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Abstract 
Multiple discrete (non-spatial) and continuous (spatial) structures can be fitted to a proximity 
matrix to increase the information extracted about the relations among the row and column ob- 
jects vis-à-vis a representation featuring only a single structure. However, using multiple discrete 
and continuous structures often leads to ambiguous results that make it difficult to determine the 
most faithful representation of the proximity matrix in question. We propose to resolve this di- 
lemma by using a nonmetric analogue of spectral matrix decomposition, namely, the decomposi- 
tion of the proximity matrix into a sum of equally-sized matrices, restricted only to display an or- 
der-constrained patterning, the anti-Robinson (AR) form. Each AR matrix captures a unique 
amount of the total variability of the original data. As our ultimate goal, we seek to extract a small 
number of matrices in AR form such that their sum allows for a parsimonious, but faithful recon- 
struction of the total variability among the original proximity entries. Subsequently, the AR ma- 
trices are treated as separate proximity matrices. Their specific patterning lends them immedi- 
ately to the representation by a single (discrete non-spatial) ultrametric cluster dendrogram and a 
single (continuous spatial) unidimensional scale. Because both models refer to the same data base 
and involve the same number of parameters, estimated through least-squares, a direct compari- 
son of their differential fit is legitimate. Thus, one can readily determine whether the amount of 
variability associated which each AR matrix is most faithfully represented by a discrete or a con-
tinuous structure, and which model provides in sum the most appropriate representation of the 
original proximity matrix. We propose an extension of the order-constrained anti-Robinson de- 
composition of square-symmetric proximity matrices to the analysis of individual differences of 
three-way data, with the third way representing individual data sources. An application to judg- 
ments of schematic face stimuli illustrates the method. 

 
Keywords 
Anti-Robinson Structure, Three-Way Data, Individual Differences, Ultrametric, Unidimensional 
Scale 

 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.56094
http://dx.doi.org/10.4236/am.2014.56094
http://www.scirp.org/
mailto:hkoehn@cyrus.psych.uiuc.edu
http://creativecommons.org/licenses/by/4.0/


H.-F. Köhn 
 

 
984 

1. Introduction 
The structural representation of proximity data has always been an important topic in multivariate data analysis 
(see, for example, the monograph by Hubert, Arabie, and Meulman [1]). The term proximity refers to any nu- 
merical measure of relation between the elements of two (possibly distinct) sets of objects. Proximities are usu-
ally collected into a matrix, with rows and columns representing the objects. Our concern here is only with 
square-symmetric proximity matrices, within the taxonomy of Carroll and Arabie [2] referred to as two-way 
one-mode proximity data; the way relates to the dimensionality of the matrix, and the mode to the number of sets 
of entities the ways correspond to. Proximities are assumed to be nonnegative, and WLOG, are henceforth in- 
terpreted as dissimilarities such that larger numerical values pertain to less similar pairs of objects. 

The (casual) meaning of structural representation is captured by colloquialisms like “what goes with what” or 
“what is more or less than”. Mathematically, structural representation is defined here either in terms of a discrete 
non-spatial model or a continuous spatial model. 

The former displays the relation between the row and column objects of the proximity matrix as a graph, with 
objects represented by nodes and dissimilarities fitted by edges of different length connecting the object nodes. 
The focus here is on the ultrametric tree structure, with objects arranged into nested categories—a display that is 
often referred to as a hierarchical cluster diagram. The continuous spatial model used here is the unidimen- 
sional scale: the interobject relations are translated into an ordering of objects along a line, with the dissimilari- 
ties fitted by the distances between objects. Both models are directly comparable for a given proximity matrix 
because they involve the same number of parameters estimable through least-squares minimization. Substan- 
tively, the two models address distinct perspectives on how objects are mentally represented. 

Carroll [3] introduced the idea of fitting a proximity matrix by multiple continuous and discrete structures to 
increase the information extracted about the relations among the row and column objects vis-à-vis a representa- 
tion featuring only a single structure (see also [1]-[6]). However, it is often difficult to determine which particu- 
lar set of multiple continuous and discrete structures provides the most faithful representation of a given proxim- 
ity matrix. To illustrate, assume that for a given proximity matrix two (continuous) unidimensional scales pro- 
vide superior overall fit as compared to a representation by two (discrete) ultrametric tree structures. At the same 
time, the first ultrametric tree structure attains substantially higher fit than the first unidimensional scale. We can 
only directly compare those two first structures. The second structures refer to different data bases. So, should 
we ultimately choose the discrete or the continuous representation? 

We propose to resolve this ambiguity by using a nonmetric analogue of spectral matrix decomposition, 
namely, the additive decomposition of a proximity matrix into equally-sized matrices, constrained only to dis- 
play a specific patterning among the cell entries called the anti-Robinson (AR) form. The AR form of a matrix is 
characterized by an ordering of its cells such that their entries are never-decreasing when moving away from the 
main diagonal [7]. As our ultimate goal, we seek to extract a small number of matrices in AR form such that 
their sum allows for a parsimonious, but faithful reconstruction of the total variability among the original prox- 
imity entries. 

But why use the AR decomposition of the proximity matrix instead of the well-known spectral decomposition? 
A remarkable result in combinatorial data analysis states that fitting a unidimensional scale or an ultrametric tree 
structure to a square-symmetric proximity matrix generally produces matrices of distance and path length esti- 
mates that can be permuted into a perfect AR form [1]. Within this context, order-constrained AR matrix de- 
composition attains the status of a combinatorial data analytic meta-technique. Given their specific pattering, 
each extracted AR component relates immediately to the representation by a single unidimensional scale and a 
single ultrametric tree. As both models are directly comparable for each AR matrix, we can determine which 
structure provides a superior representation of the associated amount of variability—a feature not available 
when fitting multiple structures to a data matrix without order-constrained AR decomposition. 

