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ABSTRACT 
We deal with the Fourier-like analysis of functions on discrete grids in two-dimensional simplexes using C- and 
E-Weyl group orbit functions. For these cases, we present the convolution theorem. We provide an example of 
application of image processing using the C-functions and the convolutions for spatial filtering of the treated im- 
age. 
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1. Introduction 
The development of information technologies has inspired also the development of the information compression, 
the most famous part of which is the image and video compression. The compression is based on the infor- 
mation structure in order to optimize compression speed, compression rate and the possible losses of informa- 
tion during the compression. Development of the theory of orbit functions opens a space for their use in the 
processing of the information sampled on grids in simplexes and polyhedra in n-dimensional space. These 
functions can be used for decomposition of any discrete values on the grids to orthogonal series. The density of 
grid points is controlled by a suitable choice of parameter. Moreover, we can glue together more simplexes and 
study the information carried in the grid in this ensemble. In this paper, we focus on the simplest non-trivial case 
of utilization of orbit functions in two dimensions. It corresponds to a two-dimensional digital image processing. 
In comparison with the most widespread method for image processing—Fourier analysis, i.e., the decomposition 
into exponential series in two perpendicular directions, we decompose discrete functions on points of the grid in 
a number of orbit functions without the division into several directions. Our approach is a generalization of 
discrete Fourier and cosine transform. 

In this paper, we summarize the properties of C- and E-orbit functions connected with Weyl groups of simple 
Lie algebras 2 2,A C  and 2G . These functions are a generalization of the classical cosine, sine and exponential 
function, and they act in fundamental domains of the Lie algebras. In these domains, we introduce a discrete grid 
on which it is possible to define discrete C- and E-orbit transform. For an illustrative example of analysis and 
image processing, we split a square image into two triangles and we effectuate corresponding C-orbit transform. 

The paper is organized as follows. Section 2 summarizes some known facts about the spatial filtering using a 
convolution. In Section 3, we remind basic notations from the theory of Weyl group orbit functions. In particular, 
we describe the discrete transforms based on finite families of orbit functions in SubSection 3.3. In Section 4, 
we define C- and E-orbit convolution and formulate the orbit convolutions theorems. Finally, in SubSection 4.2, 
we provide examples of image processing using C-orbit functions. We include two appendices with technical 
details for the orbit transforms. 
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2. Spatial Filtering 
A variety of filters play an important role in image processing, in image improving and in detail recognition. For 
example, the spatial filtering uses convolution of functions which is performed via Fourier transform as a 
multiplication of the Fourier images. Fourier analysis is based on the decomposition of brightness values in each 
digitized image points along the rows and columns into Fourier series. The Fourier transform is then processed. 
The inverse discrete Fourier transform shows processing of digital images. This way we can highlight some 
features of the image—remove the noise or enhance blur edges. The whole process is described in several 
papers, for an overview see for example [1,2]. For image compression JPEG the discrete cosine transforms are 
used. They are of four types and the convolution via multiplications in these cases is more complicated, it 
combines cosine and sine discrete transform except the discrete cosine transform of type II. The simplest 
filtering technique is the averaging the light intensities at points. Intensity of each new pixel is the mean value of 
the intensities of the 8 neighboring pixels and the pixel itself in the original image. Other filters use the 
intensities of neighboring pixels multiplied by different relative weights and the pixel is assigned by a mean 
value of 9 intensities. Other filters take into account a number of other surrounding pixels, 25 pixels together 
with the center. Intensities in 9 or 25 pixel can be expressed as 3 3×  or 5 5×  matrix. Averaging over 
neighboring pixels is mathematically expressed by the convolution of the original intensity matrix with 33×  or 
5 5×  matrix, so-called convolution kernel. The elements of this matrix are the weights assigned to the 
corresponding pixel in the area according to the desired filter type. For the treatment of pixel intensities on the 
edge we need extend a line above and below the picture and a column on the left and the right in the 3 3×  
matrix case. In the case of 5 5×  matrix we need to add to each side two columns and two rows. 

