Coefficient Estimates for a Certain General Subclass of Analytic and Bi-Univalent Functions

Nanjundan Magesh ${ }^{1}$, Jagadeesan Yamini ${ }^{2}$
${ }^{1}$ Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri, India
${ }^{2}$ Department of Mathematics, Govt First Grade College, Bangalore, India
Email: nmagi 2000@yahoo.co.in, yaminibalaji@gmail.com

Received 13 January 2014; revised 13 February 2014; accepted 20 February 2014
Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

Motivated and stimulated especially by the work of Xu et al. [1], in this paper, we introduce and discuss an interesting subclass $\mathcal{G}_{\Sigma}^{\boldsymbol{q}, \psi}(\lambda)$ of analytic and bi-univalent functions defined in the open unit disc \mathbb{U}. Further, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this subclass. Many relevant connections with known or new results are pointed out.

Keywords

Analytic Functions, Univalent Functions, Bi-Univalent Functions, Bi-Starlike Functions

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U}. Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} include (for example) the class $\mathcal{S}^{*}(\beta)$ of starlike functions of order β $(0 \leq \beta<1)$ in \mathbb{U} and the class $\mathcal{S S}^{*}(\alpha)$ of strongly starlike functions of order $\alpha(0<\alpha \leq 1)$ in \mathbb{U}. It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right),
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U}. For a brief history and interesting examples of functions in the class Σ see [2] and the references therein.

In fact, the study of the coefficient problems involving bi-univalent functions was revived recently by Srivastava et al. [2]. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in these subclasses were found in several recent investigations (see, for example, [3]-[13]). The aforecited all these papers on the subject were motivated by the pioneering work of Srivastava et al. [2]. But the coefficient problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}:=\{1,2,3, \cdots\})$ is still an open problem.

Motivated by the aforecited works (especially [1]), we introduce the following subclass $\mathcal{G}_{2}^{\text {¢, , }}(\lambda)$ of the analytic function class \mathcal{A}.

Definition 1 Let $f \in \mathcal{A}$ and the functions $\varphi, \psi: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that $\min \{\mathfrak{R}(\varphi(z)), \mathfrak{R}(\psi(z))\}>0, \quad z \in \mathbb{U}$ and $\varphi(0)=\psi(0)=1$. We say that $f \in \mathcal{G}_{2}^{\varphi, \psi}(\lambda)$ if the following conditions are satisfied: $f \in \Sigma$,

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)} \in \varphi(\mathbb{U}) \quad(0 \leq \lambda<1 ; z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)} \in \psi(\mathbb{U}) \quad(0 \leq \lambda<1 ; w \in \mathbb{U}), \tag{1.4}
\end{equation*}
$$

where the function g is the extension of f^{-1} to \mathbb{U}.
We note that, for the different choices of the functions φ and ψ, we get interesting known and new subclasses of the analytic function class \mathcal{A}. For example, if we set

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \text { and } \psi(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leq 1 ; z \in \mathbb{U}),
$$

in the class $\mathcal{G}_{\Sigma}^{\phi, \psi(}(\lambda)$ then we have $\mathcal{S}_{\Sigma}^{*}(\alpha, \lambda)$. Also, $f \in \mathcal{S S}_{\Sigma}^{*}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma, \quad\left|\arg \left(\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1 ; 0 \leq \lambda<1 ; z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1 ; 0 \leq \lambda<1 ; w \in \mathbb{U}),
$$

where g is the extension of f^{-1} to \mathbb{U}.
Similarly, if we let

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \text { and } \psi(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1 ; z \in \mathbb{U}) \text {, }
$$

in the class $\mathcal{G}_{\Sigma}^{\phi, \psi /}(\lambda)$ then we get $\mathcal{S}_{\Sigma}^{*}(\beta, \lambda)$. Further, we say that $f \in \mathcal{S}_{\Sigma}^{*}(\beta, \lambda)$ if the following conditions
are satisfied:

$$
f \in \Sigma, \quad \mathfrak{R}\left(\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)>\beta \quad(0 \leq \beta<1 ; 0 \leq \lambda<1 ; z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}\right)>\beta \quad(0 \leq \beta<1 ; 0 \leq \lambda<1 ; w \in \mathbb{U}) \text {, }
$$

where g is the extension of f^{-1} to \mathbb{U}.
The classes $\mathcal{S S}_{\Sigma}^{*}(\alpha, \lambda)$ and $\mathcal{S}_{\Sigma}^{*}(\beta, \lambda)$ were introduced and studied by Murugusundaramoorthy et al. [12], Definition 1.1 and Definition 1.2]. The classes $\mathcal{S S}_{\Sigma}^{*}(\alpha, 0):=\mathcal{S S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{S}_{\Sigma}^{*}(\beta, 0):=\mathcal{S}_{\Sigma}^{*}(\beta)$ are strongly bi-starlike functions of order α and bi-starlike functions of order β respectively. The classes $\mathcal{S S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{S}_{\Sigma}^{*}(\beta)$ were introduced and studied by Brannan and Taha [14], Definition 1.1 and Definition 1.2]. In addition, we note that, $\mathcal{G}_{\Sigma}^{\varphi, \psi}(0):=\mathcal{B}_{\Sigma}^{\varphi, \psi} \quad$ was introduced and studied by Bulut [4], Definition 3].