The extension of order-constrained AR matrix decomposition to accommodate three-way data for studying 
individual differences provides the analyst with an instrument to explore complex hypotheses concerning the 
appropriateness of continuous or discrete stimuli representations from an interindividual as well as an intraindi- 
vidual perspective. We advocate an approach guided by a principle common in statistics as well as of immediate 
intuitive appeal, namely, to analyze individual variability within a deviation-from-the-mean framework. First, 
the individual proximity matrices are aggregated across sources into a single average matrix that is then fit by a 
small number of AR components (say, two or three). The identified AR decomposition serves as a frame of ref- 
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erence against which the individual proximity matrices are fit in a confirmatory manner, informing us how well 
the various individuals are represented by the reference decomposition. In addition, for each individual source, 
the obtained (comfirmatory) AR components themselves can be fit by unidimensional and ultrametric structures. 
Thus, we obtain (1) an interindividual assessment to what extent the various sources conform to the strucutral 
reference representation, and (2) an intraindividual comparison whether the distinct (confirmatory) AR matrix 
components are better represented in terms of a (continuous) unidimensional or (discrete) ultrametric model, 
with possible implications about the underlying individual cognitive representations of the stimuli. 

The next section provides a summary of order-constrained AR matrix decomposition, while its generalization 
to accommodate three-way two-mode data is introduced in the third section. We conclude with an illustrative 
application of three-way order-constrained AR matrix decomposition for analyzing the structure of individual 
differences in judgments of schematic face stimuli. 

2. Order-Constrained AR Matrix Decomposition 
2.1. Definitions and Formal Concepts 
Let { }ijp=P  denote an N N×  square-symmetric proximity matrix, with 0iip = , ij jip p= , and 1 ,i j N≤ ≤ . 
The rows and columns of P  represent a set of objects { }1, , NO O=  ; the ijp  have been characterized as 
pairwise dissimilarities of objects ,i jO O ∈ . Thus, in the following, we will consider solely the anti-Robinson 
(AR) form of proximity matrices, and their representation through sums of matrices of the according pattern. A 
square-symmetric matrix { }ijq=Q  is said to have AR form if 

( )

( )

( )

1

1

1

for 1 1

and for 2

for 2

ij i j

ij i j

ij i j

q q i j N

q q j i N

q q i j N

+

−

−

≤ ≤ < ≤ −

≤ ≤ < ≤

⇔ ≤ ≤ < ≤

                             (1) 

Verbally stated, moving away from the main diagonal of Q , within each row or column, the entries never 
decrease. 

We seek a decomposition of P  into the sum of matrices 1 k K+ + + +Q Q Q  , with K  at most equall to 
N , such that the least-squares loss function or 2L -norm is minimized: 

( ){ } ( )
1 1 1

2

2 1, , , , , ,
min , , min min tr

K K K
K ij k kk ij

i j k k k
L p q

  ′          = − = − −                     
∑∑ ∑ ∑ ∑

Q Q Q Q Q Q
Q Q P Q P Q

  

  

subject to the constraint of all kQ  having AR form, where tr denotes the trace function, defined for an arbitrary 
N N×  matrix A  as tr iiia=∑A . 

The task of identifying an additive decomposition of P  is addressed by fitting kk∑ Q  through subsequent 
residualizations of P : 1Q  is fit to P , 2Q  to the residual matrix 1−P Q , 3Q  to the residual matrix 
( )1 2− −P Q Q , and so on. However, the given proximity data matrix P  initially does not have AR form. 
Therefore, the rows and columns of P  need first to be re-arranged into a form that matches the desired AR 
pattern as closely as possible through identifying a suitable permutation ( )1 1ρ ρ⋅ ≡ , where ( )ρ ⋅  denotes a 
permutation of the first N  integers. Similarly, the estimation of each subsequent AR component 2 , , KQ Q  
requires the preceding search for a permutation 2 , , Kρ ρ , producing a rearrangement of rows and columns of 
the involved residual matrices, optimally approximating the AR form. Hence, conceptually, generating an 
optimal AR decomposition of P  into kk∑ Q  represents a two-fold (constrained) least-squares minimization 
problem; first, an operation to find a collection of permutations 1, , Kρ ρ , for attempting to reorder the 
matrices into AR form, and second, an estimation step to numerically identify the desired AR components 

1, , KQ Q  conforming to the order constraints as established through the respective permutations. 

2.2. Optimal AR Decomposition: Algorithmic and Computational Details 
The first task of searching for an optimal collection of permutations, 1 , , Kρ ρ∗ ∗

 , represents an NP-hard 
combinatorial optimization problem, solvable by optimal solution strategies for object sets   of small size, but 
calling for heuristic approaches for larger N , yet with no guarantee of identifying the globally-optimal 
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permutation. Note that for each component k  the number of distinct permutations equals ! 2N  because 
symmetry of P  precludes the necessity of considering reverse permutations. The search for the collection of 
optimal permutations, 1 , , Kρ ρ∗ ∗

 , can be carried out through a quadratic assignment (QA) heuristic. In general, 
solving the QA problem for two given N N×  matrices { }ija=A  and { }ijb=B , requires finding a 
permutation ρ  of the rows and columns of A  for fixed B  such that the sum of the products of 
corresponding cells is maximized: 

( ) ( ) ( )( )
,

max max iji j
i j

a bρ ρρ ρ
ρ

 
Γ =  

 
∑  

[8] [9]. Define :ijb j i= − , with 1 i j N≤ ≤ ≤ , which yields a perfect and equally spaced AR structure, and let 
ij ija p= , then 

( ) ( ) ( )
,

i j
i j

p j iρ ρρΓ = −∑  

The fixed matrix B  serves as the AR target: As the algorithm iteratively tries to maximize ( )ρΓ , the 
reordering mechanism by and by will match cells ijp  and ijb  that maximally contribute to an increase of the 
QA-criterion. The search for a permutation ρ∗  that maximizes ( )ρΓ  can be implemented through 
consecutive interchanges of single objects, or relocations of entire blocks of rows and columns of P , until no 
improvement in ( )ρΓ  can be found. Hence, ρ∗  represents an at least locally-optimal permutation, 
transforming P  to conform to the intended AR form as closely as possible. Consequently, the desired 
permutations in the collection, 1 , , Kρ ρ∗ ∗

 , are also at least locally-optimal. Alternative strategies for solving the 
QA problem include dynamic programming [10] and branch-and-bound algorithms [11] [12]. 

