] { }1 1 .xG x F x= =                                  (3.26) 

Recall that 

[ ] ( ) [ ]1 2 3 2 3if , , , then , , .x a a a G x a a= =                    (3.27) 

Noting that 

( ) ( ) 1 1if ,
1

n
nG x F x x A

n n
 = ∈ =  + 

                       (3.28) 

we see that G is obtained by iterating F once plus the number of times necessary to reach the interval [ ]1 2,1 . 
The second one is the Fibonacci map H and is defined by iterating F once plus the number of times necessary to 
reach the interval [ ]0,1 2 . Let 0 10, 1F F= =  and 1 1n n nF F F+ −= +  for 1n ≥  be the Fibonacci numbers. Then, 
for 0n ≥ , 

( )

2 1 2
2

2 1 2 2

2 1 2 2
2 1

2 5 2 4

, if ,

, if ,

n n
n

n n

n n
n

n n

F x F
x B

F F x
H x

F F x
x B

F x F

+

+ +

+ +
+

+ +

− ∈ −=  − ∈
 −

                        (3.29) 

with 

2 2 2 2 3 2 1
2 2 1

2 1 2 3 2 4 2 2

, , , .n n n n
n n

n n n n

F F F F
B B

F F F F
+ + +

+
+ + + +

   
= =  
   

                   (3.30) 

In this case it is easy to check that if [ ]1 2 3, , ,x a a a=   then 

( ) [ ] { }11, , , where min : 1 .r r iH x a a r i a+= − = >                 (3.31) 

A sketch of the map F along its induced versions G and H is given in Figure 3. 

Given 
a b

M
c d
 

=  
 

 we may define the Möbius transformation 

( )ˆ : ax bx M x
cx d

+
→ =

+
 

By the above, given [ ]0,1 2x∈  the point ( )1 1L xφ φ− −
   is but ( )F x  and for [ ]0,1 2x∈  we have  

( ) ( ) ( )1 1 1ˆF x L x L xφ φ− − −= =   (recall that 1 1 0
1 1

L−  
=  − 

). But what happens if ( ]1 2,1x∈  so that 

1 1a = ? 
To see this we put 

0 1

1 0 0 1
and .

1 1 1 1
I L I SR LS   
≡ = = = =   

   
                   (3.32) 

We have 
3 31 2 1 2

1 1
n nn n n nI R L R I L R L=   

Therefore, noting that 1
1

1 1
1 0

I − − 
=  
 

, for ( ]1 2,1x∈  we have ( ) ( ) ( )1 1 1
1 1̂F x I x I xφ φ− − −= =  . To  

summarize we can represent the action of F as 

( )
( ) [ ]
( ) ( ]

1
0

1
1

ˆ , if 0,1 2 ,
ˆ , if 1 2,1 ,

I x x
F x

I x x

−

−

 ∈= 
∈
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Figure 3. The Farey map and its induced Fibonacci (up-
per) and Gauss (lower) maps. 

 
that of G as 

( ) ( ) ( )11
1 0
ˆ ˆ , .n

nG x I I x x A− −−= ∈  

and that of H as 

( ) ( ) ( )11
0 1

ˆ ˆ , .n
nH x I I x x B− −−= ∈  

3.3.2. The Modified Farey Map 
Finally we introduce the modified Farey map [ ] [ ]: 0,1 0,1F →  given by 

( )

1, if 0 ,
1 2

1 12 , if 1.
2

x x
xF x

x
x

 ≤ ≤ −= 
 − < ≤


                                 (3.33) 

This map preserves orientation and has two indifferent fixed points, at 0 and 1. The advantage of using F  
instead of F  is that one can retrace the path from a leaf x∈  back to the root 1 2 . More precisely, for 
x∈  let (cf. Proposition 3.8) iiX L M= ∏  be the element which uniquely represents x in  . Then one 
easily sees that the following rule is in force: if ( ) ( )1 1 2iF x− <  then iM L= , ( ) ( )1 1 2iF x− >  then iM R= , 
for 1, ,i k= 

 with ( )rankk x=  so that ( ) 1 2kF x = . 