Filters mentioned above are called linear spatial filters. Their application to a digital image creates a new 
image using a linear combination of brightness values in the surrounding pixels. The intensities of the digital 
image in each pixel are defined by the matrix ( ),f m n . If we want to apply a filter comprising eight 
neighboring pixels with different weights, we construct the 3 3×  weights matrix 

1 1 10 11
0 1 00 01
1 1 10 11

.
a a a
a a a
a a a
− − − −

−

−

 
  
 

 

New digital image has the intensity in each pixel given by a matrix ( ),F m n  and their values are 
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This corresponds to the sum of all the values of the 3 3×  matrix we get as a pointwise multiplication of the 
filter 3 3×  matrix cut around the filtered pixel. Mathematically, it is a discrete convolution 

( ) ( )
1

, 1
, , .ij

i j
F m n f m i n j a

=−

= + +∑  

For defining the orbit convolutions we proceed in a similar way as for the discrete cosine transform DCT II, 
where for two functions f  and g  it is defined 

( )( ) ( ) ( ) ( )( )0

1 d
2π

f g x f y g x y g x y y
∞

∗ = − + +∫  

and for cosine transform cF  the following relation holds [3] 

( )( ) ( )( )( )( ).c c cF f g x F f x F g x∗ =  
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3. Weyl Group Orbit Functions 
3.1. Weyl Groups and Affine Weyl Groups 

We consider the simple Lie algebras of rank two, namely 2 2,A C  and 2G . Each of them is described by its set 
of simple roots { } 2

1 2,α α∆ = ∈ . In the case of 2A , the roots are of the same length, for 2C  and 2G  we 
distinguish so-called short root and long root. We use the standard normalization , 2α α =  for the long roots. 
Coroots are defined as 2 ,α α α α∨ = . Moreover, we define the weights iω  and coweights iω

∨ , which are  
dual to root and coroots in the sense , ,i j i j ijα ω α ω δ∨ ∨= = . The weight lattice P  is defined as all integer  

combinations of weights. 
We denote the reflections with respect to the hyperplanes orthogonal to the simple roots by 1r  and 2r , i.e., 

, .i i ir x x xα α∨= −  They generate a Weyl group corresponding to each Lie algebra. The action of W  on the 
set of simple roots gives a root system ( )W ∆  in 2

 . It contains a unique highest root 1 1 2 2m mξ α α= + , 
where the coefficients 1,2m  are called the marks. Analogously, a root system ( )W ∨∆  is obtained from the 
action of W  on the set of coroots, its highest root is denoted by 1 1 2 2m mη α α∨ ∨ ∨ ∨= + , the coefficients are called 
the dual marks. 

Let rξ  denote the reflection with respect to the hyperplane orthogonal to ξ  and we define 0r  by 

2
0

2 ,2 , , .
, ,

x
r x r x r x x xξ ξ

ξξ ξ
ξ ξ ξ ξ

= + = − ∈  

The affine Weyl group affW  is generated by { }0 1 2, ,r r r . Its fundamental domain is a connected subset of 
2

  such that it contains exactly one point of each affine Weyl group orbit. It can be chosen [4] as the convex  

hull of the points 1 2

1 2

0, ,
m m
ω ω∨ ∨ 

 
 

. The root systems and the fundamental domains of affine Weyl group of 2 2,A C   

and 2G  are depicted in Figure 1. 
The even Weyl group eW  is defined as ( ){ }det 1eW w W w= ∈ = . Its fundamental domain is 

( )inte
iF F r F=  , where ir  is a simple reflection and int F  denotes the interior of F  [5]. Corresponding 

dual even affine Weyl group is denoted affˆ
eW  and its fundamental domain is given by ( )inte

iF F r F∨ ∨ ∨=  . 

3.2. Weyl Group Orbit Functions 
Three families of Weyl group orbit functions, so-called C-, S- and E-functions, are defined in the context of any 
Weyl group. Their complete description can be found in the series of papers [6-8]. The family of C-functions is 
defined as follows: For every 2x∈  and Pλ ∈  we have 

( ) ( )2πi ,e .w x

w W
x λ

λ
∈

Φ = ∑  

The functions are invariant with respect to the affine Weyl group, therefore, we can consider x F∈  only. 
The family of S-functions is defined for every 2x∈  and Pλ ∈  as 

 

 
Figure 1. Root system of ,2 2A C  and 2G . Dots denotes the roots, dashed lines the hyperplanes orthogonal to the 
simple roots and the gray triangle is the fundamental domain of the corresponding affine Weyl group. 
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( ) ( ) ( )2πi ,det e .w x

w W
x w λ

λφ
∈

= ∑  

They are antiinvariant with respect to affW , moreover, they vanish on the boundary of the fundamental 
domain. We can consider intx F∈ . 