The second optimization task of estimating the least-squares approximation Q  (in perfect AR form) to ρP  
(denoting the permuted matrix), is carried out through iterative projection (IP) as proposed by Dykstra [13] [14]. 
In general, IP offers a computational strategy for solving constrained least-squares minimization problems. Let 

nX ∈  (with n∈ ) denote a complete inner product space, also called a Hilbert space. The least-squares 
approximation to a vector X∈x  is sought from a closed convex set C X∈  in the form of a vector ˆ C∗ ∈x  
minimizing the least-squares criterion, ( ) ( )ˆ ˆ′− −x x x x , subject to linear constraints imposed on x̂  as defined 
by C . Conceptually, ˆ ∗x  can be found directly by projecting x  onto C ; in practice, however, this may pose 
extreme computational demands. Dykstra’s solution is as simple as it is elegant: based on the decomposition of 
the constraint set 

1: W
wwC C

=
= ≠ ∅


, the (presumably) difficult calculation of ˆ C∗ ∈x  is broken down into the 
easier task of constructing a sequence ( )tx , with 0,1,2,t = , by way of iterative projections of x  onto the 
W  closed convex subsets of restrictions, 1, , WC C , which, as was proven by Boyle and Dykstra [15], 
converges to ˆ C∗ ∈x : 

( ) ( )lim 0t
Ct

P− =x x  

with ( )CP x  indicating the projection of x  onto C . The sequence ( )tx  is initialized by setting ( )0 =x x , 
followed by the projection of ( )0x  onto 1C , resulting in ( )1x , in turn projected onto 2C , yielding ( )2x  to be 
projected onto 3C , and so on. The difference between consecutive projections ( )1t−x  and ( )tx  is termed the 
increment, or residual. The algorithm concludes its first cycle of projections onto sets 1, , WC C , with the 
projection of ( )1W −x  onto WC  giving ( )Wx , the input vector for the second projection cycle through 

1, , WC C . However, from the second cycle on, each time 1, , WC C  are revisited in subsequent cycles, the 
increment from the previous cycle associated with that particular set has to be removed from the vector before 
actually proceeding with the projection. 

Recall that, given the actual numerical entries in P , ρ∗  indicates the best possible reordering of the N  
rows and columns of P  into a form matching an AR pattern. Our goal is to estimate an N N×  least-squares 
approximation { }ijq=Q  to 

ρ∗
P , which has perfect AR form. Notice that the arrangement of the N  objects 

in Q  has already been determined by ρ∗ . Thus, we can expand Equation (1) into a collection of 
( )( )1 2W N N= − −  sets of order constraints 1, , WC C , which the desired numerical estimates ijq  have to 

satisfy. Each wC  represents a single inequality of the form ( )1 0iji jq q+ − ≥  or ( )1 0iji jq q− − ≥ . Formally, we  

need to find a perfect AR matrix ∗Q  minimizing the least-squares loss function, ( ) ( )tr
ρ ρ∗ ∗

 ′
− − 

 
P Q P Q . 
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Observe that the traceform of the loss function is equivalent to the earlier presented generic form 

( ) ( )ˆ ˆ′− −x x x x  if we vectorize 
ρ∗

P  and Q  into 
ρ∗

p  and q  by stacking the matrix columns into a vector, 

yielding the loss function ( ) ( )ρ ρ∗ ∗

′
− −p q p q , subject to the restriction 

1
W

wwC C∗
=

∈ =q


. After initializing 

( )0
ρ∗

=q p  (recall that ( ) ( )0 0≡q Q  and 
ρ ρ∗ ∗≡p P ), the IP algorithm proceeds by checking for each adjacent 

pair of row and column objects whether the involved proximities conform to the respective constraints in wC . If 
at iteration 1t −  a violation is encountered, the particular proximities are projected onto wC  and replaced by 

their projections in iteration t  [13]. For example, if we observe ( )
( ) ( )1 1

1 0t t
iji jq q− −

+ − <  the projections are given by: 

( ) ( )
( )
( ) ( )( ) ( )

( )
( )( )1 1 1 1 1

1 1
1 1
2 2

t t t t t t
ij ij ij iji j i jq q q q q q− − − − −

+ += + − = +  
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( )
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1 1 1 1
1 1
2 2
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+ + + += − − = +  

Proceeding in this manner, IP cycles through 1, , WC C  until convergence to ∗ ∗≡q Q . 
Recall the objective to decompose P  into a sum of identically-sized matrices in AR form, kk∑ Q . The 

actual identification of the collection 1, , KQ Q  through successive residualizations of P  relies on 
engineering a complex interplay of the two optimization routines, QA and Dykstra’s IP. The algorithm is 
initialized by subjecting P  to a QA-based search for a permutation 1ρ  providing a rearrangement of the rows 
and columns of P , matching the desired AR form as closely as possible, denoted by 

1ρ
P . Based on the order 

of row and column objects, as imposed by 1ρ , the least-squares optimal AR matrix 1Q  is fit to 
1ρ

P  through 
the application of Dykstra’s IP procedure, with constraints ( ) ( )1 1 1, , WC C

 derived from 1ρ  as defined by (1.1). 
By updating the target matrix, B , through 1Q , we initiate a second QA search for a possibly superior 
permutation 1ρ  of P  (of course, 1=B Q  then remains fixed throughout the QA routine). The resulting 

1ρ
P  

will potentially even be closer to optimal AR patterning. Subsequently, 1Q  is refit through IP. The algorithm 
cycles through QA and IP until convergence (i.e., updating B  by 1Q  does not result in any changes of 1ρ ).  
The residual matrix ( ) ( ) ( ){ }1 1 1i j ijp qρ ρ −  is submitted to the search for the second AR component, 2Q . The 

algorithm switches back and forth between QA and IP, until 2ρ  and 2Q  have been identified, yielding the 

residual matrix ( ) ( ) ( ){ }
( ) ( ) ( ){ }1 1

2 2
1 2i j ij iji j

p q qρ ρ ρ ρ
− −  to be forwarded to a third QA-IP search bearing 3ρ  and  

3Q . The algorithm continues until a complete decomposition of P  has been attained, usually with K N . 
Evidently, the ultimate solution depends on the initial arrangement of rows and columns of P  (i.e., the 
particular order, in which P  is passed to the first QA search cycle); therefore, to reduce the risk of detecting a 
purely locally-optimal solution, a common nuisance to any heuristic procedure, multiple starts with random 
permutations are strongly recommended. 