Motivated and stimulated by Bulut [4] and Xu et al. [1] (also [10]), in this paper, we introduce a new subclass $\mathcal{G}_{\Sigma}^{\varphi, \psi}(\lambda)$ and obtain the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in aforementioned class, employing the techniques used earlier by Xu et al. [1].

2. A Set of General Coefficient Estimates

In this section we state and prove our general results involving the bi-univalent function class $\mathcal{G}_{\Sigma}^{\varphi, \psi /}(\lambda)$ given by Definition 1.

Theorem 1 Let $f(z)$ be of the form (1.1). If $f \in \mathcal{G}_{\Sigma}^{\varphi, \psi}(\lambda)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}}{2(1-\lambda)^{2}}}, \frac{\sqrt{\left|\varphi^{\prime \prime}(0)\right|+\left|\psi^{\prime \prime}(0)\right|}}{2(1-\lambda)}\right\} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}}{2(1-\lambda)^{2}}+\frac{\left|\varphi^{\prime \prime}(0)\right|+\left|\psi^{\prime \prime}(0)\right|}{8(1-\lambda)}, \frac{(3-\lambda)\left|\varphi^{\prime \prime}(0)\right|+(1+\lambda)\left|\psi^{\prime \prime}(0)\right|}{8(1-\lambda)^{2}}\right\} . \tag{1.6}
\end{equation*}
$$

Proof 1 Since $f \in \mathcal{G}_{\Sigma}^{\varphi, \psi}(\lambda)$. From (1.3) and (1.4), we have,

$$
\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}=\varphi(z) \quad(z \in \mathbb{U})
$$

and

$$
\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}=\psi(w) \quad(w \in \mathbb{U})
$$

where

$$
\varphi(z)=1+\varphi_{1} z+\varphi_{2} z^{2}+\cdots
$$

and

$$
\psi(z)=1+\psi_{1} z+\psi_{2} z^{2}+\cdots
$$

satisfy the conditions of Definition 1. Now, upon equating the coefficients of $\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}$ with those of $\varphi(z)$ and the coefficients of $\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}$ with those of $\psi(w)$, we get

$$
\begin{align*}
& (1-\lambda) a_{2}=\varphi_{1} \tag{1.7}\\
& \left(\lambda^{2}-1\right) a_{2}^{2}+2(1-\lambda) a_{3}=\varphi_{2} \tag{1.8}\\
& -(1-\lambda) a_{2}=\psi_{1} \tag{1.9}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\lambda^{2}-4 \lambda+3\right) a_{2}^{2}-2(1-\lambda) a_{3}=\psi_{2} . \tag{1.10}
\end{equation*}
$$

From (1.7) and (1.9), we get

$$
\begin{equation*}
\varphi_{1}=-\psi_{1} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1-\lambda)^{2} a_{2}^{2}=\varphi_{1}^{2}+\psi_{1}^{2} . \tag{1.12}
\end{equation*}
$$

From (1.8) and (1.10), we obtain

$$
\begin{equation*}
2(1-\lambda)^{2} a_{2}^{2}=\varphi_{2}+\psi_{2} . \tag{1.13}
\end{equation*}
$$

Therefore, we find from (1.12) and (1.13) that

$$
\begin{equation*}
a_{2}^{2}=\frac{\varphi_{1}^{2}+\psi_{1}^{2}}{2(1-\lambda)^{2}} . \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{\varphi_{2}+\psi_{2}}{2(1-\lambda)^{2}} . \tag{1.15}
\end{equation*}
$$

Since $\varphi(z) \in \varphi(\mathbb{U})$ and $\psi(z) \in \psi(\mathbb{U})$, we immediately have

$$
\left|a_{2}\right|^{2} \leq \frac{\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}}{2(1-\lambda)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|\varphi^{\prime \prime}(0)\right|^{2}+\left|\psi^{\prime \prime}(0)\right|^{2}}{4(1-\lambda)^{2}}
$$

respectively. So we get the desired estimate on $\left|a_{2}\right|$ as asserted in (1.5).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (1.10) from (1.8), we get

$$
\begin{equation*}
4(1-\lambda) a_{3}-4(1-\lambda) a_{2}^{2}=\varphi_{2}-\psi_{2} . \tag{1.16}
\end{equation*}
$$

Upon substituting the values of a_{2}^{2} from (1.14) and (1.15) into (1.16), we have

$$
a_{3}=\frac{\varphi_{1}^{2}+\psi_{1}^{2}}{2(1-\lambda)^{2}}+\frac{\varphi_{2}-\psi_{2}}{4(1-\lambda)}
$$

and

$$
a_{3}=\frac{(3-\lambda) \varphi_{2}+(1+\lambda) \psi_{2}}{4(1-\lambda)^{2}}
$$

respectively. Since $\varphi(z) \in \varphi(\mathbb{U})$ and $\psi(z) \in \psi(\mathbb{U})$, we readily get

$$
\left|a_{3}\right| \leq \frac{\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}}{2(1-\lambda)^{2}}+\frac{\left|\varphi^{\prime \prime}(0)\right|+\left|\psi^{\prime \prime}(0)\right|}{8(1-\lambda)},
$$

and

$$
\left|a_{3}\right| \leq \frac{(3-\lambda)\left|\varphi^{\prime \prime}(0)\right|+(1+\lambda)\left|\psi^{\prime \prime}(0)\right|}{8(1-\lambda)^{2}} .
$$

