

Coefficient Estimates for a Certain General Subclass of Analytic and Bi-Univalent Functions

Nanjundan Magesh¹, Jagadeesan Yamini²

¹Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri, India ²Department of Mathematics, Govt First Grade College, Bangalore, India Email: nmagi 2000@yahoo.co.in, yaminibalaji@gmail.com

Received 13 January 2014; revised 13 February 2014; accepted 20 February 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Motivated and stimulated especially by the work of Xu *et al.* [1], in this paper, we introduce and discuss an interesting subclass $\mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$ of analytic and bi-univalent functions defined in the open unit disc \mathbb{U} . Further, we find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in this subclass. Many relevant connections with known or new results are pointed out.

Keywords

Analytic Functions, Univalent Functions, Bi-Univalent Functions, Bi-Starlike Functions

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disc $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, by S we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U} . Some of the important and well-investigated subclasses of the univalent function class S include (for example) the class $S^*(\beta)$ of starlike functions of order β $(0 \le \beta < 1)$ in \mathbb{U} and the class $SS^*(\alpha)$ of strongly starlike functions of order α $(0 < \alpha \le 1)$ in \mathbb{U} . It is well known that every function $f \in S$ has an inverse f^{-1} , defined by

How to cite this paper: Magesh, N. and Yamini, J. (2014) Coefficient Estimates for a Certain General Subclass of Analytic and Bi-Univalent Functions. *Applied Mathematics*, **5**, 1047-1052. <u>http://dx.doi.org/10.4236/am.2014.57098</u>

$$f^{-1}(f(z)) = z \quad (z \in \mathbb{U})$$

and

$$f(f^{-1}(w)) = w (|w| < r_0(f); r_0(f) \ge \frac{1}{4}),$$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2a_3 + a_4) w^4 + \cdots$$
(1.2)

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} . We denote by Σ the class of all bi-univalent functions in \mathbb{U} . For a brief history and interesting examples of functions in the class Σ see [2] and the references therein.

In fact, the study of the coefficient problems involving bi-univalent functions was revived recently by Srivastava *et al.* [2]. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions in these subclasses were found in several recent investigations (see, for example, [3]-[13]). The aforecited all these papers on the subject were motivated by the pioneering work of Srivastava *et al.* [2]. But the coefficient problem for each of the following Taylor-Maclaurin coefficients $|a_n|$ ($n \in \mathbb{N} \setminus \{1, 2\}$; $\mathbb{N} \coloneqq \{1, 2, 3, \cdots\}$) is still an open problem.

Motivated by the aforecited works (especially [1]), we introduce the following subclass $\mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$ of the analytic function class \mathcal{A} .

Definition 1 Let $f \in \mathcal{A}$ and the functions $\varphi, \psi : \mathbb{U} \to \mathbb{C}$ be so constrained that

 $\min \left\{ \Re(\varphi(z)), \Re(\psi(z)) \right\} > 0, \quad z \in \mathbb{U} \quad and \quad \varphi(0) = \psi(0) = 1. \quad We \ say \ that \quad f \in \mathcal{G}_{\Sigma}^{\varphi, \psi}(\lambda) \quad if \ the \ following \ conditions \ are \ satisfied: \quad f \in \Sigma,$

$$\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)} \in \varphi(\mathbb{U}) \quad (0 \le \lambda < 1; z \in \mathbb{U})$$
(1.3)

and

$$\frac{wg'(w)}{(1-\lambda)g(w)+\lambda wg'(w)} \in \psi(\mathbb{U}) \quad (0 \le \lambda < 1; w \in \mathbb{U}),$$
(1.4)

where the function g is the extension of f^{-1} to \mathbb{U} .

We note that, for the different choices of the functions φ and ψ , we get interesting known and new subclasses of the analytic function class A. For example, if we set

$$\varphi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} \text{ and } \psi(z) = \left(\frac{1-z}{1+z}\right)^{\alpha} (0 < \alpha \le 1; z \in \mathbb{U}),$$

in the class $\mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$ then we have $\mathcal{SS}_{\Sigma}^{*}(\alpha,\lambda)$. Also, $f \in \mathcal{SS}_{\Sigma}^{*}(\alpha,\lambda)$ if the following conditions are satisfied:

$$f \in \Sigma$$
, $\left| \arg \left(\frac{zf'(z)}{(1-\lambda)f(z) + \lambda zf'(z)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1; 0 \le \lambda < 1; z \in \mathbb{U})$

and

$$\left| \arg \left(\frac{wg'(w)}{(1-\lambda)g(w) + \lambda wg'(w)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1; 0 \le \lambda < 1; w \in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Similarly, if we let

$$\varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$$
 and $\psi(z) = \frac{1 - (1 - 2\beta)z}{1 + z}$ $(0 \le \beta < 1; z \in \mathbb{U})$.