2.3. Low-AR-Rank Approximation to a Proximity Matrix 
Spectral decomposition in linear algebra allows us to factor a given N N×  proximity matrix into a sum of 
equally-sized matrices. Low-rank approximation refers to reconstructing the proximity matrix by a small 
number, r N , of those matrices. In an analogous manner, we can state our ultimate analytic objective so as 
to identify a smallest AR rank decomposition of P  such that 1 k r≈ + + + +P Q Q Q  ,  with 
1 k r K N≤ ≤ ≤ . When only r  components in AR form are retrieved, the algorithm capitalizes on 
repetitively refitting the residuals of the different kQ . Explicitly, assume that r  extracted AR components  

yield the residual matrix ( ){ }1
r

ij k ijkp q
=

−∑ . In attempting to additionally improve the fit of the decomposition 

obtained, the residuals ( ){ }1
r

ij k ijkp q
=

−∑  are added back to 1Q , succeeded by another run through the QA-IP 

fitting cycle, very likely detecting a more effective permutation 1ρ , producing a revised 1Q  to recalculate 
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residuals ( ){ }1ij ijp q−  that in turn are restored to the previously estimated 2Q  component, which is then 

subjected to a new search for updating 2Q , and so on. 

2.4. Fit Measure 
The quality of a specific lower-AR-rank approximation to P  is assessed by the variance-accounted-for (VAF) 
criterion. VAF is a normalization of the least-squares loss criterion by the sum of squared deviations of the 
proximities from their mean defined as 

( )

( )

2

1
2VAF 1

r

ij k ij
i j k

ij
i j

p q

p p
< =

<

 − 
 = −

−

∑ ∑

∑
                               (2) 

where p  denotes the mean of the off-diagonal entries in { }ijp=P , and ( )k ijq  the fitted values of the thk  
AR component. 

2.5. The Representation of AR Matrix Components 
Each of the AR components 1, , KQ Q  lends itself immediately to a more restricted representation, either in 
the form of a (continuous) unidimensional scale [16]-[18] of the elements in   along a single axis, or through 
a (discrete) ultrametric tree diagram [19]. 

For a specific AR component matrix ( ){ }k k ijq=Q , the unidimensional scale representation of its row/column 
objects can be constructed by estimating object coordinates ( )k jx , ( )k ix  on the line minimizing the least- 
squares loss function (by including an additive constant kc —see justification below): 

( ) ( ) ( ) ( )( )( )2

2 ,k k kk ij k j k i
i j

L c q x x c
<

= − − +∑x                        (3) 

subject to the triangle (in)equality constraints on the coordinate values as implied by permutation kρ
∗  

associated with kQ : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k k k k il k ij k jli j l

k l k i k j k i k l k j

O O O d d d

x x x x x x i j l

ρ ρ ρ∗ ∗ ∗ ⇒ = +

⇒ − = − + − ∀ < <

 

 

An ultrametric tree structure can be characterized as a weighted acyclic connected graph with a natural root, 
defined as the node equidistant to all leaves or terminal nodes. The terminal nodes of an ultrametric tree 
represent a set of N  objects { }1, , NO O=  . As a necessary and sufficient condition for a unique ultrametric 
tree representation, the weights along the paths connecting objects ,i jO O , typically with a distance 
interpretation and collected into an N N×  matrix { }iju=U , must satisfy the three-point condition or 
ultrametric inequality: for any distinct object triple iO , jO , and lO , the largest two path length distances 
among iju , ilu , and jlu  must be equal. Fitting an ultrametric structure ( ){ }k k iju=U  to kQ  also rests on 
minimizing a least-squares loss function: 

( ) ( ) ( )( )2

2 k k ij k ij
i j

L q u
<

= −∑U                               (4) 

subject to the constraints as defined by the ultrametric inequality: 

( ) ( ) ( ){ }max , for 1 , ,k ij k il k jlu u u i j l N≤ ≤ ≤  

For a detailed technical description of how to construct a unidimensional scale or an ultrametric tree 
representation, the reader is encouraged to refer to the above references. The choice of these two models is 
justified by a remarkable result in combinatorial data analysis [1] [8], which links them directly to the AR form 
of a square-symmetric proximity matrix. Specifically, the matrices of fitted interobject (unidimensional scale) 
distances and of estimated (ultrametric tree) path lengths can be permuted into perfect AR form. More to the 
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point, optimal unidimensional scale and ultrametric tree structures induce the AR form of the matrices of fitted 
values. In other words, the AR form is a necessary condition for identifying these two more restricted models, as 
defined by the order constraints or the ultrametric inequality. We should re-emphasize that, for a given kQ , 
both models involve the same number of parameters, estimable through least-squares. Thus, their VAF scores—  

obtainable through normalizing the respective loss function by ( )( )2

kk iji j q q
<

−∑ —are on an equal scale and  

directly comparable as to which structure provides a superior representation of kQ . A brief technical note will 
be helpful to elaborate this claim. Recall that fitting the undimensional scale includes estimating an additive 
constant, c . Employing a least-squares model without an additive constant would amount to fitting a regression 
model through the origin (in familiar generic notation: i i iy xβ= +  ), which—even though justifiable on 
theoretical grounds in certain instances—in general, has serious disadvantages. First, the residuals usually do not 
sum to zero; second, the sum of the squared residuals, SSE, might exceed the total sum of squares, SSTO, hence 
the coefficient of determination, 2 1R SSE SSTO= − , might turn out to be negative, thus becoming essentially 
meaningless. Lastly, using uncorrected SS  as a remedy will avoid a negative 2R , but 2R  will no longer be 
bounded between zero and one, creating another interpretation problem. Yet, by including an additive constant 

0β  in the model, 0 1i i iy xβ β= + +  , we ensure that the obtained VAF fit score is equivalent to the (bounded) 
2R  measure in regression. In the unidimensional scaling model, the additive constant is represented by c . 

“Two interpretations exist for the role of the additive constant c . We could consider j ix x−  to be fitted to the 
translated proximities ijq c+ , or alternatively, j ix x c− −  to be fitted to the original proximities ijq , where 
the constant c  becomes part of the actual model” to be fitted to the untransformed proximities ijq  [1]. Once 
c  is established, constructing a unidimensional scale can be regarded as approximating the transformed 
proximities ˆ

ij ijd q c= +  by the distances ij j id x x= − ; in other words, we are fitting a metric model (if the ijq  
are subjected to an optimal monotone transformation, then the model represents nonmetric combinatorial 
unidimensional scaling). Fitting a least-squares intercept model implies the conjecture that the proximities have 
interval (and not ratio) scale properties. 