Finally, the E-orbit functions are defined for every 2x∈  and Pλ ∈  as 

( ) ( )2πi ,e .
e

w x

w W

x λ
λ

∈

Ξ = ∑  

They are invariant with respect to the even affine Weyl group, we restrict them on eF . 
For Weyl groups with two different lengths of root in their root system other families of orbit functions can be 

defined. For more details see [9,10]. In this paper, we consider convolution based on the C- and E-functions, 
S-functions do not differ significantly from the C-functions case. 

3.3. Discrete Orthogonality and Orbit Transform 
The method of discretization of orbit functions was described in detail in the papers [4,5]. The general idea is the 
following: In the fundamental domain we define a finite grid of points MF , where M  is an integer of our 
choice which allows us to control the density of the grid. A discrete scalar product of functions is then defined 
using this points. We describe a finite family of orbit functions which are pairwise orthogonal with respect to 
this scalar product by defining a grid of parameters labeling the functions. Finally, we give the explicit 
orthogonality relations. Appendix 1 summarize details about the choice of the grids. 

We consider a space of discrete functions sampled on the points of MF  with a scalar product defined for 
each pair of functions ,f g  as 

( ) ( ) ( ), .
M

M
F

x F
f g x f x g xε

∈

= ∑                            (1) 

The weight function ( )xε  is given by the order of the Weyl orbit of x , ( )
( )W

W
x

stab x
ε = . The set of  

parameters MΛ  gives us a finite family of orbit functions which are pairwise orthogonal with respect to the 
scalar product (1). 

For every , Mλ λ′∈Λ  it holds that 
2, ,

MF c W M hλ λ λ λλδ∨′ ′Φ Φ =                             (2) 

where the coefficient hλ
∨  is the order of the stabilizer of λ , c  is determinant of the Cartan matrix of the 

corresponding Weyl group and W  is its order. The values of W , c , ( )xε  and hλ
∨  are listed in Appendix 2. 

The discrete orthogonality allows us to perform a Fourier like transform, called C-orbit transform. We 
consider a function f  sampled on the points of MF . We can interpolate it by a sum of C-functions 

( ) ( ) ,
M

MI x F xλ λ
λ∈Λ

= Φ∑                                 (3) 

where we require ( ) ( )Mf x I x=  for every Mx F∈ . Therefore, the coefficients Fλ  are equal to 

( ) ( ) ( )2

, 1
,

M

MM

F

x FF

f
F x f x x

c W M h
λ

λ λ
λ λ λ

ε∨
∈

Φ
= = Φ

Φ Φ ∑                    (4) 

In the case of E-orbit functions we consider the grids e
MF  and e

MΛ . The scalar product is defined as 

( ) ( ) ( ), .e
M e

M
F

x F

f g x f x g xε
∈

= ∑                               (5) 

The weight function ( )e xε  is given by the order of the even Weyl orbit of x , ( )
( )e

e
e

W

W
x

stab x
ε = . 
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For every , e
Mλ λ′∈Λ  it holds that 

2, ,e
M

e e
F c W M hλ λ λ λλδ∨′ ′Ξ Ξ =                              (6) 

where the coefficient ehλ
∨  is the order of the stabilizer of λ  and eW  is the order of the even Weyl group.. 

The values of eW , ( )e xε  and ehλ
∨  are listed in Appendix 2. 

The E-orbit transform is provided as follows. We consider a function f  sampled on the points of e
MF . We 

can interpolate it by a sum of E-functions 

( ) ( ) ,
e
M

MI x F xλ λ
λ∈Λ

= Ξ∑                                   (7) 

where we require ( ) ( )e
Mf x I x=  for every e

Mx F∈ . Therefore, the coefficients Fλ  are equal to 

( ) ( ) ( )2

, 1 .
,

e
M

ee MM

F

e
x FF

f
F x f x x

c W M h
λ

λ λ
λ λ λ

ε
∨

∈

Ξ
= = Ξ

Ξ Ξ ∑                      (8) 

4. Orbit Convolution 
4.1. Orbit Convolution Theorem 

The main aim of this work is to define a discrete orbit functions convolution, i.e., a mapping of two functions 
sampled on MF  which respects a relation analogous to the classical convolution theorem. Such definition 
comes naturally from the orbit functions discretization theory. 

The C -orbit convolution is for every pair of discrete functions ,f g  and Mu F∈  defined as 

( )( ) ( ) ( ) ( )( ).:
Mx F w W

f g u x f x g u w xε
∈ ∈

∗ = −∑ ∑                         (9) 

Such a convolution is well defined, the shifts in the convolution kernel g  respect the symmetry of the Weyl 
group of 2A . We can write the C -orbit convolution theorem. 