4. The Minkowski Question Mark 
Given a number ( )0,1x∈  with continued fraction expansion [ ]1 2 3, , ,x a a a=  , one may ask what is the 
number obtained by interpreting the sequence ( )xφ  (see (3.14)) as the binary expansion of a real number in 
(0,1) . The number so obtained is denoted ( )? x  and writes 

( )
21 31

? 0.00 011 100 0
aa a

x
−

=


 

                                  (4.1) 
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or, which is the same, 

( ) ( ) ( )11 1

1
? 1 2 .kk a a

k
x − − + + −

≥

= −∑                                    (4.2) 

For instance ( ) 1? 1 1 2nn −= , for all 1n ≥  (see Figure 4). Setting ( )? 0 0=  and ( )? 1 1=  one has the 
following properties for the function [ ] [ ]? : 0,1 0,1→  (see [13]-[16]): 

• ( )? x  is strictly increasing from 0 to 1 and Hölder continuous of exponent 
( )
log 2

2log 5 1 2
β =

+
;  

• x is rational iff ( )? x  is of the form 2sk , with k and s integers; 
• x is a quadratic irrational iff ( )? x  is a (non-dyadic) rational; 
• ( )? x  is a singular function: its derivative vanishes Lebesgue-almost everywhere. 

The following additional properties easily follow from the definition. 
Lemma 4.1 ( )? x  satisfies the functional equations 

( ) ( ) ( )? 1 ? 1 ?x x− = −  

( ) 1? ? , 0 1 2
2 1

xx x
x

 = ≤ ≤ − 
 

Proof. Assuming that [ ]1 2,1x∈  we write ( )1 1x y= +  with [ ]0,1y∈  and ( ) [ ]1 1 0,1 2x y y− = + ∈ . 
Setting moreover [ ]1 2, ,y a a=   we have [ ]1 21, , ,x a a=   and [ ]1 21 1 , ,x a a− = +  . The assertion now 
follows by direct application of (4.2). ♦  

Let us now see how ?  acts on Farey fractions. We have already seen that  

( ) ( )1 0 1 1 1? ? ? 0 ? 1
2 1 1 2 2

+   = = + =      +   
 

More generally, for any pair a b  and a b′ ′  of consecutive Farey fractions the function ? equates their 
child to the arithmetic average: 

1? ? ?
2

a a a a
b b b b

′ ′+       = +      ′ ′+      
                                 (4.3) 

One sees that the function ? maps the Farey tree   to the dyadic tree   defined as follows: having fixed 
1≥ , let 



  be the ascending sequence of fractions of the form 12k − , 10,1, , 2k −= 

 . We have 

1 2 3
0 1 0 1 1 0 1 1 3 1, , , , , , , , ,
1 1 1 2 1 1 4 2 4 1

     = = =     
     

    

and so on. Then   is the same graph as   with the  -th row replaced by 1+ 

  . An immediate con- 
sequence of the fact that ( )? =   is that ( )? x  is the asymptotic distribution function of the sequence of 
Farey fractions: 

Theorem 4.2 Since 

1# :
lim

2

a a x
b bx

+

→∞

 ∈ ≤ 
 =








 

then 

( )
1# :

? lim
2

a a x
b bx

+

→∞

 ∈ ≤ 
 = ⋅








 

Remark 4.3 This result can be also deduced as a consequence of a more general result obtained in [17] using 
a suitable enumeration of the rationals in ( )0,1 . As for the convergence of the atomic measure concentrated on 

n  to ?d  see [11] and [18]. 
As a further immediate consequence we get that the Fourier-Stieltjes coefficients of ( )? x  are as in the 

following 
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Figure 4. The Minkowski ? function.                       