This completes the proof of Theorem 1.
If we choose

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \psi(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 1, we have the following corollary.
Corollary 1 Let $f(z)$ be of the form (1.1) and in the class $\mathcal{S S}_{\Sigma}^{*}(\alpha, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{1-\lambda}, \frac{\sqrt{2} \alpha}{1-\lambda}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{(1-\lambda)^{2}}+\frac{\alpha^{2}}{1-\lambda}, \frac{2 \alpha^{2}}{(1-\lambda)^{2}}\right\} .
$$

If we set

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \text { and } \psi(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 1, we readily have the following corollary.
Corollary 2 Let $f(z)$ be of the form (1.1) and in the class $\mathcal{S}_{\Sigma}^{*}(\beta, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{1-\lambda}, \frac{\sqrt{2(1-\beta)}}{1-\lambda}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(1-\lambda)^{2}}+\frac{1-\beta}{1-\lambda}, \frac{2(1-\beta)}{(1-\lambda)^{2}}\right\} .
$$

Remark 1 The estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of Corollaries 1 and 2 are improvement of the estimates obtained in [10], Theorems 4 and 5]. Taking $\lambda=0$ in Corollaries 1 and 2 , the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are improvement of the estimates in [14], Theorems 2.1 and 4.1]. When $\lambda=0$ the results discussed in this article reduce to results in [4]. Similarly, various other interesting corollaries and consequences of our main result can be derived by choosing different φ and ψ.

Acknowledgements

The authors would like to record their sincere thanks to the referees for their valuable suggestions.

Funding

The work is supported by UGC, under the grant F.MRP-3977/11 (MRP/UGC-SERO) of the first author.

References

[1] Xu, Q.-H., Gui, Y.-C. and Srivastava, H.M. (2012) Coefficient Estimates for a Certain Subclass of Analytic and Bi-Univalent Functions. Applied Mathematics Letters, 25, 990-994.
[2] Srivastava, H.M., Mishra, A.K. and Gochhayat, P. (2010) Certain Subclasses of Analytic and Bi-Univalent Functions. Applied Mathematics Letters, 23, 1188-1192.
[3] Ali, R.M., Lee, S.K., Ravichandran, V. and Supramanian, S. (2012) Coefficient Estimates for Bi-Univalent Ma-Minda Starlike and Convex Functions. Applied Mathematics Letters, 25, 344-351.
[4] Bulut, S. (2013) Coefficient Estimates for a Class of Analytic and Bi-Univalent Functions. Novi Sad Journal of Mathematics, 43, 59-65.
[5] Çağlar, M., Orhan, H. and Yağmur, N. (2012) Coefficient Bounds for New Subclasses of Bi-Univalent Functions. FILOMAT, 27, 1165-1171.
[6] Frasin, B.A. and Aouf, M.K. (2011) New Subclasses of Bi-Univalent Functions. Applied Mathematics Letters, 24, 1569-1573.
[7] Hayami, T. and Owa, S. (2012) Coefficient Bounds for Bi-Univalent Functions. Pan American Mathematical Journal, 22, 15-26.
[8] Li, X.-F. and Wang, A.-P. (2012) Two New Subclasses of Bi-Univalent Functions. International Mathematical Forum, 7, 1495-1504.
[9] Magesh, N., Rosy, T. and Varma, S. (2013) Coefficient Estimate Problem for a New Subclass of Biunivalent Functions. Journal of Complex Analysis, 2013, Article ID: 474231, 3 Pages.
[10] Murugusundaramoorthy, G., Magesh, N. and Prameela, V. (2013) Coefficient Bounds for Certain Subclasses of Bi-Univalent Functions. Abstract and Applied Analysis, 2013, Article ID: 573017, 3 Pages.
[11] Srivastava, H.M., Bulut, S., Çağlar, M. and Yağmur, N. (2013) Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions. FILOMAT, 27, 831-842.
[12] Srivastava, H.M., Murugusundaramoorthy, G. and Magesh, N. (2013) On Certain Subclasses of Bi-Univalent Functions Associated with Hohlov Operator. Global J. Math. Anal, 1, 67-73.
[13] Xu, Q.-H., Xiao, H.-G. and Srivastava, H. M. (2012) A Certain General Subclass of Analytic and Bi-Univalent Functions and Associated Coefficient Estimate Problems. Applied Mathematics and Computation, 218, 11461-11465.
[14] Brannan, D.A. and Taha, T.S. (1986) On Some Classes of Bi-Univalent Functions. Studia Universitatis Babeş-Bolyai. Mathematica, 31, 70-77.

