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ABSTRACT

In this paper, we study multiple shot noise process and its integral. We analyse these two processes systematically
for their theoretical distributions, based on the piecewise deterministic Markov process theory developed by Da-
vis [1] and the martingale methodology used by Dassios and Jang [2]. The analytic expressions of the Laplace
transforms of these two processes are presented. We also obtain the multivariate probability generating function
for the number of jumps, for which we use a multivariate Cox process. To derive these, we assume that the Cox
processes jumps, intensity jumps and primary event jumps are independent of each other. Using the Laplace
transform of the integral of multiple shot noise process, we obtain the tail of multivariate distributions of the first
jump times of the Cox processes, i.e. the multivariate survival functions. Their numerical calculations and other
relevant joint distributions’ numerical values are also presented.
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1. Introduction

Due to global warming and climate changes, there have been increases in the frequency and intensity of floods
in one area and draught in the other. So administrating the level of water in dams and rivers becomes much more
significant task than ever before. Single (Poisson) shot noise process can be used to model the level of water in
dams and rivers, but it is quite inadequate as rains do not occur according to only a Poisson process [3].

Increases in the frequency and intensity of storms, hail, bushfires and earthquakes have revealed shortcomings
in the ways Catastrophe Insurance is priced. Hence more complicated models are needed to accommodate in-
creasing frequency and intensity of catastrophic events. A Cox process with shot noise intensity has been sug-
gested to use to predict claims arising from catastrophic events by Dassios and Jang [2].

In financial industry, a shock which initially affects a couple of institutions or a particular region of the
economy spreads to the rest of the financial industry and then infects the larger economy. This is called “finan-
cial contagion” [4,5]. The US federal takeover of Fannie Mae and Freddie Mac, the Bank of America takeover
of Countrywide Financial Corporation and the bankruptcy of New Century Financial Corporation due to mis-
management of subprime mortgage in US are the examples of financial contagion. The prevalence of above fi-
nancial contagion has led to further bankruptcies and default of mortgage lenders in US announcing their signif-
icant losses in 2008. This subprime mortgage meltdown has also led to new ownership for Bears Stern and Mer-
rill Lynch and the bankruptcy of Lehman Brothers. These contagious events have caused the collapse of stock
prices in worldwide and it has shaken global financial markets further due to new waves of default and bank-
ruptcy. Due to the failing of financial institutions in 2008, systemic risk has become the main concern to the
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governments requiring their interventions to ameliorate these contagious effects to the larger economy [6].
To these effects, in this paper we introduce multiple shot noise process [7]. It consists of d component

processes ﬂ,(d), ﬂ,(d’l), /11(”’2), /1,(1), where each process acts as a jump intensity for the next one. For

i=d-1,d-2,---,1, A" decays with rate "2, and additive jumps occur with rate of A'" i.e. each
process acts as a jump intensity for the next one. Jump sizes are independent but not identically distributed

random variables with distribution function G(y“)). A9 decays with rate s A®) but its jump arrival rate

is deterministic o . Its jump sizes have distribution function G(y(d)). Hence multiple shot noise process we
consider has the following structure:

d/lt(d) :—5(d)ﬂ.[(d)dt +dC[(d)| C((d) - Zy_(d),

d/l[(d—l) — _é(d—l)ﬂt(d—l)dt + dct(d—l) Z Y (d 1 (1)

d /1((1) =_sW ﬂ.[(l)dt + dCt(l), Cl(l) - Zyl(l)’

where

(M (i O - identi istri
. {YJ. },-:12,...’{Yk }k-lz,..’ ,{Y, }HZ are sequences of independent but not identically distributed random

variables with distribution function’ é(y(i)) (y(i) > 0) and i=d,d-1--,1
J Mfd) is the total number of events up to time t.

o 5" isthe rate of exponential decay for the firm i=d,d-1,d-2,---,1

We also make the additional assumption that the point process M[(i) and the sequences {Y(‘)} are indepen-
dent of each other.

Mfd) follows a homogeneous Poisson process with frequency rate p and M() for i=d-1d-2,---1
follows a Cox process with intensity rate 21'” respectively [8-10]. So in this model dependence between the
processes ﬂT comes from the structure that each process acts as a jump intensity for the next one.