One might object that the unidimensional scale model now has an additional parameter as compared to the 
ultrametric tree model. Notice, however, that in the special case of fitting a least-squares ultrametric structure, 
regression models with or without intercept are identical due to the particular structural side constraints imposed 
by the ultrametric inequality (thus, not necessitating the explicit inclusion of an additive constant, c): 

{ } { }max , max ,ij il jl ij il jlu u u u c u c u c≤ ⇔ + ≤ + +  

Translation invariance does not hold for the unidimensional structure ij j id x x= −  to be fit to the ijp  as 
the triangle (in)equality constraints will be violated: let il l id c x x c+ = − +  (and ijd c+ , jld c+  corres- 
pondingly), then 

2
il ij jl

l i j i l j

d c d c d c

x x c x x x x c

+ ≠ + + +

− + ≠ − + − +
 

3. AR Matrix Decomposition for Three-Way Data 
Three-way data, with the third way representing different data sources, such as subjects, experimental conditions, 
scenarios, or time points, represent a cube having multiple data matrices stacked as slices along the third 
dimension. Our concern here will be three-way two-mode data, so the slices will consist of square-symmetric 
proximity matrices of identical dimensions. By introducing the source index 1, ,s S=  , the entire data cube is 
denoted by ( ) { }S

sijp=P , and the layers of individual sources by ( ){ }s s ijp=P . 
The approach for modeling three-way data adopted in this paper is guided by a principle common in statistics 

as well as of immediate intuitive appeal, namely, to analyze individual variability within a deviation-from-the- 
mean framework: based on the individual proximity matrices aggregated across sources, denoted by aP , a best 
fitting reference AR decomposition is generated into r  average AR components, against which the individual 
data are fit. Concretely, assume that for aP  the low AR rank approximation 1, , rQ Q  was chosen, with each 
component characterized by a unique ordering of { }1, , NO O=   as expressed by the associated permutations 

1, , rρ ρ  obtained from successive residualizations of aP . The componentwise object arrangements embodied 
in kρ  serve as a blueprint for (re)constructing the set of IP-constraints, ( ) ( )1, ,k k WC C

, determining the 
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specific AR form of kQ , thereby providing a frame of reference for the AR decomposition of the S  individual 
proximity matrices in a confirmatory manner: as for each of the r  components the AR-optimal object order is 
fixed, the confirmatory fitting of the individual sources skips the QA step, and instead proceeds directly with 
estimating the r  source-specific AR components ( )s kQ  through IP, employing the r  sets of constraints 

( ) ( )1, ,k k WC C
. 

The VAF criterion computed for each source separately serves as a fit index quantifying how closely the fitted 
proximities of the ( )1

r
s kk=∑ Q  of the individual AR decompositions reflect the properties of the reference 

structure: 

( )
( ) ( )

( )( )

2

1
2VAF 1

r

s ij s kij
i j k

ss ij
i j

p q
s

p p

< =

<

 − 
 = −

−

∑ ∑

∑
                           (5) 

A source-specific unidimensional or ultrametric representation of the estimated AR components can be used 
for a direct evaluation of individuals’ fit against the reference structure, as well as for a more in-depth inter- and 
intra-subject analysis, be that by comparing the overall fit scores between sources or by specific fit of 
components ( )s kQ  within a given source s , to determine whether the continuous or discrete structure provides 
superior representation, with possible implications about the underlying individual cognitive processes. 

4. Application: Judgments of Schematic Face Stimuli 
A total of 22S =  graduate students in the Psychology department of the University of Illinois provided 
pairwise dissimilarity ratings of 12 schematic faces, displayed on a computer screen, on a nine-point scale. Not 
too different from previous work by Tversky and Krantz [20], the twelve face stimuli were generated by 
completely crossing the three factors of “Facial Shape”, “Eyes”, and “Mouth” (see Figure 1). 

The 22 individual matrices of dissimilarity ratings sP  were aggregated into a single matrix aP  by first 
converting each individual’s ratings into z-scores (i.e., subtracting a person’s mean rating from each of his or her 
66 dissimilarity ratings, and dividing these differences by his or her standard deviation), then averaging the 
z-scores across the 22 respondents for each pair of faces. Lastly, to eliminate negative numbers, and to put the 
aggregated dissimilarities back onto a scale similar to the original nine-point scale, the average z-score ratings 
were multiplied by 2, and a constant value of 4 was added. 

The matrix aP  was subjected to a QA-IP-based search for an optimal AR decomposition with 
{ }1,2,3,4K =  using multiple runs with initial random permutations of the input proximity matrix. For each 

decomposition into K  components, 10,000 random starts were used. The frequency distributions of the VAF 
scores obtained for each K  are reported in Table 1; the number of decimal places used may seem excessive, 
but is done here to make the distinct locally optimal solutions apparent. 
 

 
Figure 1. The construction of schematic face stimuli.  



H.-F. Köhn 
 

 
991 

Table 1. Frequency distributions of the VAF scores as obtained from 
10,000 random starts for { }1, 2,3, 4K = .                         

K VAF freq perc max VAF increase 1K K→ +  

1 0.54456550 4888 48.9   
 0.54456551 5112 51.1 •  -- 

      
2 0.93474819 6987 69.9   
 0.95931572 3013 30.1 •  0.41475021 

      
3 0.99892695 1817 18.2   
 0.99963474 5160 51.6   
 0.99981285 804 8.0   
 0.99999319 2219 22.2 •  0.04067747 

      
4 0.99999764 5100 51.0   
 0.99999928 1904 19.0   
 0.99999950 2231 22.3   
 0.99999970 161 1.6   
 0.99999983 604 6.0 •  0.00000664 

 
Figure 2 presents the orders of facial stimuli as discovered for the kQ  belonging to the AR decomposition 

of aP  into K  components with maximum VAF. Both the distribution results in Table 1 as well as the 
displays of the stimulus orderings in Figure 2 clearly suggest that the aggregated proximity matrix aP  is of AR 
rank 2r = : first, the VAF increment for 3K >  is minimal; second, while the order of stimuli associated with 
the first two components reveals an obvious pattern— 1Q : emotional appearance as captured by factor “Mouth”; 

2Q : “circle” shaped versus “solid” eyes—the stimulus arrangements along the third and fourth AR components, 
3Q  and 4Q , lack such pattern. Lastly, across all four decompositions the first two AR components maintain a 

stable order of the stimuli (apart from a minimal inversion occurring on the second AR component concerning 
the two right-most faces), which does not hold for the third and fourth AR components. Thus, the biadditive 
solution with the largest VAF score (0.9593) was chosen as reference AR decomposition, against which the 22 
individual rating matrices were fit. 

