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Abstract 
The reconstruction of a parameter by the measurement of a random variable depending on the 
parameter is one of the main tasks in statistics. In statistical inference, the concept of a confidence 
distribution and, correspondingly, confidence density has often been loosely referred to as a dis- 
tribution function on the parameter space that can represent confidence intervals of all levels for 
a parameter of interest. In this short note, the notion of statistically dual distributions is discussed. 
Based on properties of statistically dual distributions, a method for reconstructing the confidence 
density of a parameter is proposed. 
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1. Introduction 
Let n̂  denote the observed number of events in a simple Poisson process. Its distribution can be described by a 
gamma random variable, ˆ1, 1Γ n+  with the probability density function (pdf) that looks like a Poisson probability: 
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n

µµµ µ−= > > −  

where µ  is a variable and n̂  is a parameter (in the case of the Poisson distribution, µ  is a parameter and 
n̂  is a variable). It means, as shown below, that we can estimate the value and error of Poisson distribution pa-
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rameter by the mean of a Poisson random variable and by using the corresponding gamma distribution. This ap-
proach is also correct in the case of the normal distribution, Cauchy distribution, Laplace distribution, the in-
verse gamma distribution. 

Let us name such distributions, which allow one to exchange the parameter and the variable, conserving the 
same formula for the distribution of probabilities, as statistically dual distributions [1]. In many cases statistical 
duality of such type can be used for construction of confidence intervals for parameters. 

In the next section, we show that Poisson and gamma distributions are statistically dual distributions and that 
the normal and Cauchy distributions are statistically self-dual distributions. An application of statistical duality 
for estimation of parameters is discussed in Section 3. 

2. Statistically Dual Distributions 
Definition: If a function ( ),f x y  can be expressed as a family of pdfs for variable x  given parameter 

( ),y p x y , and a family of pdfs for variable y  given parameter ( ),x p y x , so that  
( ) ( ) ( ),f x y p x y p y x= = , then ( )p x y  and ( )p y x  are said to be statistically dual. 
This definition is a purely probabilistic (and, in this sense, a frequentist) definition. Nevertheless, statistically 

dual distributions considered also belong to conjugate families defined in the Bayesian framework (see, for ex- 
ample, [2]). 

The statistical duality of Poisson and gamma distributions follows by a simple example. Let us consider the 
gamma distribution with pdf 

( )
( )

1e, .
Γ

x

x
xg
α β

αβ α
β α

−
−

=  

Replacing 1
β

, α  and x  by a, 1n +  and µ , respectively, we obtain the following formula for the pdf 
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where a is a scale parameter and n + 1> 0 is a shape parameter. If a = 1 then the pdf of 1, 1Γ n+  is 

( ) e , 1.
!

, 0
n

ng n
n

µµµ µ−= > > −                               (1) 

The Poisson distribution is a popular model for counts. For instance, if there are n events of a certain kind 
then it is reasonable to say 

( ); e 0, 0.
!

,
n

f n n
n

µµµ µ−= > ≥                                (2) 

One can see that the parameter and the variable in Equations (1) and (2) are exchanged. In other aspects the 
formulae are identical. As a result these distributions (gamma and Poisson) are statistically dual distributions. 
These distributions are connected by the identity [3] (this identity arises in other forms in [4]-[6]) 

( ) ( ) ( ) ( )
2 1

1 2

2 1
1 1

d ; d ; 0
m m

m n
i n i n

g f i g f i
µ µ

µ µ

µ µ µ µ µ µ
= + = +

+ + − =∑ ∑∫ ∫                   (3) 

for any 1 20, 0µ µ≥ ≥  and integer 0m n> ≥ . 
Another example of statistically dual distributions is the normal distribution with mean a and variance 2σ : 

( )
( )2

221; , e
2π

x a

x a σϕ σ
σ

−
−

=  

where x is a real variable, a−∞ < < ∞  and 0σ >  are parameters. Here, we can exchange the parameter a  
and the variable x without changing the formula for the pdf. It allows one to estimate the parameter a  by the 
mean value of x. In this case, the new pdf with variable a  and parameters x−∞ < < ∞  and 0σ >  is 
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Hence, the normal distribution can be named as a statistically self-dual distribution. The identity analogous to 
(3) is 

( ) ( ) ( ) ( ); , d ; , d ; , d ; , d 0
d d c c

c c d d

a c a x d x a d a x c xφ σ ϕ σ φ σ ϕ σ+ + + =∫ ∫ ∫ ∫  

or, simply 

( ) ( ); , d ; , d 0
d d

c c

a b a x b xφ σ ϕ σ− =∫ ∫                               (4) 

for any real b, c and d. 

The Cauchy distribution also has statistical self-duality like the normal distribution. The pdf of the Cauchy 
distribution is 

( )
( )2

1; ,
π 1

C x a
x a

=
 + − 

 

where x  is a real variable, and a  is a real parameter. Here, we can exchange the parameter a  and the vari- 
able x  without altering the pdf. In this case, 

( )
( )2

1; .
π 1

C a x
x a

=
 + − 

  

Hence, the Cauchy distribution is also a statistically self-dual distribution. The identity analogous to (4) is 

( ) ( ); d ; d 0
d d

c c

C a b a C x b x− =∫ ∫  

for any real b , c and d. 
The same property applies to several other distributions, for example, the Laplace distribution. 