The process /11 is triggered by jumps (or primary events, or shocks) that will result in a positive jump in
the process. As time passes, the process decreases with rate &' /Ld untll another jump (or event) occurs
which agaln will result in a positive jump |n the process. The process ﬂT is the jump arrival rate for the
(d- l) process A% and the process A" is the jump arrival rate for the (d- 2) process A%, and
S0 on. Hence the process /11 is the prlme_trlgger in influencing all other relative processes. As time passes
the processes 21 decrease with rate 5" JT(') for i=d-1d-2,---,1, and additive jumps occur.

We use another Cox process N( for i=d,d-1---,1 to model the multivariate jJump time and derive the
tail of multivariate distribution of the first jump times of the Cox processes, i.e. the multivariate survival func-
tion, where it is assumed that the jumps in N, 2 for |— d,d-1---,1, the jJumps in /tt( for
i=d-1,d-2,---,1 and primary eventjumps in /11 are independent of each other.

If d=2 (i e. i=2,1), this process becomes a double shot noise process, and it can be considered to model
the level of water in dams and rivers using this process. Applying a double shot noise process in insurance con-
text can be noticed in Dassios and Jang [11].

In Section 2, we start with deriving the Laplace transform of the vector

(A(d)’A(d—l),_,,,A(l)’;t(d),l(d—l),,,,,ﬂ(l)’ N(d), N(d_l),~--,N(1),t)

using the martingale methodology in Dassios and Jang [2], with which we obtain the expression for

o 40,2400 20 (12)

E(e_vdl\$ )e—vd 1A(

t
where v, 20 and A jxt'ds for i=d,d-1,d-2,---,1. For simplicity, it is assumed that d =3 but it
0
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can be easily extended to the higher dimensions Using (1.2) in Section 3, we derive the tail of the multivariate
distribution of z,’s, where z, =inf {t N ].‘N }

a0, (13)

(3)
pr(T3>t,Tz>t,rl>t|4;3>,ﬂgz>,ggl>)=m{ Ao gon

that is equivalent to the first jump time of the Cox process Nt(i). The expressions for relevant multivariate
distributions such as

)
Pr(z, <t <t,r <t 4%, 48, 48Y) = E{(l—ew )(1—e*Agz )(1—@41)) (1)} (1.4)

and
@ _,\@ (
Pr(r3 >t,7, >t,7, St|ﬂé3),ﬁ.§2),ﬂ§)) = ]E{e‘At3 e (1—e"\‘l) ) | /1(53),/152),/1(()1)} (1.5)

are omitted as they can easily be obtained using (1.2) and (1.3), but their numerical calculations are shown in
Section 4. Section 5 contains some concluding remarks.

2. The Laplace Transform of the Vector (A(d),---,A(l),/l(d),---,ﬂ(l), N (d),---, N (l),tJ

We firstly consider using the Laplace transform of the vector
(A(“),---,A(l),/l(d),u-,ﬂ(l), N L N(l),t)

to derive the tail of the multivariate distribution of z;’s. Once its expression is obtained, we can easily derive
the tail of the multivariate distribution of 7, ’s by setting v; =1 (i=d,d-1,d -2,---,1) inthe Equation (1.2).

With the aid of piecewise deterministic Markov process theory and using the results in [1], the infinitesimal
generator of the process (A, AW, 2 ... 2® N@ ..., N(l),t) acting on a function

F(A e, AD 29 0 2890 o t) within its domain D(A) s given by

o of d af
Af A(d), ,A(l),/l(d), ,ﬂ(l),n(d)7 ,n(l),t L340 s

( ) ot le Al zl oAl

+ii(')[f (A(d), ,A(l),l(d), ,i(l),n(d), ,n(|)+1, ,n(l),t)
i-1

_f (A(d), ,A(l),l(d), __,ﬂ(l),n(d), ,n(l),tﬂ

+dz_%,l(i+1)|:Tf (A(d),---,A(l),/l(d),---,ﬂ(i)+y(i),“-,l(l),n(d),-“,n(l),t)dG(y(i)) (2.1)
i=1 0

For f (A(d),--uA(l),ﬂ(d),--~,/1(1),n(d),~--,n(1),t) to belong to the domain of the generator A, it is sufficient

that f A(d),--~,A(1),/1(d),--~,/1(1),n(d),~--,n(l),t) is differentiable w.rt. A, A9, t forall AV, 20, n®,
t and that
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[1 (.,,10) +y<i>,.)dG(y<i>)_ f (.,,1(0,.)

0

<o fori=d,d-1,---,1.