The graphs of the unidimensional scale and ultrametric tree representation of the biadditive AR reference 
components 1Q  and 2Q  are shown in Figure 3. The interpretation is straightforward: the unidimensional 
scale constructed for 1Q  orders the face stimuli along the continuum negative to positive expression of emotion, 
grouping them into three well-defined categories formed by the levels “frowning”, “flat”, and “smiling” of 
factor “Mouth” (the exact position of each face stimulus is at its left eye). The corresponding ultrametric tree 
structure of 1Q  produces an almost perfectly balanced threefold segmentation of the face stimuli, also based on 
the primary criterion emotional appearance as expressed by the levels of factor “Mouth”. Notice that the three 
categories are not perceived as equally distinct; rather, “flat” and “smile” are merged, while “frown” is still set 
apart. Within each group, a secondary classification into faces according to “Facial Shape” can be observed, 
whereas “open” and “solid” circled eyes differentiate between stimuli at the tertiary level (note that this pattern 
is slightly violated by the “smile” segment). The unidimensional scale representing 2Q  separates faces with 
“circle” shaped from “solid” eyes, with “oval” faced stimuli placed at the extreme scale poles—an arrangement 
of stimuli accurately reflected by the ultrametric tree structure. The latter also implies that “Facial Shape” and 
emotional appearance serve as subsequent descriptive features to group the stimuli. The tied triplet of “circle”  
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Figure 2. The orders of schematic face stimuli obtained for the various kQ  components of 
the AR decompositions into K components with maximum VAF score.                    

 
shaped faces having “solid” eyes indicates a compromised fit of the ultrametric structure such as its imposition 
could only be accomplished by equating the respective stimulus distances. One might be tempted to conclude 
that the unidimensional scaling of the second AR component is degenerate because the twelve stimuli are 
lumped into four locations only. Upon closer inspection, however, this appears as an absolutely legitimate 
representation: the scale appropriately discriminates between “solid” and “circle” shaped eyes, while incor- 
porating a secondary distinction based on facial shape. Thus, the retrieved scale accurately reflects a subset of 
constituting facial features ordering the stimuli in perfect accordance. 

Each of the 22 individual source matrices, sP , was then fitted against this biadditive AR reference structure 
—that is, the confirmatory biadditive AR decomposition of each of the individual proximity matrices was 
carried out, with the IP constraints derived directly from the object orderings associated with the two AR  
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Figure 3. Biadditive reference AR decomposition of aP  (VAF = 0.959): unidimensional scale and ultrametric 
tree representations.                                                                            

 
reference components. Table 2 presents the results for the 22 sources, sorted according to their VAF scores as 
defined by Equation (5), indicating how closely the various individuals actually match the biadditive reference 
AR structure. A variety of additional diagnostic measures is provided for assessing the differential contribution 
of the AR components ( )1sQ  and ( )2sQ . The VAF1 and VAF2 scores indicate how well the two AR 
components actually fit the corresponding residualizations of sP . They are defined in a manner similar to the 
overall or individual VAF measures in Equations (2) and (5), however, with minor modifications to adjust for 
the respective residualization; for example: 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

2

2 1

2

2 2

VAF1 1
s ij s ij s ij

i j

s ij s ij s ij s ij
i j

p q q

p q p q

<

<

 − − 
= −

 − − − 

∑
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Table 2. Ranking of Individual VAF scores plus various fit measures quantifying 
the separate contributions of the two AR components ( )1sQ  and ( )2sQ .            

Sources VAF  VAF1 VAF2 ( )1VAF Q  ( )2VAF Q  
1 2

2R ⋅PQ Q  
2 1

2R ⋅PQ Q  COV 

11 963 •  941 957 365 549 992 957 −1378 

19 951 •  926 939 385 500 995 939 −834 

21 948 •  940 935 484 411 991 935 −1730 

12 943  950 654 877 33 996 654 −365 

5 932  931 864 648 237 990 864 −1224 

13 914  907 846 602 242 983 846 −1088 

20 885  894 590 777 99 981 590 −806 

9 885  886 861 467 315 980 861 −1887 

14 883  830 857 303 451 984 857 −785 

8 874  862 784 559 283 983 784 −706 

17 862  874 606 706 121 968 606 −1026 

16 860  769 847 262 551 969 847 −1108 

2 849  779 792 395 453 980 792 −622 

22 841  771 858 212 533 973 858 −1793 

10 838  785 759 424 350 975 759 −444 

15 836  820 736 481 238 974 736 −893 

18 813  732 767 328 473 969 767 −598 

7 803  787 797 313 374 972 797 −988 

3 793  701 759 267 433 964 759 −395 

6 748 
  724 611 421 242 963 611 −505 

4 747 
  693 643 354 248 952 643 −782 

1 262 
  135 229 70 186 965 229 −53 

 
where ( ) ( )( )2s ij s ijp q−  denotes the mean of the residual matrix ( )2s s−P Q . Measures ( )1VAF Q  and 

( )2VAF Q  are obtained by refitting the final estimates of the AR components ( )1sQ  and ( )2sQ  as sole 
predictors to the individual proximity matrices sP  to assess their marginal variance contribution. The 
coefficients of partial determination 

1 2

2R ⋅PQ Q  and 
2 1

2R ⋅PQ Q  quantify the marginal contribution of ( )1sQ  and 
( )2sQ  in reducing the total variation of sP  when ( )2sQ  or ( )1sQ , respectively, has already been included in the 

model; for example: 

( )( ) ( ) ( )( )
( )( )1 2

2 1 22

2

,s s s

s

SSE SSE
R

SSE

∗

⋅

−
=PQ Q

Q Q Q

Q
 

with SSE  denoting the sum of squared errors. Thus, ( )( )2sSSE Q  indicates the sum of squared errors when 
( )2sQ  serves as sole predictor, while ( ) ( )( )1 2,s sSSE Q Q  represents the sums of squares due to error resulting 

when both AR components are in the model. Lastly, COV denotes the covariance of the two AR components 
defined by 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 1 1 2
,

COV ,s s s ij s s ij s
i j

q q q q= − −∑Q Q  
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In terms of the overall VAF score, subjects 11, 19, and 21 form the top three group, while the bottom three 
comprise subjects 1, 4, and 6, with the top and bottom three subjects marked by “ • ”, and by “  ”, respectively. 
For ease of legibility, all original fit scores were multiplied by 1000, thereby eliminating decimal points and 
leading zeros. 