3. Estimation of Parameters 
The identity (3) can be written in form [7] 
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for any 1 0µ ≥ , and 2 0µ ≥  and non negative integer n̂ . 
The definition of the confidence interval ( )1 2,µ µ  for a Poisson parameter, µ , is [7] 

( ) ( ) ( )1 2 1 2ˆ ˆ ˆP n P i n P i nµ µ µ µ µ≤ ≤ = ≤ − ≤                           (6) 

where 
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This definition is consistent with the identity (5). It contrasts with other frequentist definitions of confidence 
intervals. The right hand side of (6) represents the frequentist definition. 
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Let us suppose that ( )n̂g µ  is the pdf of the Poisson parameter1 if number of observed events is equal to n̂ . 
It is a conditional pdf. It follows from the formulae (1), (5) that ( )n̂g µ  is a gamma pdf. 

On the other hand: if ( )n̂g µ  is not equal to this pdf and the pdf of the Poisson parameter is some other func- 
tion ( )ˆ;h nµ  then 

( ) ( ) ( )
2

1

ˆ

1 2
ˆ 1 0

ˆ; ; d ; 1.
n

i n i
f i h n f i

µ

µ

µ µ µ µ
∞

= + =

+ + =∑ ∑∫                         (7) 

This identity is correct for any 1 0µ ≥ , and 2 0µ ≥ . The sum on the left hand side determines the boundary 
conditions on the confidence interval. 

If we subtract Equation (7) from Equation (5) then we have 

( ) ( )( )
2

1

ˆ ˆ; d 0.ng h n
µ

µ

µ µ µ− =∫  

We can choose 1µ  and 2µ  arbitrarily. Let us choose them so that is ( )n̂g µ  not equal ( )ˆ;h nµ  in the in- 
terval ( )1 2,µ µ . For example, ( ) ( )ˆ ˆ;ng h nµ µ>  and 2 1µ µ> . In this case, we have 

( ) ( )( )
2

1

ˆ ˆ; d 0ng h n
µ

µ

µ µ µ− >∫  

and hence a contradiction (i.e. ( ) ( )ˆ ˆ;ng h nµ µ= ) everywhere except for a finite set of points). As a result we 
can mix Bayesian ( )( )n̂g µ  and frequentist ( )( );f k µ  probabilities without logical inconsistencies. The iden- 
tity (5) leaves no place for any prior except for the uniform prior ( )π µ =  const2. Actually, it shows that the 
pdf ( )n̂g µ  is the “confidence density” [9]3. 

Statistically dual distributions allow one to exchange the parameter and the random variable. It means that one 
can construct the confidence interval ( )1 2,n n  for the parameter n  of the gamma distribution (Equation (1)) 
because 
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For the normal distribution the identity (4) can be written as 

( ) ( ) ( )
ˆ ˆ
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x d x

x x c

x x c x a x a x x d xϕ σ φ σ ϕ σ
∞ +

− −∞

− + + + =∫ ∫ ∫                    (8) 

for any 0c ≥  and 0d ≥ . 
This identity (8) also shows that the conditional distribution (if observed value is x̂ ) of the true parameter a  

obeys the normal distribution with mean x̂  and variance 2σ (here, in contrast to the previous example, x̂  is 
an unbiased estimator of the parameter a ). As a result we can construct the distribution of error and confidence 
intervals for a 4, taking into account systematics and statistical uncertainties in accordance with standard analy- 

 

 

1The definition of conjugate families as stated in [8] is: given a family F of pdf's ( )f x θ  indexed by a parameter θ , a family, Π , of 

prior distributions is said to be conjugate for the family F if the posterior distribution of θ  is in the family Π  for all f F∈ , all priors 
π ∈Π  and all possible data x. 

2Bayesian methods suppose that ( ) ( ) ( )
( ) ( )ˆ

;ˆ
; dˆn

n
g

f n
f µ π µ

µ
µ π µ µ

⋅
=

⋅∫
, where ( )π µ  is the prior pdf for µ . 

3The confidence density is a natural notion in the frequentist concept of confidence distributions [10]-[12]. Confidence distributions are a 
way to represent all possible confidence intervals. The area under the confidence distribution between any two points gives the confidence 
that the parameter value will lie between those points. In Bayesian notation, the confidence density can be considered as a posteriori pdf 
with the assumption that we have a uniform prior. 
4In this case, the definition of confidence intervals as 

( ) ( ) ( )1 2 1 2| ˆ ˆ ˆ| |P a a a P x a Px x ax x≤ ≤ = ≤ − ≤  

where x̂  is the observed value of 𝑥𝑥, ( ) ( )
ˆ

| ; ,ˆ d
x

P a x a xxx ϕ σ
−∞

≤ = ∫  and 1 2a a< , coincides with the definition of fiducial intervals intro-

duced by R. A. Fisher [13]. 
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sis of errors [14]. 
In case of the Cauchy distribution 

( ) ( ) ( )
ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ; d ; d ; d 1
x d x

x x c

C x x c x C a x a C x x d x
∞ +

− −∞

− + + + =∫ ∫ ∫  

for any 0c ≥  and 0d ≥ . This implies that the “confidence density” of the Cauchy distribution parameters is 
itself a Cauchy pdf. 

4. Conclusions 
We have discussed the notion of statistically dual distributions. The relation between the measurement of a ca- 
sual variable and estimation of the given distribution parameter is discussed for three pairs of statistically dual 
distributions. 

The proposed approach allows one to construct the distribution of the estimator of the distribution parameter 
by using statistically dual distributions. For example, the confidence density of the Poisson distribution parame- 
ter can be built by Monte Carlo by using properties of statistically dual distributions [15]. This notion is used for 
the construction of unified approach to measurement error and missing data [16]. The numerical example of the 
use of statistical duality for the confidence intervals construction is considered in the paper [17]. 

In summary, statistical duality gives a clear frequentist interpretation of the “confidence density” of a para- 
meter. It allows one to construct confidence intervals easily. 
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