We assume that the Cox processes jumps, intensity jumps and primary event jumps do not occur at the same
time.

Let us find a suitable martingale to derive the Laplace transform of the vector (Afd),Afd’l),--yAﬁl)), the

Laplace transform of the vector (21(3),4(2),11(”) and the p.g.f. (probability generating function) of the vector

N@ NEY NG, respectively.
Theorem 2.1 Considering constants v;, k; and & suchthat v; 20, k; =20 and 0<¢, <1,

li[ gl ﬁ oA ﬁ oM et 2.2)
i=1 i=1 i=1

is a martingale, where

A(t)= v, +(1-6,) +{k1— v1+(1—el)}e5(l)t7

s

N et 1 e
A(t)=ke’ " ~v; [Tj—(l‘@i )[

st 1
s

] e [1- 8 A (5)]Jos fori=dd-1..2

and
C(t)=p[:[1-6, (A (5)}]os,
where
G, (u)=[;e " a6 (y").

Proof. From (2.1), f(A(d),--~,A(1),/1(d),--~,/1(1),n(d),~--,n(1),t) has to satisfy Af =0 for it to be a martin-
gale. Setting

f (A(d),A(d—l)].”,A(l)’ﬂ(d)'ﬂ(d—l)’.”'/1(1)]n(d)’n(d—l)’.”ln(l),t):ﬁe—vi/\(i)ﬁeﬂg(t)l(i)ﬁgin(i)ec(t)
i=l i=1 i=1
we get the Equation

-3 AR (0)+C (1) 2%, + 3 8UA0A (1)+ 3,29 (6 -1)
=1 i=1 i=1 i=1 (23)

from which we have

29N ()= 20, + 5297 () + 2" (6,-1) =0,

AN (£) =20, +6D20A (6)+ 47 (6, -1)

C'(t)+p[ Gs {A (1)} -1]=0.

Solve these Equations, then the result follows.
For simplicity, we set d =3 (i.e. i=3,2 and 1), but it can be easily extended to the higher dimension
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cases.

Theorem 2.2 Let AP AP AD 4@ 2@ 20 N® NP NP be as defined. Then

1)_,® (2)_A(2) (3)_A ;
E{EW{AIZ Ay }e—vz{Atz Ay }e7v3{/\t2 Ay } Xe_m‘(zl)e_gz”‘t(;)e_@i'(zs)

N 01{N‘21 !11)}62{ Nt(zz)_N!(lz)}ej NI(:)_N!(f)}

@ 22 40
2023 }

= exp| ~{k (61110t —t)} < A | (2.4)
xexp| =B (£5v5, 0.t~k (6111,61,5)) < A7 |
X ex| [ C(§3,§2,V3,v2,63,6’2,t ti,s,u,kl(é’l,vl,é’l,u))x&(f)}

xexp[D(@,Q,v3,v2,t93,6?2,t2 —t,s,u,w,k, (gl'vl’ellw)):|'

where

1-6 1-6
kl(gl’vl’gl’tz_H)=V1+( 1)+[§1_V1+( 1)]65“)&211),
B(¢, 265t — 1,8,k (111,6,.9))

(2) )

—6@ (ty—, 1_e‘5 (t2—t) l_e_5 (to-ty)
=g,e 3t t)+V2[TJ+(1—6’Z)[T

+e_§(2)(t2_t1)J'otz 52 [1 gl{ l(é’l,l/l,el,s)}]dsy

C(§3!§2’V3’V21‘931‘921t2 _tlis’u’kl(gl'vl'gllu))

-6 (tp-1) -5 (1,
T 1-eg @ (4 1-e
= [gse 271 4 Vg {—5(3) (1 0. ) —5(3)

+ 8’5(3)(12711)J'Otzftlea@s [1_ g, [B(gz,vz,ez S,U,k; (41,1, 6, u))ﬂ ds},

D(§3,§2,V3,V2,93,92,t2 —t,s,u,w, kl(é/l"/l’el’W))
= [y 1704 {C (60 5o Ve v, O, 0y 5,0 Wk (¢1012,6, W) .

and 0<t <t,, ¢, 20 for i=3,21.
Proof. Using the martingale derived in Theorem 2.1, we have

1
i=1 i=1 i=1

E|:1£[evi{/\g)Ag)}ﬁe—/\(tz)ﬂ(zi)ﬁg{ ‘(2) Nl(l)}ec(tZ)

i=1

WA, ﬂf)} [l es)
Hence the result follows immediately if we set

1-6, 1-6
K, (Covy,Oty) = <1 +§(1) ) +[§l ! +( 1))65(1)t2’

s
J2), 52
Y e S P e’ 1
§r=kee V2 { 5@ (1-6,) 5@
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and
50 0% _q e 1) e
t t
Gy=ke” 7 —v, o |~(1-8) —p ©
(-5) s )(tz )
s . 1_e” B 1-e
Jer 92[52 2[ s ]+(1 92)[ o
(2) t
LI >Ioz [1 gl{ki(é,vlﬁyu)}]d ”ds
in (2.5).