Theorem 1 Let ,f g  be any functions defined on the points of MF  and Mu F∈ . Then 

( )( ) ( )2 ,
M

f g u c W M h F G uλ λ λ λ
λ

∨

∈Λ

∗ = Φ∑                           (10) 

where Fλ  and Gλ  are the C -orbit transforms of f  and g  given by (3). 
Its proof is straightforward, it uses the relations (4) and the following formula for the product of an orbit 

function with the complex conjugate of an orbit function with the same label but different argument: 

( ) ( ) ( )( ).
w W

x y x w yλ λ λ
∈

Φ Φ = Φ −∑                                (11) 

Analogously, the E -orbit convolution is defined for discrete functions ,f g  sampled on e
MF  and e

Mu F∈  
as 

( )( ) ( ) ( ) ( )( ).:
e e
Mx F w W

f g u x f x g u w xε
∈ ∈

∗ = −∑ ∑                        (12) 

The E-orbit convolution theorem is then the following. 
Theorem 2 Let ,f g  be any functions defined on the points of e

MF  and e
Mu F∈ . Then 

( )( ) ( )2 ,
e
M

f g u c W M h F G uλ λ λ λ
λ

∨

∈Λ

∗ = Ξ∑                            (13) 

where Fλ  and Gλ  are the E -orbit transforms of f  and g  given by (7). 

4.2. Examples of Image Filtering 
For the purpose of demonstrating the differences between the orbit convolution and convolution on 2

  we  
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take an artificial image of a hexagon. Three of spatial filters are presented: a mean filter, often used for image 
noising; a sharpen filter which is useful for contrast enhancing; and a simple edge detecting filter which 
suppresses the monotonic (in the sense of pixel brightness) parts of an image. 

In 2
  these filters are described by matrices: 

mean sharpen edge

1 1 1 0 1 0 0 0 1
1 1 1 1 , 1 5 1 , 1 3 0 .
9

1 1 1 0 1 0 0 0 1
h h h

− −     
     = = − − = −     
     − −     

 

The filters are constructed to be as similar to the filters used for orbit convolution as possible. There are some 
restrictions for the orbit convolution coming from its definition, the most significant is the summation over all 
reflections of the convolution kernel. This property is unpleasant, since it does not give us the possibility to 
apply changes in a single direction, i.e., detecting only horizontal edges. For this reason we cannot use all 
convolution kernels we can use for image filtering in 2

 . 
When developing a spatial filter for orbit convolution from kernel for filtering in 2

  we have to take the 
formula (9) into account. Many filters are supposed to preserve the average value of brightness in the image. In 
the frequency domain the related value is situated in the point ( )0,0 . The normalization of the filter is done by 
dividing the weighted sum of kernel points by coefficients ( )xε . There is also a second level of normalization, 
arising from the summation over all Weyl reflections of a point, the filter is divided by the number of reflections. 
Some filters, mostly the ones based on differences, have the weighted sum equal to zero, thus not requiring any 
normalization. 

There are two major restrictions for the orbit convolution kernels: the reflection of the kernel, which disables 
filtering in a single direction, and the placement of the kernel center. For the convolution on 2

  the kernel 
center is located in the middle point of the kernel, for orbit convolution the center is in the point ( )0,0 . This 
brings further restriction, the filter cannot count with all neighboring points. 

Filters for orbit convolution are defined in the following way: 

mean sharpen edge

1 0 01 1 , 1 , 1 .
1 5 33

h h h     
= = − = −     

     
 

For the orbit convolution demonstration we used the hexagon image, see Figure 2, and filtered it via 
convolution on 2

  and via C-orbit convolution on 2A  group to have a comparison for similar filters for both 
methods. The results are depicted on Figures 3-5. 

The differences between the convolution on 2
  and orbit convolution via C-orbit transform on 2A  group 

are very little. One of the reason is the inequality of convolution kernels for both types of convolution. 

5. Conclusions 
1) In the case of 2C  and 2G  orbit functions, there are 7 more families of orbit function defined, and the  

 

 
Figure 2. Original image, used for filtering. 
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Figure 3. Image filtered with blurring filter, via 2

  convolution (left) and orbit convolution (right). 
 

 
Figure 4. Sharpening previously blurred image, 2

  (left) and orbit (right) convolution. 
 