Table 3 reports the VAF scores obtained for the 22 sources when fitting unidimensional scales and 
ultrametric tree structures to the individual AR components ( )1sQ  and ( )2sQ . The VAF scores correspond to  

normalizations of the least-squares loss criteria in EquationS (3) and (4) by ( ) ( )( )2

s kij s ki j q q
<

−∑ . For all  

sources, except subject 1, the unidimensional scaling of ( )1sQ  results in a much better fit than the corresponding 
ultrametric tree structure; however, for the second AR component, the ultrametric tree representation attains 
superior fit. 

The most instructive course is to focus on the extremes and consider for further inspection only individuals 
who are exceptionally poorly or well represented: the top and bottom three subjects. For succinctness, from the 
top three group only the best fitting source, subject 11, was chosen for closer inspection. However, all three 
members of the bottom group, subjects 1, 4, and 6, were completely documented because they promised to 
provide deeper diagnostic insight into how sources with data of apparent ill-fit were handled by the AR  
 

Table 3. Individual VAF scores for the unidimensional scale 
(US) and ultrametric tree (UT) representations of the two AR 
components ( )1sQ  and ( )2sQ .                           

Sources VAF(US 1) VAF(UT 1) VAF(US 2) VAF(UT 2) 

11 914 619 222 832 

19 870 719 221 684 

21 914 671 196 716 

12 900 776 208 583 

5 918 861 227 774 

13 941 754 240 687 

20 940 878 246 552 

9 914 697 265 769 

14 855 693 264 650 

8 927 664 251 730 

17 962 723 222 818 

16 883 796 233 745 

2 852 737 241 602 

22 882 737 194 745 

10 893 800 284 782 

15 892 723 203 679 

18 861 734 261 715 

7 899 599 222 811 

3 885 728 237 729 

6 896 684 148 641 

4 878 763 170 839 

1 768 818 204 797 
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decomposition. Figure 4 and Figure 5 present the unidimensional scales and ultrametric tree graphs fitted to the 
two individual AR components ( )1sQ  and ( )2sQ . For the ultrametric dendrograms the face stimuli have been 
arranged to match their order associated with the respective AR components; recall that for a fixed ultrametric 
structure there exist ( )12 N −  different ways of positioning the terminal object nodes of the tree diagram. 

Not too surprising, the unidimensional scale as well as the non-spatial tree representations of 1Q  and 2Q  
for subject 11 are almost identical to those of the reference structure, which by and large also applies to the 
unidimensional scales constructed for subjects 6 and 4. However, the findings for the latter two sources are put 
into perspective by the their ultrametric dendrograms: wildly dispersed branches, accompanied by several 
misallocations of stimuli, particularly for the representations of the second AR component, indicate an at best 
mediocre fit of the data from respondents 6 and 4 to the imposed AR structures. Such ambiguities do not pertain 
to subject 1, who is an obvious misfit: first, notice the equidistant alignment of stimuli along the unidimensional 
scale representing the first AR component, indicating a presumable lack of differentiation in the judgments of 
this subject. Moreover, inspecting the remaining three graphs corroborates the notion of the problematic nature 
of the data contributed by source 1 as the face stimuli appear to be arranged more or less in random order. 

As an additional test of the conclusions from the confirmatory analysis, the individual data matrices of 
respondents 11, 6, 4 and 1 were reanalyzed through independent biadditive AR decompositions. Based on the 
logic that the confirmatory fitting could lead to a compromised structural representation of the individual data by 
imposing constraints inappropriate for a particular source, one might consider the obtained confirmatory con- 
figurations—in a transferred sense—as a lower bound representation. In other words, we would expect a 
well-fitting subject to profit from an independent analysis with the prospect of an only slightly better repre- 
ssentation. For sources with poor fit, however, the independent analysis will either yield a substantial increase in 
fit because their idiosyncratic perspective, in disagreement with the majority of the sample, will no longer be 
distorted by an inadequate confirmatory reference frame, or these subjects will qualify as having provided 
simply inconsistent or random judgments not amenable to any improved data representation. Each of the four 
individual proximity matrices was was analyzed using 10,000 random starts. The solutions with the highest VAF 
score were chosen as final representations. The key diagnostics for subjects 11, 6, 4, and 1 are reported in Table 
4. For all sources the overall VAF scores imply that their data are exhaustively approximated by an AR 
decomposition of rank 2r = . 

The VAF scores for the unidimensional scale and ultrametric tree representations fit subsequently to the two 
AR components are presented in Table 5. As before, the unidimensional scale representations of the ( )1sQ  
attain much higher VAF values across all four sources than the ultrametric tree structures, while the latter 
provide superior representations of the second AR components ( )2sQ . 

For sources 11, 6, 4 and 1, graphs of the unidimensional scales and ultrametric tree structures for ( )1sQ  and 
( )2sQ  are given in Figure 6 and Figure 7, respectively. The scale and dendrogram displays obtained for subject 