 
Corollary 4.4 Let 

( )1 2π
0
e d?inx

nc x= ∫  

then 

1

2π1lim .
2

ain
b

n
a
b

c e
+

→∞
∈

= ∑








 

Finally, a short reflection using the definition (4.1) shows that ? conjugates the Farey map F and the modified 
Farey map F  to the tent map 

( ) ( )
2 , if 0 1 2,
2 1 , if 1 2 1.

x x
T x

x x
≤ <=  − ≤ ≤

                           (4.4) 

and the doubling map ( ) 2 mod1D x x= , respectively. Indeed, for any 1 2ω ωω=   with { }0,1iω ∈  we have 

0.00 01 0.00 01 fori

k k i
T i kω ω

−

  = ≤ 
 

 

                       (4.5) 

and 

( )0.1 0.T ω ω=                                       (4.6) 

where 1 2ω ωω=   and 1i iω ω= − . A similar reasoning applies for D. Putting together the above, (3.25) and 
(4.1) we then get the following commutative diagrams 

Theorem 4.5 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

0,1 0,1 0,1 0,1
? ? , ? ?

0,1 0,1 0,1 0,1

F F

T D

→ →
↓ ↓ ↓ ↓

→ →



 

This implies that the measure ( )?d x  is invariant under both maps F and F , and its entropy is equal to 
log 2 . This makes ( )?d x  the measure of maximal entropy for F and F . Being zero at every rational point 
?d  is of course singular w.r.t. Lebesgue. More specifically, ?d  is concentrated on a subset [ ]0,1X ⊂  having 

Hausdorff dimension 0.875α ≈  (see [14]). In view of (3.25), the above has the following straightforward 
consequence 

Lemma 4.6 If x is drawn from [ ]0,1  according to the singular measure ( )?d x , then the partial quotients 
( ) 1i i
a

≥  of [ ]1 2, ,x a a=   form a sequence of i.i.r.v.’s with ( )Prob 2 n
ia n −= = . 

It is moreover easy to realize that F and F  have also absolutely continuous (not normalizable) invariant 
measures, with densities 1 x  and ( )1 1x x− , respectively. 

Finally, the conjugacy of Theorem 4.5 has been used in [19] to construct a correspondence between the 
parameter spaces of α -continued fraction transformations and unimodal maps. 
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5. Transfer Operators and Partition Functions 

To a given matrix 
a b

M
c d
 

= ∈ 
 

  and complex parameter q  one can associate the positive operator  

( )q Mπ  acting on the right as [20] 

( ) ( ) ( ) ( ) ( )( )2 ˆ ˆ: .
qq

q
ax bM f x cx d f M x f M x
cx d

π − +  ′= + = ⋅ + 
            (5.1) 

For example we have 

( ) ( ) 2

1 1 .q qS f x f
xx

π  =  
 

                                  (5.2) 

The operator q  associated in this way to the map [ ]( )0,1 , F  turns out to be the transfer operator acting as 

( ) ( ) ( ) ( )
( )0 1 2

1 1: .
1 11

q q q q

xf x I I f x f f
x xx

π π      = + = +      + +   +  
           (5.3) 

Of special significance is the (Perron-Frobenius) operator 1  which satisfies 

( ) ( ) ( ) ( )1 1
10 0

d dg F x f x x g x f x x=∫ ∫                          (5.4) 

and has norm at most one in the Banach space [ ]( )1 0,1 ,dL x . A function h  is the density of an absolutely 
continuous invariant measure for F if and only if 1h h= . In this case we find ( ) 1h x x= , which however 
does not lie in [ ]( )1 0,1 ,dL x  (see [21]). 

Let f be an eigenfunction of q  analytic in the half-plane Re 0x > . It satisfies 

( ) ( )
21 1

1 1 1

q

q
xf x f x f f

x x x
λ       = = +      + + +      

                  (5.5) 

and also 
( ) ( ) ( )q S f x f xπ =                                      (5.6) 

Therefore the eigenvalue equation is equivalent to the three-term equation 

( ) ( ) 2

1 11 1qf x f x f
xx

λ  = + + + 
 

                           (5.7) 

which is a generalisation of the Lewis functional equation (with 1λ = ) studied in number theory (see [20] [22]). 
The study of this generalized equation has been initiated in [23]. 