Corollary 2.3 Let v,, ¢ and 6 be asdefined for i=3,2 and 1. Then

o AO_A@1 AR _ @, [AB)_A(B)
E{e ‘/1{/\12 At1 }e VZ{AzZ A[1 }e V3{A12 Azl }Xe*§1/11( *[21[ *43 N

V, V, —sW(t,—
i

xexp[ (&Lt ti,s,kl(gl,vl,l,s))xﬂff)} (2.6)
xexp| -C(¢5, 62 V2 LI, ~t,8,U,k (G1v3,1,u)) < A7 |
xexp[ VeV, Lt ti,s,u,w,kl(gl,vl,l,w)ﬂ

/11(1) , A‘(z) , /11(3)}

and
@ _yO (2)_\@) (3)_NG (1) (2) (3)
E{@l{Ntz -N; }HZ{Nt2 Ny }eg{Ntz Ny }Xe—mh e—{zilz e-fsﬂlz

_ (1-6) (1-0) ) e |, 40
—eXp{_[ 50 + 61— 50 e X Ay

xexp| -B(£5,0,0,,t, ~t,5,k (£1,0,6,,5))x 47 | @.7)
xexp| ~C(¢3,¢2:0.0,6,,0,,t, ~t,5,U,k, (¢3,0,6,))x A” |
xexp| D(¢5:£5,0,0,6,,0,,t, -1, 5,u,w, K, (£,,0,6,W)) .

@ 4(2) 43
aaa}

Proof. If weset 6, =6, =6, =1 in(2.4), (2.6) follows. If we also set v, =v, =v, =0 in(2.4), (2.7) follows.
Now we can easily derive the Laplace transform of the vector (Af”,Aﬁz),AED), the Laplace transform of the
vector (4%,2%,4) and the p.g f. of the vector (N, N®, N}, respectively.

Corollary 2.4 The Laplace transform of the vector (A?KAP,A{”) and the Laplace transform of the vector
(42,42,42) are given by

%ww@@wwkmwﬂ

:exp{ {5(){1 Tl tl)}}xﬂt(ll)}

><exp[—B(0,v2,1,t2 -1,s, kl(O,vl,l,s))xﬂéz)] (2.8)
xexp[ =C(0,0,v3,v, 1Lt ~t,5,uk; (0,3, 1,u))x A |
xexp| D(0,0,v5,v,,1,1,t, —t,5,u,w,k (0,v,1,w)) ],

/11(1) ’ AI(Z) , /11(3)}
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E {eglﬂ‘t(zl) e*é'zl[(;) e7;3;”t(23)

21(11), /11(12)' ﬂt(ls)} _ exp[—[ é,le,(;(l)(lz—tl):|x A‘(ll):|

><exp[—B(§2,O,1,t2 -t,s, kl(gl,o,l,s))xﬂflz)} 2.9)
xexp| -C(¢5,62,0,0.11t, ~t,5,U,k; (3,0,4u))x 27 |
xexp[D(.@,Q,O,O,l,l,t2 —t,S,U,W, kl(g’l,o,l,w))]

and the p.g.f. of the vector (Nf), N®, Nt(l)) is given by

5 {HI{N?—NSP}QZ{Ns:)-st>}ejws:)-mf)>

11(1)’/11(2) , /1((3)}

_ -0)(,_-mwl |, 0
_exp{{ 50 {1—e } XA,

xexp[ -B(0,0,6,,t, 1,5,k (0,0,6,5))x 47 | (2.10)

xexp[ -C(0,0,0,0,6;,6,,t, ~t,,5,u,k; (0,0,6,,u))x 47 |

-C
xexp[D(0,0,0,0, 0,,6,,t, —t,,5,u,w,k; (0,0, Hl,w))}

Proof. If we set ¢, =¢,=¢,=0 in (2.6) and (2.7) respectively, (2.8) and (2.10) follow. If we also set
v,=v,=v;=0 in(26)orset 6,=6,=6,=1 in(2.7), (2.9) follows.