 
Figure 5. Edge detection in the original image, on the left with 2

  convolution, on the right with orbit one. 
 
orbit convolution theorem can be formulated for each of them. This gives us bigger choice of the shape of the 
fundamental domain suitable for the image. 

2) The method described here can be generalized to Weyl group of any rank. Therefore, it can be used for 
more general problems than the image processing. 

3) The orbit convolution takes an advantage from the symmetry of the underlying Weyl group. On the other 
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hand, as there is no fast algorithm yet, the computation takes more time than standard Fourier or cosine 
transform. One of our future projects is finding such a fast algorithm. 
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Appendix 
1. Grids FM and ΛM 

In this Section we describe in detail the grids of points and grids of parameters used in the discretization of orbit 
functions [4,5]. 

We consider four lattices in 2
 . The root lattice 1 2Q α α= +  ; the coroot lattice 1 2Q α α∨ ∨ ∨= +   and 

their duals 1 2P ω ω= +   and 1 2P ω ω∨ ∨ ∨= +   which are called the weight lattice and coweight lattice 
respectively. 

Two finite lattice grids depending on an integer parameter M  are defined as follows: We consider the W −  

invariant group 1 P Q
M

∨ ∨  and we define the set of points MF  as such cosets from 1 P Q
M

∨ ∨  which have  

a representative in F . It can be written as 

01 2
1 2 0 1 2 0 1 1 2 2, , , .M

s sF s s s s s m s m M
M M

ω ω∨ ∨ ≥ 
= + ∈ + + = 
 

  

The explicit formulas are then obtain by using the marks 1m  and 2m  of the concrete group. Namely, the 
marks are (1,1)  for 2A , (2,1)  for 2C  and (2,3)  for 2G . 

01 2
2 1 2 0 1 2 0 1 2

01 2
2 1 2 0 1 2 0 1 2

01 2
2 1 2 0 1 2 0 1 2

: , , , ,

: , , , 2 ,

: , , , 2 3 ,

M

M

M

s sA F s s s s s s M
M M

s sC F s s s s s s M
M M

s sG F s s s s s s M
M M

ω ω

ω ω

ω ω

∨ ∨ ≥

∨ ∨ ≥

∨ ∨ ≥

 
= + ∈ + + = 
 
 

= + ∈ + + = 
 
 

= + ∈ + + = 
 







              (14) 

For the grid of parameters we take the W − invariant group M P MQΛ =  and we consider its cosets with a 
representative element in MF ∨ . Explicitly, 

{ }0
1 1 2 2 0 1 2 0 1 1 2 2, , , ,M t t t t t t t m t m Mω ω ≥ ∨ ∨Λ = + ∈ + + =  

where the duals marks 1m∨  and 2m∨  are (1,1)  for 2A , (1,2)  for 2C  and (3,2)  for 2G . 

{ }
{ }
{ }

0
2 1 1 2 2 0 1 2 0 1 2

0
2 1 1 2 2 0 1 2 0 1 2

0
2 1 1 2 2 0 1 2 0 1 2

: , , , ,

: , , , 2 ,

: , , , 3 2 .

M

M

M

A t t t t t t t t M

C t t t t t t t t M

G t t t t t t t t M

ω ω

ω ω

ω ω

≥

≥

≥

Λ = + ∈ + + =

Λ = + ∈ + + =

Λ = + ∈ + + =







                    (15) 

The grids for the E − transform are defined analogously, 

( )1 , int ,e e e e
M M M i MF P Q F P MQ MF r

M
∨ ∨ ∨= Λ = = Λ Λ  

 

where ( )inte
iF F r F=   and ( )inte e

iF F r F∨ ∨ ∨=   for a simple reflection ir . 

2. Values of , ,W c hλ
∨  and ε  

We summarize values of all the constants and functions needed in formulas (2), (3), (6), (7). 
The orders of the corresponding Weyl groups and even Weyl groups are: 

2 2

2 2

2 2

6, for  3, for  
8, for  , 4, for  
12, for  6, for  

e

A A
W C W C

G G

 
 = = 
 
 

                                (16) 

OPEN ACCESS                                                                                          AM 



G. CHADZITASKOS  ET  AL. 510 

The determinants of the corresponding Cartan matrix are: 

2

2

2

3, for  ,
2, for  ,
1, for  .

A
c C

G


= 



                                       (17) 

The values of ( )xε  and hλ
∨  are listed in Tables 1 and 2. 