in the class $\mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$ then we get $\mathcal{S}_{\Sigma}^{*}(\beta,\lambda)$. Further, we say that $f \in \mathcal{S}_{\Sigma}^{*}(\beta,\lambda)$ if the following conditions

are satisfied:

$$f \in \Sigma$$
, $\Re\left(\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}\right) > \beta$ $\left(0 \le \beta < 1; 0 \le \lambda < 1; z \in \mathbb{U}\right)$

and

$$\Re\left(\frac{wg'(w)}{(1-\lambda)g(w)+\lambda wg'(w)}\right) > \beta \qquad \left(0 \le \beta < 1; 0 \le \lambda < 1; w \in \mathbb{U}\right),$$

where g is the extension of f^{-1} to \mathbb{U} .

The classes $SS_{\Sigma}^{*}(\alpha, \lambda)$ and $S_{\Sigma}^{*}(\beta, \lambda)$ were introduced and studied by Murugusundaramoorthy *et al.* [12], Definition 1.1 and Definition 1.2]. The classes $SS_{\Sigma}^{*}(\alpha, 0) := SS_{\Sigma}^{*}(\alpha)$ and $S_{\Sigma}^{*}(\beta, 0) := S_{\Sigma}^{*}(\beta)$ are strongly bi-starlike functions of order α and bi-starlike functions of order β respectively. The classes $SS_{\Sigma}^{*}(\alpha)$ and $S_{\Sigma}^{*}(\beta)$ were introduced and studied by Brannan and Taha [14], Definition 1.1 and Definition 1.2]. In addition, we note that, $\mathcal{G}_{\Sigma}^{\varphi,\psi}(0) := \mathcal{B}_{\Sigma}^{\varphi,\psi}$ was introduced and studied by Bulut [4], Definition 3].

Motivated and stimulated by Bulut [4] and Xu *et al.* [1] (also [10]), in this paper, we introduce a new subclass $\mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$ and obtain the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in aforementioned class, employing the techniques used earlier by Xu *et al.* [1].

2. A Set of General Coefficient Estimates

In this section we state and prove our general results involving the bi-univalent function class $\mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$ given by Definition 1.

Theorem 1 Let f(z) be of the form (1.1). If $f \in \mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$, then

$$|a_{2}| \leq \min\left\{\sqrt{\frac{|\varphi'(0)|^{2} + |\psi'(0)|^{2}}{2(1-\lambda)^{2}}}, \frac{\sqrt{|\varphi''(0)| + |\psi''(0)|}}{2(1-\lambda)}\right\}$$
(1.5)

and

$$|a_{3}| \leq \min\left\{\frac{|\varphi'(0)|^{2} + |\psi'(0)|^{2}}{2(1-\lambda)^{2}} + \frac{|\varphi''(0)| + |\psi''(0)|}{8(1-\lambda)}, \frac{(3-\lambda)|\varphi''(0)| + (1+\lambda)|\psi''(0)|}{8(1-\lambda)^{2}}\right\}.$$
(1.6)

Proof 1 Since $f \in \mathcal{G}_{\Sigma}^{\varphi,\psi}(\lambda)$. From (1.3) and (1.4), we have,

$$\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)} = \varphi(z) \quad (z \in \mathbb{U})$$

and

$$\frac{wg'(w)}{(1-\lambda)g(w)+\lambda wg'(w)}=\psi(w) \quad (w\in\mathbb{U}),$$

where

$$\varphi(z) = 1 + \varphi_1 z + \varphi_2 z^2 + \cdots$$

and

$$\psi(z) = 1 + \psi_1 z + \psi_2 z^2 + \cdots$$

satisfy the conditions of Definition 1. Now, upon equating the coefficients of $\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}$ with

those of $\varphi(z)$ and the coefficients of $\frac{wg'(w)}{(1-\lambda)g(w)+\lambda wg'(w)}$ with those of $\psi(w)$, we get

$$(1-\lambda)a_2 = \varphi_1 \tag{1.7}$$

$$(\lambda^2 - 1)a_2^2 + 2(1 - \lambda)a_3 = \varphi_2$$
(1.8)

$$-(1-\lambda)a_2 = \psi_1 \tag{1.9}$$

and

$$(\lambda^2 - 4\lambda + 3)a_2^2 - 2(1 - \lambda)a_3 = \psi_2.$$
 (1.10)