Remark 5.1 In the context of the thermodynamic formalism, once a one-sided shift :Φ Σ→ Σ  and a 
potential function ( )Cϕ ∈ Σ  are given one defines a transfer operator ϕ  on ( )C Σ  by 

( ) ( ) ( )
1

eg gϕ η
ϕ

η ξ

ξ η
−∈Φ

= ∑  

which plays a key role in the study of equilibrium states for ( ), ,ϕΣ Φ  and their properties [24] [25]. In parti- 
cular, one defines 

( ) ( ){ }var sup : , 0k i i i kϕ ϕ ξ ϕ ξ ξ ξ′ ′= − = < ≤  

and it turns out that if vark ϕ  decays exponentially then there is a unique mixing equilibrium state. 
Relying on the above discussion it is now easy to see that * q ϕφ =   with 

( ) ( )( )12 log 1 .qϕ ξ φ ξ−= − +  

In order to compute vark ϕ  we have to consider points sharing the same path up to the k-th row of  . Take 
for instance Lξ ∞=  and kL Rξ ′ =  . Then a short reflection yields, for 0q ≠ , 

( ) ( ) C
k

ϕ ξ ϕ ξ ′− ≥  
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We therefore see that although var 0k ϕ →  (so that ϕ  is uniformly continuous) ϕ  it is not even of 
summable variation. This entails that ( ), ,ϕΣ Φ  has indeed two equilibrium states, thus exhibiting a phase 
transition (see [26]).  

Next, we express the n-th iterate of q  as 

( )
{ }

( ) ( )( ) ( )( )1 1

21

10,1

ˆ ˆ1 1
i n

n

qn
n

q
i

f x x I x f I xω ω ω ω
ω

−−

=∈

 = + +  
∑ ∏

 

               (5.8) 

where 
1 1

:
i i

I I Iω ω ω ω=


 . We have ( ) ( )
1 1 1

ˆ ˆ ˆ
i i i

I x I I xω ω ω ω ω−
=

 

  so that, in particular, putting 0x =  we get 

( ) ( )0 1
ˆ ˆ0 0, 0 1I I= =                                  (5.9) 

and 

( ) ( )
1 1 1

, if 0,
ˆ ˆif 0 then 0

, if 1.
i i

i

i

a
a a bI I

bb
a b

ω ω ω ω

ω

ω
−

 = += = 
 =
 +

 

                     (5.10) 

Lemma 5.2 Let ( ) 1n n
h

≥  be the sequence of functions defined by 1 1h ≡  and  

( ) ( )( ) { }
1

1
1

1

ˆ: 1 0 , 0,1 , 1.
i

n
n

n
i

h I nω ωω ω
−

−

=

= + ∈ >∏


 

For each fixed 1n ≥  we have that nh  determines a bijection between { } 10,1 n−  and the set of denominators  

of the elements of 
0
1n

 
 
 

   (considered as an ordered set).  

Proof. The proof is just a straightforward verification. Suppose for instance that 10 1k uω −=  with  
{ } 10,1u −∈  , so that k n+ = . Then by (5.9) and (5.10) ( )nh ω  is given by a product with   factors of the  

type ( ) 11 1 1 1 1
2

a r a b r
b a b

    + + + + = + +    +    
  where r = a if 1 0u − =



, r = b otherwise. The result now  

readily follows by lemma 3.6. ♦  

Remark 5.3 The rank of the elements of 
0
1n

 
 