Let x  be in eF . For ( )intix r F∈  it holds that ( )e ex Wε = . The values of ( )e xε  for x F∈  are listed 
in Table 3. 

Let λ  be in eΛ . For ( )intir Fλ ∨∈  it holds that 1ehλ
∨ = . The other values of ehλ

∨  are listed in Table 4. 
 
Table 1. The coefficients ( )xε  of 2A , 2C  and 2G . The variables is , , ,0 1 2i = , are nonnegative integers and 
have the same meaning as in (14). 

A2 

x ∈ FM ε(x)  

C2 

x ∈ FM ε(x)  

G2 

x ∈ FM ε(x) 

[s0, s1, s2] 6  [s0, s1, s2] 8  [s0, s1, s2] 12 

[s0, s1, 0] 3  [s0, s1, 0] 4  [s0, s1, 0] 6 

[s0, 0, s2] 3  [s0, 0, s2] 4  [s0, 0, s2] 6 

[0, s1, s2] 3  [0, s1, s2] 4  [0, s1, s2] 6 

[0, 0, s2] 1  [0, 0, s2] 1  [0, 0, s2] 2 

[0, s1, 0] 1  [0, s1, 0] 2  [0, s1, 0] 3 

[s0, 0, 0] 1  [s0, 0, 0] 1  [s0, 0, 0] 1 

 
Table 2. The coefficients hλ

∨  of 2A , 2C  and 2G . The variables it , , ,0 1 2i = , are nonnegative integers and have 
the same meaning as in (15). 

A2 

λ ∈ ΛM hλ
∨   

C2 

λ ∈ ΛM hλ
∨   

G2 

λ ∈ ΛM hλ
∨  

[t0, t1, t2] 1  [t0, t1, t2] 1  [t0, t1, t2] 1 

[t0, t1, 0] 2  [t0, t1, 0] 2  [t0, t1, 0] 2 

[t0, 0, t2] 2  [t0, 0, t2] 2  [t0, 0, t2] 2 

[0, t1, t2] 2  [0, t1, t2] 2  [0, t1, t2] 2 

[0, 0, t2] 6  [0, 0, t2] 8  [0, 0, t2] 12 

[0, t1, 0] 6  [0, t1, 0] 4  [0, t1, 0] 4 

[t0, 0, 0] 6  [t0, 0, 0] 8  [t0, 0, 0] 6 

 
Table 3. The coefficients ( )eε x  of 2A , 2C  and 2G . The variables is , , ,0 1 2i = , are nonnegative integers and 
have the same meaning as in (14). 

A2 

x ∈ FM εe(x)  

C2 

x ∈ FM εe(x)  

G2 

x ∈ FM εe(x) 

[s0, s1, s2] 3  [s0, s1, s2] 4  [s0, s1, s2] 6 

[s0, s1, 0] 3  [s0, s1, 0] 4  [s0, s1, 0] 6 

[s0, 0, s2] 3  [s0, 0, s2] 4  [s0, 0, s2] 6 

[0, s1, s2] 3  [0, s1, s2] 4  [0, s1, s2] 6 

[0, 0, s2] 1  [0, 0, s2] 1  [0, 0, s2] 2 

[0, s1, 0] 1  [0, s1, 0] 2  [0, s1, 0] 3 

[s0, 0, 0] 1  [s0, 0, 0] 1  [s0, 0, 0] 1 

OPEN ACCESS                                                                                          AM 



G. CHADZITASKOS  ET  AL. 511 

Table 4. The coefficients ehλ
∨  of 2A , 2C  and 2G . The variables it , , ,0 1 2i = , are nonnegative integers and have 

the same meaning as in (15). 

A2 

λ ∈ ΛM ehλ
∨   

C2 

λ ∈ ΛM ehλ
∨   

G2 

λ ∈ ΛM ehλ
∨  

[t0, t1, t2] 1  [t0, t1, t2] 1  [t0, t1, t2] 1 

[t0, t1, 0] 1  [t0, t1, 0] 1  [t0, t1, 0] 1 

[t0, 0, t2] 1  [t0, 0, t2] 1  [t0, 0, t2] 1 

[0, t1, t2] 1  [0, t1, t2] 1  [0, t1, t2] 1 

[0, 0, t2] 3  [0, 0, t2] 4  [0, 0, t2] 6 

[0, t1, 0] 3  [0, t1, 0] 2  [0, t1, 0] 2 

[t0, 0, 0] 3  [t0, 0, 0] 4  [t0, 0, 0] 3 
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