11 afford an immediate interpretation: the arrangement of facial stimuli associated with the first AR component 
is dominated by the factor “Eyes”, with factors “Facial Shape” as secondary and “Mouth” as tertiary perceptual 
criteria; the ordering of faces identified with the second AR component is determined by the feature hierarchy 
“Mouth”, “Facial Shape” and “Eyes”. So, in comparison with the reference structure used for the confirmatory 
fitting, the independent analysis reveals that subject 11 employs the identical feature hierarchies, but reverses 
their association with the two AR components. For subject 6, the results are far less consistent. The independent 
analysis identifies “Mouth” as the primary factor, but in obvious disagreement with the first confirmatory AR 
component, the faces are no longer ordered along the meaningful emotional continuum “frown”—“flat”— 
“smile”. In addition, the secondary and tertiary criteria “Facial Shape” and “Eyes” are used inconsistently within 
these three groups—a finding also evidenced by the ultrametric tree. The branching pattern of the dendrogram 
indicates further inconsistencies in the grouping of stimuli as exemplified by the misclassifications of the two 
stimuli with “oval” face, “solid” eyes and “flat” mouth, or “circle” shaped face, “solid” eyes and “frowning” 
mouth line, respectively. The displays for the second AR component confirm these conclusions because both the 
unidimensional scale as well as the dendrogram are hardly interpretable and, rather resemble a non-systematic, 
ad hoc mix of factors “Facial Shape” and “Eyes”. Similar findings can be stated for subject 4: the scale as well 
as the tree representation of the first AR component appear to be determined by an inconsistent combination of 
factors “Eyes” and “Facial Shape”, while the arrangement of stimuli in the representations of the second AR 
component, seems to be governed by “Mouth”, but also in an inconsistent manner. In summarizing, remarkably 
and contrary to our expectations, respondents 6 and 4, do not emerge as subjects with a deviant, nevertheless  
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Figure 4. Confirmatory biadditive AR decomposition for selected sources: Unidimensional scale and ultrametric tree 
representations for the first AR component ( )1sQ .                                                              
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Figure 5. Confirmatory biadditive reference AR decomposition for selected sources: Unidimensional scale and ultrametric 
tree representations for the second AR component ( )2sQ .                                                         
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Table 4. Independent biadditive AR decomposition of selected sources: Individual VAF 
scores plus various fit measures quantifying the separate contributions of the two AR 
components ( )1sQ  and ( )2sQ .                                                      

Sources VAF VAF1 VAF2 ( )1VAF Q  ( )2VAF Q  
1 2

2R ⋅PQ Q  
2 1

2R ⋅PQ Q  COV 

11 981 980 966 624 332 996 966 -1494 

6 967 968 955 568 283 995 955 -1237 

4 924 932 912 541 349 986 912 -2485 

1 970 964 913 754 483 999 913 -99 

 
Table 5. Individual VAF scores for the unidimensional scale (US) and 
ultrametric tree (UT) representations of the two AR components ( )1sQ  and 

( )2sQ  from the independent analysis of selected sources.                    

Sources VAF(US 1) VAF(UT 1) VAF(US 2) VAF(UT 2) 

11 941 693 237 632 

6 919 574 260 587 

4 937 699 278 721 

1 822 858 197 650 

 
well interpretable pattern of perceptual criteria, but as sources with profound inconsistencies in their judgments. 
The fuzzy results for source 1 allow for only an obvious explanation: the arrangement of the face stimuli reveals 
no discernable relation, implying that subject 1 merely contributed random responses. 

5. Conclusions 
In contrast to (traditional) calculus-based approaches, combinatorial data analysis attempts to construct optimal 
continuous spatial or discrete non-spatial object representations through identifying optimal object orderings, 
where “optimal” is operationalized within the context of a specific representation. For example, Defays [21] 
demonstrated that the task of finding a best-fitting unidimensional scale for given inter-object proximities can be 
solved solely by permuting the rows and columns of the data matrix such that a certain patterning among cell 
entries is satisfied. The desired numerical scale values can be immediately deduced from the reordered matrix. 
Similarly, for hierarchical clustering problems, in their more refined guise as searches for ultrametric or additive 
tree representations, optimal solutions are directly linked to particular permutations of the set of objects. Within 
this context, order-constrained AR matrix decomposition attains the status of a combinatorial data analytic meta 
technique, essentially pre-processing the observations: the total variability of a given proximity matrix is de- 
composed into a minimal number of separate AR components, each associated with a unique optimal object or- 
dering related to distinct aspects of variation in the data. Based on the identified object permutations, the differ- 
ent AR components can be directly translated into continuous or discrete representations of the structural prop- 
erties of the interobject relations. As the two models are fit through least-squares, they are directly comparable 
formally in terms of fit as well as interpretability—a feature not available when fitting multiple structures to a 
data matrix directly without initial decomposition. The extension of ordinal AR matrix decomposition to ac- 
commodate three-way data provides the analyst with an instrument to explore complex hypotheses concerning 
the appropriateness of continuous or discrete stimuli representations from an interindividual as well as intraindi- 
vidual perspective. 

From a substantive point of view, the results suggest that the set of schematic face stimuli is best represented 
by a combination of continuous spatial and discrete non-spatial structures: the first AR component, associated 
with factor “Mouth” and interpretable as emotional appearance, receives superior representation through a un- 
idimensional scale, whereas the second AR component, reflecting a mix of “Facial Shape” and “Eyes”, is better 
represented by a discrete non-spatial structure—from hindsight not too surprising, given the specific manner in  



H.-F. Köhn 
 

 
1000 

 
Figure 6. Independent biadditive AR decomposition for selected sources: Unidimensional scale and ultrametric tree 
representations for the first AR component ( )1sQ .                                                              



H.-F. Köhn 
 

 
1001 

 
Figure 7. Independent biadditive AR decomposition for selected sources: Unidimensional scale and ultrametric tree 
representations for the second AR component ( )2sQ .                                                           
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which the stimuli were generated. The most remarkable finding concerns the independent analysis of subjects 6 
and 4, who, despite numerically satisfactory fit scores, do not attain a more meaningful stimulus representation. 
Our initial hypothesis attributed their mediocre confirmatory fit to the biadditive AR reference structure as too 
restrictive for their distinctive perception. Contrary, the outcome of the independent analysis rather confirms the 
notion that these subjects simply entertained a weakly elaborated, inconsistent mix of criteria. The instantaneous 
question posed by these results—and definitely deserving future study—is whether an inconsistent, incompre- 
hensible representation observed with a confirmatory AR decomposition provides sufficient diagnostic evidence 
to generally discredit the respective data set. More succinctly, is a questionable representation obtained from a 
confirmatory AR decomposition the incidental effect of an inappropriate structural frame of reference, or does it 
generally hint at data of poor quality, notwithstanding the context of a confirmatory or independent analysis? 
We may conjecture that the analysis of individual structural differences through AR decomposition is far less 
restrictive in its reliance on purely ordinal constraints, and, therefore, is not so susceptible to masking actual in- 
consistencies hidden in the data by the imposition of a more rigid (continuous) reference configuration. 

As a final comment, given the extreme importance of the VAF criterion in selecting the AR reference de- 
composition as well as in assessing source-specific fit, conducting a large-scale simulation to study the behavior 
of the VAF measure deserves high priority. Of particular importance seems the question whether different object 
orders can result in identical VAF scores and to what extent different stimuli orders effect substantial alterations 
in VAF values. 
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