From (1.7) and (1.9), we get

$$\varphi_1 = -\psi_1 \tag{1.11}$$

and

$$2(1-\lambda)^2 a_2^2 = \varphi_1^2 + \psi_1^2.$$
(1.12)

From
$$(1.8)$$
 and (1.10) , we obtain

$$2(1-\lambda)^2 a_2^2 = \varphi_2 + \psi_2. \tag{1.13}$$

Therefore, we find from (1.12) and (1.13) that

$$a_2^2 = \frac{\varphi_1^2 + \psi_1^2}{2(1-\lambda)^2}.$$
(1.14)

and

$$a_2^2 = \frac{\varphi_2 + \psi_2}{2(1-\lambda)^2}.$$
 (1.15)

Since $\varphi(z) \in \varphi(\mathbb{U})$ and $\psi(z) \in \psi(\mathbb{U})$, we immediately have

$$|a_2|^2 \le \frac{|\varphi'(0)|^2 + |\psi'(0)|^2}{2(1-\lambda)^2}$$

and

$$|a_2|^2 \le \frac{|\varphi''(0)|^2 + |\psi''(0)|^2}{4(1-\lambda)^2}$$

respectively. So we get the desired estimate on $|a_2|$ as asserted in (1.5).

Next, in order to find the bound on $|a_3|$, by subtracting (1.10) from (1.8), we get

$$4(1-\lambda)a_3 - 4(1-\lambda)a_2^2 = \varphi_2 - \psi_2. \tag{1.16}$$

Upon substituting the values of a_2^2 from (1.14) and (1.15) into (1.16), we have

$$a_{3} = \frac{\varphi_{1}^{2} + \psi_{1}^{2}}{2(1-\lambda)^{2}} + \frac{\varphi_{2} - \psi_{2}}{4(1-\lambda)}$$

and

$$a_{3} = \frac{(3-\lambda)\varphi_{2} + (1+\lambda)\psi_{2}}{4(1-\lambda)^{2}}$$

respectively. Since $\varphi(z) \in \varphi(\mathbb{U})$ and $\psi(z) \in \psi(\mathbb{U})$, we readily get

$$|a_{3}| \leq \frac{|\varphi'(0)|^{2} + |\psi'(0)|^{2}}{2(1-\lambda)^{2}} + \frac{|\varphi''(0)| + |\psi''(0)|}{8(1-\lambda)}$$

and

$$|a_{3}| \leq \frac{(3-\lambda)|\varphi''(0)| + (1+\lambda)|\psi''(0)|}{8(1-\lambda)^{2}}.$$

This completes the proof of Theorem 1. If we choose

$$\varphi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} \text{ and } \psi(z) = \left(\frac{1-z}{1+z}\right)^{\alpha} \quad (0 < \alpha \le 1, z \in \mathbb{U})$$

in Theorem 1, we have the following corollary.

Corollary 1 Let f(z) be of the form (1.1) and in the class $SS_{\Sigma}^{*}(\alpha, \lambda)$. Then

$$|a_2| \le \min\left\{\frac{2\alpha}{1-\lambda}, \frac{\sqrt{2\alpha}}{1-\lambda}\right\}$$

and

$$\left|a_{3}\right| \leq \min\left\{\frac{4\alpha^{2}}{\left(1-\lambda\right)^{2}} + \frac{\alpha^{2}}{1-\lambda}, \frac{2\alpha^{2}}{\left(1-\lambda\right)^{2}}\right\}$$

If we set

$$\varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$$
 and $\psi(z) = \frac{1 - (1 - 2\beta)z}{1 + z}$ $(0 \le \beta < 1, z \in \mathbb{U})$

in Theorem 1, we readily have the following corollary.