 

   with denominator ( )nh ω  is given by  

{ }min 1 , 1in i n ω= − ≤ < =  with the convention min n∅ = . The smallest of the above denominators is 1, it 
has rank 0 and is obtained as ( )10n

nh − . The two largest ones are equal to the ( )1n + -st Fibonacci number  
1 1

1
1 1 5 1 5

2 25

n n

nf
+ +

+

    + − = −           
. They are symmetrical w.r.t 1

2
, have rank 1n −  and are obtained as  

( )3101n
nh −  and ( )11n

nh − , respectively. More generally, it is not difficult to see that the following equivalence  

is in force: suppose that the element n
a
b
∈  has rank 1>  so that ( )10 1n

nb h xu− −=   for some { }0,1x∈  

and { } 20,1u −∈  , then the same denominator b , but corresponding to the symmetrical fraction 1 a
b

− , is  

obtained as ( )10 1n
nb h xu− −=   with 1x x= − .  

A direct consequence of the above lemma is the following  
Theorem 5.4 

( ) 2

0
1

1 0 2
n

n q
q

a
b

b−

 ∈  
 

= ∑
 

  

Remarkably, the above sum is equal to the partition function ( )1 2nZ q−  at (inverse) temperature 2q  of the 
number-theoretical spin chain introduced by Andreas Knauf in [27]. For Re 1q >  we have (see [28]) 

( ) ( )
( )

( )
2

1

2 1
lim 1 0 2 2 .

2
n

q qn k

q k
q k

ζ ϕ
ζ

∞

→∞ =

−
= = ∑                            (5.11) 
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Note that for 1q =  the above limit diverges. This reflects the fact that the invariant density for the Farey 
map F, that is the fixed point of the operator 1 , is the function 1 x . 

Let us define the pressure function ( )p q  as 

( ) ( )1: lim log 1 0n
qn

p q
n→∞

=                                (5.12) 

Since the sum in Thm. 5.4 has 12n−  terms we see that ( )0 log 2p =  (this is the topological entropy of the 
map F ). More generally let },21,=,{ 1

,
−n

ni id   denote the sequence of denominators of the elements of  
0
1n

 
 
 

   when the latters are arranged in increasing order in [ ]0,1 , so that 

( ) ( )
12

2
1 ,

1

12 1 0 .
2

n
n q

n q i n
i

Z q d
−

−
−

=

= = ∑                          (5.13) 

The ratio ( ) 1
1 2 2n

nZ q −
−  can be interpreted as the moment of order 2q−  of the size of the denominators in  

0
1n

 
 
 

  . ( )2nZ q  is plainly non-increasing and for 0q ≤  satisfies ( )2 2n
nZ q ≥ . Moreover we have  

( ) ( ) ( )
1 1 2

2 22 2 1
1 1, , ,

1 1 ,

2 2 1 1
n n q

q q i
n n i n i n i n

i i i n

d
Z q Z q d d d

d

− − −
− − −

− −
= =

  
 = + + = + +     

∑ ∑  

with 0, 1nd ≡  for all n . Noting that 1,

,

max i n
i

i n

d
n

d
−   = 

  
 we get for 0q >   

( ) ( )
2

1
12 1 2

1

q

n nZ q Z q
n −

  ≥ +  +   
 

Since ( )0 2 1Z q =  this yields 

( )
212 1 , 1.

1

nq

nZ q n
n

  ≥ + ≥  +   
                          (5.14) 

Thus, for all q∈ , 

( ) ( )1
1lim log 2 2 0.nn

p q Z q
n −→∞

= ≥                              (5.15) 

In addition, since ( )p q  is non-increasing and ( )1 0p =  (because the spectral radius of 1P  is 1, see above) 
we have ( ) 0p q =  for 1q ≥ . Note that the same conclusion follows at once from the fact that ( )2nZ q  is 
finite for Re 1q >  (see (11)). 