Remark 1: It would be interesting to apply the p.g.f. of the vector (N® N, Nt(l)/l to model insurance
claim arrivals as well as the number of losses to the entire financial system/market. Also using (2.10), the
marginal probability generating function for the number of jump can be easily derived. The derivation of the

3 3
SRR

A.f') and its usage in insurance context can be

marginal probability generating function for E{Qj

found in Dassios and Jang [2,12]. To obtain the mean and variance of the level of water in dams and rivers, the

I
Laplace transform of the vector (21(3),11(2)), ie. E{e g 21(12),21(13)} can be also used.

Corollary 2.5 The Laplace transform of the vector (4(3),21(2),21(1)) ,where 2% 2® and A" are jointly
stationary is given by

NP I O 0 .0
Y —ei® g ) oY 0D g
E{e Yo g e g e }z lim E{e Yo o %% o %

ty—>w

%(1),%(2)121(3)}
=exp[D(g},4’2,0,0,1,1,oo,s,u,w, k. (£,,0.1, W))]

o . ) ) @), R 5@
=eXD{—PIO {1— g3|:§3e s 4e SJ-:ea x[l—gz[gze s

g ol o] ]

Proof. Let t, - o in (2.9) and the result follows.

(2.11)

3. Multivariate Survival Function

Having derived the Laplace transform of the vector (Af’),Aﬁz),Aﬁ”) and the Laplace transform of the vector
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4(3),/11(2),/11(1)) in the previous section, we can easily obtain the tail of multivariate distributions of the first

jump times of the Cox processes (i.e. the multivariate survival function), other relevant %oint distributions and
the marginal survival functions. To do so, we start with a corollary assuming that /11(3 , 21(2) and 21(1) are
jointly stationary.

Corollary 3.1 The Laplace transform of the vector (A@,Afz),A?)), where 2%, 2® and A" are
jointly stationary, is given by

,Vl{ A~ Agln}e,VZ{AgLAglz)}eWS{Ag),Agf)}

C(0,0,v5,v,,1,Lt, -t,,5,u,k (0,1,,L,u)),
B(0,v,,Lt,—t,,5,k (0,1,1,5)),
0,0,1,1,00,s,u,w,

k (k (0,v;,1t,—1,),0,1,w)

=exp| D (3.1)

xexp[D(O,O,vS,vz,l,l,t2 —t,,5,U,W, kl(O,vl,l,w))].

Proof. Take the expectation to (2.8) and use (2.11), then (3.1) follows.

Now, we can obtain the multivariate survival function, other relevant joint distributions and the marginal sur-
vival functions.

Corollary 3.2 The multivariate survival function, where 11(3) , 21(2) and 21(” are jointly stationary, is given

by

) ) o)

C(0,0,1L1Lt,~t,,5,u,k (0,1,L,u)),
B(0.LLt,—t,5,k (0,115)),
0,0,1,1,00,5,u,w,

k (k (0.11,t,-t,),0,1,w)

=exp| D (3.2)

xexp[ D(0,0,111L, ~t,5,u,w,k (0,L1,w))].

Proof. Ifwe set v, =v, =v; =1 in (3.1), (3.2) follows immediately.
Using (3.2), we can obtain other relevant joint distributions, three bivariate survival functions, i.e.

B R R ]

and other relevant bivariate distributions. We can also obtain three marginal survival functions, i.e.

%wmhpmﬂ%wwq

They are omitted as they can easily be obtained by using the values for the vector (vl,vz,vg) with 0 or 1 in
(3.1). Instead, we present numerical calculations of eight joint distributions with these survival functions in Sec-
tion 4.
4. Numerical Examples

In this section, we show the calculations of multivariate survival function, other relevant joint distributions and
the survival functions, i.e. eight joint distributions, three bivariate survival functions and three marginal survival
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functions. To do so, we use three exponential distributions for jump sizes for G(y(3)) , G(y(z)) and G(y(l)) ,
respectively, which are:

9 (y(3)) — e g (y(Z)) _ ﬁe—ﬂy(z) and g (y(l)) _ },e—yy(l)

witha >0, >0, y >0.