Corollary 2 Let f(z) be of the form (1.1) and in the class $S_{\Sigma}^{*}(\beta, \lambda)$. Then

$$|a_2| \le \min\left\{\frac{2(1-\beta)}{1-\lambda}, \frac{\sqrt{2(1-\beta)}}{1-\lambda}\right\}$$

and

$$\left|a_{3}\right| \leq \min\left\{\frac{4\left(1-\beta\right)^{2}}{\left(1-\lambda\right)^{2}} + \frac{1-\beta}{1-\lambda}, \frac{2\left(1-\beta\right)}{\left(1-\lambda\right)^{2}}\right\}$$

Remark 1 The estimates on the coefficients $|a_2|$ and $|a_3|$ of Corollaries 1 and 2 are improvement of the estimates obtained in [10], Theorems 4 and 5]. Taking $\lambda = 0$ in Corollaries 1 and 2, the estimates on the coefficients $|a_2|$ and $|a_3|$ are improvement of the estimates in [14], Theorems 2.1 and 4.1]. When $\lambda = 0$ the results discussed in this article reduce to results in [4]. Similarly, various other interesting corollaries and consequences of our main result can be derived by choosing different φ and ψ .

Acknowledgements

The authors would like to record their sincere thanks to the referees for their valuable suggestions.

Funding

The work is supported by UGC, under the grant F.MRP-3977/11 (MRP/UGC-SERO) of the first author.

References

- [1] Xu, Q.-H., Gui, Y.-C. and Srivastava, H.M. (2012) Coefficient Estimates for a Certain Subclass of Analytic and Bi-Univalent Functions. *Applied Mathematics Letters*, **25**, 990-994.
- [2] Srivastava, H.M., Mishra, A.K. and Gochhayat, P. (2010) Certain Subclasses of Analytic and Bi-Univalent Functions. *Applied Mathematics Letters*, **23**, 1188-1192.
- [3] Ali, R.M., Lee, S.K., Ravichandran, V. and Supramanian, S. (2012) Coefficient Estimates for Bi-Univalent Ma-Minda Starlike and Convex Functions. *Applied Mathematics Letters*, **25**, 344-351.

- Bulut, S. (2013) Coefficient Estimates for a Class of Analytic and Bi-Univalent Functions. Novi Sad Journal of Mathematics, 43, 59-65.
- [5] Çağlar, M., Orhan, H. and Yağmur, N. (2012) Coefficient Bounds for New Subclasses of Bi-Univalent Functions. *FILOMAT*, 27, 1165-1171.
- [6] Frasin, B.A. and Aouf, M.K. (2011) New Subclasses of Bi-Univalent Functions. *Applied Mathematics Letters*, 24, 1569-1573.
- [7] Hayami, T. and Owa, S. (2012) Coefficient Bounds for Bi-Univalent Functions. *Pan American Mathematical Journal*, 22, 15-26.
- [8] Li, X.-F. and Wang, A.-P. (2012) Two New Subclasses of Bi-Univalent Functions. *International Mathematical Forum*, 7, 1495-1504.
- [9] Magesh, N., Rosy, T. and Varma, S. (2013) Coefficient Estimate Problem for a New Subclass of Biunivalent Functions. *Journal of Complex Analysis*, 2013, Article ID: 474231, 3 Pages.
- [10] Murugusundaramoorthy, G., Magesh, N. and Prameela, V. (2013) Coefficient Bounds for Certain Subclasses of Bi-Univalent Functions. *Abstract and Applied Analysis*, 2013, Article ID: 573017, 3 Pages.
- [11] Srivastava, H.M., Bulut, S., Çağlar, M. and Yağmur, N. (2013) Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions. *FILOMAT*, 27, 831-842.
- [12] Srivastava, H.M., Murugusundaramoorthy, G. and Magesh, N. (2013) On Certain Subclasses of Bi-Univalent Functions Associated with Hohlov Operator. *Global J. Math. Anal*, 1, 67-73.
- [13] Xu, Q.-H., Xiao, H.-G. and Srivastava, H. M. (2012) A Certain General Subclass of Analytic and Bi-Univalent Functions and Associated Coefficient Estimate Problems. *Applied Mathematics and Computation*, 218, 11461-11465.
- [14] Brannan, D.A. and Taha, T.S. (1986) On Some Classes of Bi-Univalent Functions. Studia Universitatis Babeş-Bolyai. Mathematica, 31, 70-77.