Remark 5.5 It holds ( ) ( )2 2p q qf q= −  where ( )f β  is the free energy of the Knauf model. In the context 
of thermodynamic formalism the pressure ( )p q  is a central object. In particular it is used as a generator of 
averages: its first derivative ( )p q′ , wherever it exists, yields the mean of the function ( ) ( )2log 1x q xϕ = − +  
w.r.t. the equilibrium measure qµ , which can be defined as the weak ∗-limit point of atomic measures supported 
on periodic points of F weighted with the function eϕ  [24]. Note that ( ) 0p q′ =  for 1q >  and ( ) 0p q′   
as 1q . On the other hand we have already seen that ( )0 log 2p =  and 0µ  is called measure of maximal 
entropy. Higher derivatives of ( )p q  are connected to (sums of) higher correlation functions, see [25] [29]. 

Let us now study the asymptotic behaviour of ( )2nZ q  for 1q = . To this end, we notice that if, instead of 
0x = , we evaluate the iterate 1n

q  at 1x = , all sequences { }0,1 nω∈  in (5.8) yield paths which end up at 
the same row of the Farey tree. The same argument leading to Theorem 5.4 now yields the following  

Corollary 5.6 

( ) 2

rank

1 1 2 , 1.n q
q

a n
b

b n−

 = 
 

= ≥∑                               (5.16) 
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By Thm. 5.4 and (5.16) we obtain 

( ) ( )
1

0
1 0 1 1 1

n
n

q q

−

=

= +∑ 



                                    (5.17) 

so that we can directly apply the results obtained by Thaler in [30] to get4 
Lemma 5.7 

( ) ( ) ( )
1

1 1 1
0

1 0 1 1 1 2 2
log

n
n

n
nZ

n

−

−
=

= + = ⋅∑ 



   

Lastly, noting that  

( ) ( ) ( ) ( ) ( )2 2 221 2 1 and 1 2 1 2 2q q q
q qx x x x x− − − = + = + + +    

one may then use ( ) ( )
1 1 1

ˆ ˆ ˆ
i i i

I x I I xω ω ω ω ω−
=

 

 , along with Lemma 3.6, to proceed inductively with 1f ≡  in 
(5.8), and obtain the following general expression for ( )1q x  with x +∈ .  

Theorem 5.8 For all x +∈  and 1n ≥  we have  

( ) ( ) ( )2 2

rank 1

1 2 q qn
q

a n
b

x a bx ax b− −

 = − 
 

 = + + + ∑  

We refer to [31] for further generalisations and applications (see also [32]). 

The Partition Function for Negative Integer Temperatures 
Finally, we compute the value of the partition function nZ  for some some specific value of the temperature. 
Related results are discussed in [33] (see also [34]). 

Lemma 5.9 We have, for all 1n ≥ , 

( )0 2 ,n
nZ =  

( )1 3 ,n
nZ − =  

( )
1 1

1 5 17 5 172
2 217

n n

nZ
+ +    + − − = −           

 

Proof. The first identity is trivial. The second one follows immediately from ( )0 1 1Z − =  along with (5.14), 
which gives the recursion ( ) ( )11 3 1n nZ Z −− = − . As for the third one, we can reason as follows: let us denote  

( ) 2 2
,12

n

n n i niA Z d
=

≡ − = ∑  and 2
1, ,1

n

n i n i niB d d−=
= ∑ . Then (5.14) yields 1 13 2n n nA A B− −= + . Moreover, we have  

( ) ( )

( )

1 1

1

2 2 2

1, 1 , 1 1, 1, , 1, , ,
1 1 1

2 2
1, , 1

1

n n n

n

n i n i n i n i n i n i n i n i n
i i i

i n i n n n
i

B d d d d d d d d

d d A A

− −

−

− + + − − −
= = =

− −
=

= = + + +

= + = −

∑ ∑ ∑

∑
 

This yields the recursion 1 15 2n n nA A A+ −= −  with 0 1A =  and 1 5A =  and the claim easily follows ♦ . The 
above result indicates a general argument to work out ( )nZ k−  for any k ∈ : setting ( ) ( )k

n nA Z k= −  and 
( ) 2,

1, ,1

nk r r k r
n i n i niB d d −

−=
= ∑  one has 

( ) ( ) ( )
1

,
1 1

1
3

k
k k k r

n n n
r

k
A A B

r

−

− −
=

 
= +  

 
∑  

and 

 