(4.1)

Other distributions such as normal, log-normal, gamma and Pareto, etc. can be also applied for jump size
distributions for G(y") (i=32 and1).
Using (3.2), one of corresponding bivariate survival functions is given by

E{e_{Ag)_AEf )}e_{Ag)_Agf)}}

® @
1-e°® 59 ps_s0), 1-e9"
o { 5O }re Joe 6 41— dz
274 d

=exp| -p ; /
0 1-e s ¢s_s0), 1-e""
a+ 50 te foe — 5 |uz

_s® 1, _5@),
1—e o (tz 11) +eo(3)t1J.t2_t1 —6(3)(t2—u) 1_e 52 du
s® 0 ,35(2) + 1—67‘)( )u)
~69(t-1) | -5z
6@ 5@ s (3 (1—e 24 )e
xe? e 0 06 . dz
’ B + (1— e )(tz’tl))e“;(z)Z (14)
xexp| —p| ds
l_e—5(3)(tz—t1) 5@ oty 6(3)(1 ) 1_e,5(2)u
~5®)(tp-u
a+q| =g [+e IJ'O e 7 o du
o PO +(1-e )
_ ’5(2)“241) -5z
0, a0 [ o(9) (1 ¢ ¢
xe? 0 ve? [ 5%z . dz
0 55 +(1—e""< )(tz-fl))efﬁ(z)z
We can easily obtain other corresponding bivariate survival functions, i.e.
E {E{Ag) 7A£11)}e7{A$) - } and E {G{Ag)Ag)}e{Ag)Ag)} }
which are omitted as they have similar nested expressions to (4.2).
Using (3.2), one of corresponding marginal survival functions is given by
Fol 1 i
@ 6@, SN
_{,\(3)_/\(3)} 01875(3)0241) ° a.}_ﬁ(l_e 5+ (t tl)) s 1
Eie 2 )i , 4.3
{ } a+ i (1_ 675(3) (t2-t) ) ae—ﬁ(a)(tz -t) (4.3)
©)

which can be found in Dassios and Jang [2]. We can also find another corresponding marginal survival function,
ie.
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sy
oy ot 50 (t,-u) 1-e” 5@
[ 1!0 e 2 ﬂ6(2) +(1_efa‘(z)u) du e S
@) J-s @ (1—975(2)02%1))(3’5(2)1
+e—b‘ s S 3 7 dz
0 _s@t,— 52,
,(,\<2>,A(2)) . ps? +(1—e 9t tl))e s
Bie'® */o=exp _pjo ds
(2)
N “t, (3 _ _ a0 .
o+ eb(B)tl J‘(Zz t1e 3 (ty-u) (2)1 e e du efé(s)s
B +(1—e : )
3), s (1—9_5(2)(t2_11))e'5(2)2
_,’_e—& SIO 5(3)2 5 5 dZ
ﬂ5(2) +(1_efr5 (tz—tl))e_‘; 7
—5(2)2
e‘é(s)sf;e("(s)z % dz
oxp| o[} poliie ™| |
X —-p ’
0 52,
~53s 1s,60); l-e
A K b e L
po7 +1-e (4.9

_[A0_,@
We can easily obtain remaining marginal survival function, i.e. E{e { 2o }} which are omitted as it has

also similar extended nested expressions to (4.4).
Now let us illustrate the calculations of three marginal survival functions, three bivariate survival functions
and eight joint distributions. To do so, we use the parameter values as below:

a =5, f=10and y = 20, i.e.E(Y“’):%, E(Y“)):%, E(Y“)):Z—lo, @5)

5% =05, 6% =106 =21t,=1t, =0and p=4.

Example 4.1 (Marginal survival functions)
The calculations of three marginal survival functions, i.e.

Pr(z, >1),Pr(z, >1)and Pr(z, >1)

are given by

Pr(r, >1)= E{e“@ } - 022833

2)
Pr(z, >1) E{e‘“5 }=0.85777 and
®
Pr(z, >1):E{e'“l }:0.99606.

Example 4.2 (Bivariate survival functions)
The calculations of three bivariate survival functions, i.e.

Pr(z'3 >t,7, >t), PI’(z’3 >t,7, >t) and Pr(z'2 >t,17, >t)

are given by

OPEN ACCESS AM



488 J. JANG

AR A
Pr(z; >t,7, >t)=E{e Mg }=0.19926
(B) _A@
Pr(r;>tr, >t) = E{e’Al e™ }: 0.22737 and
®

()
Pr(r, >tz >t)= ]E{e’/‘l e }: 0.85462.