 

4We say that an and bn are asymptotically equivalent, denoted as an ~ bn, if the quotient an/bn tends to unity as n approaches ∞. 
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( )

( ) ( )

( ) ( )

( ) ( ) ( )

1

2
,

1, 1 , 1
1

2

1, 1, , 1, , ,
1

, ,
1 1

0 0

1 1
, ,

1 1 1 1
1 1

2 2

n

n

k r r k r
n i n i n

i

k r rr k r
i n i n i n i n i n i n

i

r k r
k s k r s

n n
s s

r k
k k s k r k

n n n n
s s r

B d d

d d d d d d

r k r
B B

s s

r k r
A B B B

s s r

−

−
− + +

=

− −
− − −

=

−
+

− −
= =

− −

− − − −
= = +

=

 = + + +  

−   
= +   

   
−   

= + + +   −   

∑

∑

∑ ∑

∑ ∑ ( ),s

 

This yields a k-dimensional recursion 

( )

( )

( )

( )

( )

( )

1
,1 ,1

1

, 1 , 1
1

k k
n n
k k

n n
k

k k k k
n n

A A

B BV

B B

−

−

− −
−

   
   
   

=   
   
   
   

 

                                   (5.18) 

with k k×  matrix 

3
1 2 1

1 1
2 2

1 2

: 2 2
1 2 1 1 1

2 2
2 2 2

1 2

1 1 1
2 2

1 2 2

k

k k k
k

k k
k

r r r k r k r
V

r k r

k k

k k k
k

      
     −     

− −   
   −   

− −         
=          − − −         

− −   
   
   

− − −     
     −     

    

    

      

 

      

   

   


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

and initial condition 
( )

( )

( )

,1

, 1

1
1

:

1

k
n
k

n

k k
n

A

B

B −

         = =          





1                                    (5.19) 

By Perron-Frobenius theorem the matrix kV  has a simple real positive maximal eigenvalue ( )1 kλ  whose 
eigenvector 1v  has strictly positive components. This immediately yields 

( ) ( )12 log .p k kλ− =                                  (5.20) 

More specifically, by the above the exact behaviour of ( )nZ k−  can be obtained by standard linear algebra. 
If for instance kV  can be diagonalized with spectrum ( ) ( )1sp k i i k

V λ
≤ ≤

=  and corresponding eigenvectors 
( )1i i k
v

≤ ≤ , then we can expand i iia v= ∑1  so that (5.18) and (5.19) yield 

( ) ( )1

1
, 0,

k
n

n i i i
i

Z k a v nλ
=

− = ≥∑                            (5.21) 
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where ( )1
iv  denotes the first component of iv . On the other hand, as we shall see in the forthcoming example, 

kV  is not always diagonalizable. 
Examples. For 2 2q = −  we find 

( )2 2

3 2 5 17 5 17, sp ,
2 2 2 2

V V
   + − = =   
    

 

so that by (5.20) ( ) 5 171 log
2

p
 +

− =   
 

 and using (5.21) one easily recover the result of Lemma 5.9 for ( )2nZ − . 

For 2 3q = −  we get 

( ) { }3 3

3 3 3
2 2 2 , sp 7,0,0 .
2 2 2

V V
 
 = = 
 
 

 

In this case (5.21) does not hold but one easily finds  

( ) 13 9 7 , 1,n
nZ n−− = ⋅ >  

and ( )3 2 log 7p − = . 
The case 2 4q = −  is still different, yielding 

( )4 4

3 4 6 4
2 2 3 3 11 113 11 113, sp , , 1, 1 .
2 2 2 2 2 2
2 3 3 2

V V

 
   + −  = = − −      
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