Example 4.3 (Eight joint distributions)
The calculations of eight joint distributions, i.e.

Pr(z; >t,z, >t,7, >t), Pr(z; >t,7, > t,7, <t), Pr(ry > t,7, <t, 7 > t),
Pr(z; <t,z, >tz >t), Pr(z, >t,7, <t,7; <t), Pr(z; <t,z, >t,7, <t),

Pr(z; <t,z, <t,z; >t)and Pr(z; <t,z, <t,7; <t)
are given by

_AB A2 @
Pr(z, >t,7, >t,7, >t)=E{e Mg g™ }=0.19859,
Pr(zy>t,7, >t 7, <t)=E
A3 A A0
Pr(z,>t,z, <t,z, >t)=E e™ (1—e M je M }:0.02878,

(3) (2) ®
Pr(s, <t,z, >t >t)=E (1—e'A1 je'Al e ™ }: 0.65603,

Pr(z;<t7,>t,7, <t)=E

() (2) (6]
Pr(z, >t,7, <t,7, <t)= E{eA13 (1—e“12 )(1—@“5 j} ~0.00029,

(3 (2) &
Pr(ry<tz, <t7,>t)=Eq|1-e™ j(l—e"‘l ]e‘Al }:0.11266,

(3) (2) (1)
Pr(z; <tz, <t,7; <t) =E{(1—eA1 )(l—e”‘l )(1—#1 j} =0.0005.

Remark 2: Example 4.1 shows that the survival probability of the firm 1 is the highest and the firm 2’s and
the firm 3’s, which can be modified with different parameter values for (4.5). Example 4.2 and 4.3 show that all
relevant joint probabilities are in line with each survival probability in Example 4.1. For example, the joint sur-
vival probability of firm 2 and 1, Pr(z, >t,z; >t)=0.85462 is the highest as the combination of these two
firms’ survival probabilities are the highest. Also it can be easily noticed that Pr(z, <t,z, >t,7, >t)=0.65603
is the highest in Example 4.3 as the joint survival probability of firm 2 and 1 is the highest.

An economic interpretation from the perspective of the multiple shot noise process is the following. After the
firm 3 ceases to function (e.g. default of Lehman Brothers), its intensity is still around affecting the other firms
in the way of the multiple shot noise process. Hence Pr(z; <t,z,>t,z; >t) can be interpreted as the
probability that the firm 2 and 1 survive together after the firm 3 ceases to function, but its intensity is still in ac-
tion. Also Pr(z, <t,7, <t,7; >t) can be interpreted as the probability that the firm 1 survives after the firm 3
and 2 cease to function, but their intensities are still in action.

After the failing of the firm 3, Pr(z, <t,z, >t,7; >t) can be considered as a measure to decide whether the
government’s intervention is required not to fail the firm 2 and 1 with a threshold probability (e.g. 0.5) assumng
that its intensity is still in action. Also by simulating the multiple shot noise process, this probability can be eas-
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ily obtained as a systemic risk management tool for the governments.

5. Conclusions

(1]
[2]

(3]
(4]

[5]
(6]

[7]

(8]
(9]

We introduced multiple shot noise process, where each process acts as a jump intensity for the next one, and its
integral. These two processes can be used in hydropower, dam and river engineering fields. Based on the
piecewise deterministic Markov process theory developed by Davis [1] and the martingale methodology used by
Dassios and Jang [2], we derived the Laplace transforms of these two processes. Using the multivariate Cox
process, the multivariate probability generating function for the number of jumps was also presented. To do so,
we have made an assumption that the Cox processes jumps, intensity jumps and primary event jumps are inde-
pendent of each other. This probability generating function can be considered applying to modeling insurance
claim arrivals as well as the number of losses to the entire financial system/market.

Using the Laplace transform of the integral of multiple shot noise process, we obtained the tail of multivariate
distributions of the first jump times of the Cox processes, i.e. the multivariate survival functions. These survival
functions can be used as the measures to decide whether the government intervention is required to ameliorate
the contagious effects to the entire financial system or larger economy. With exponential distributions for jump
sizes, we calculated multivariate survival function, other relevant joint distributions and the survival functions.
We leave the applications of what we presented in this paper, i.e. a multivariate Cox process with multiple shot
noise intensity, multiple shot noise process and its integral to the fields mentioned above for further research.
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