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ABSTRACT

The current paper is mainly devoted for solving centrosymmetric linear systems of equations. Formulae for the deter-
minants of tridiagona centrosymmetric matrices are obtained explicitly. Two efficient computational algorithms are
established for solving general centrosymmetric linear systems. Based on these algorithms, a MAPLE procedure is

written. Some illustrative examples are given.
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1. Introduction

Throughout this paper, | and A" denote the deter-
minant and the transpose of the matrix A respectively.
Also | x| denotes the greatest integer less than or equal
to x. Centrosymmetric matrices have practical applica
tions in numerical analysis, information theory, statistics,
physics, harmonic differential quadrature, differential
equations, engineering, sinc methods, magic squares,
linear system theory and pattern recognition. The inter-
ested readers may refer to [1-12].

Solving and analyzing linear systems of equationsis a
fundamental problem in science and engineering applica-
tions. The cost of solving any linear system using Gauss
or Gauss-Gordan algorithms is O(n®). The motivation
of the current paper is to develop efficient algorithms for
solving any centrosymmetric linear system having n
equationsand n unknowns provided that the coefficient
matrix of the system is nonsingular. The cost of each
algorithm depends on the solvers of two associated linear
systems having smaller sizes than n. More precisdly, if n
= 2m, then each of the two associated linear systems
consists of m equations. If n=2m + 1, then we have one
system having m equations and the other has (m + 1)
equations. Consequently, if the two associated linear
systems have special structures, then the cost of the cen-
trosymmetric algorithm could be considerably reduced,
in particular for large values of n.

"Corresponding author.
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The paper is organized as follows. In Section 2, some
properties of the exchange and the rotate matrices are
presented. Formulae for centrosymmetric tridiagonal
determinants are obtained in Section 3. In Section 4, two
computational algorithms for solving centrosymmetric
linear systems are given. A MAPLE procedure is given
in Section 5. Some illustrative examples are presented in
Section 6.

Definition 1.1. The nxn matrix with 1's on the
northeast-southeast diagonal and 0's el sewhere

: 1 0
T R o)
0 1 :

is called the exchange matrix of order n. The subscript
on J, is neglected whenever the size is obvious from
the context.

Definition 1.2. Let A=(a, )inj:1
Therotateof A, denoted AR, isdefined by
AR = JAJ. 2

Definition 1.3 [9]. Let A=(a)
matrix. Then
e A issaidto becentrosymmetricif AR = A
e A issaidtobepersymmetricif A% =A'.

bean nxn matrix.

n
~ be an nxn
i,j=1
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22 M. EL-MIKKAWY, F. ATLAN

e A issaid to be centrogona if A% =A™, provided
#0.
. |AA\4 is said to be skew-centrosymmetric if A% =—A
e A issaidtobebisymmetricif A% =A=A".
Note that the bisymmetric matrix is both symmetric
and centrosymmetric. It is also both symmetric and pre-
symmetric.

2. Some Properties of The Exchange and The
Rotate Matrices

Let us begin this section by giving some helpful results
concerning the exchange and rotate matrices. For more
details see [1,3,8,9,12-21].

The exchange matrix J,, enjoys the following prop-
erties:

o« J=J"=0"

« |1, keven
o J' =

" |J,, kodd,

where 1, istheidentity matrix of order n.
n(n-1) if n=0 or1mod(4
A ”
-1, if n=2o0r3mod(4).

e The matrix product JA is a version of the matrix
A that has been reflected in line at 0 degree to the
horizontal measured counter-clockwise.

e The matrix product AJ is a version of the matrix
A that has been reflected in line at 90 degrees to the
horizontal measured counter-clockwise.

e The matrix product JAJ = A% is a version of the
matrix A that has been rotated counter-clockwise or
clockwise by 180 degrees.

Note that the exchange matrix J is equal to the identity
matrix | but with the columnsin reverse order. More pre-
cisdly, J=(&,6.,., &) where &=(5y,6,,,5;),
i=12---,n, & is the Kronecker symbol which is
equaltolif i=] andzeroif i=]j.

It is also worth mentioned that the matrix J is some-
times called the counter-identity matrix or contra-identity
matrix or per-identity matrix or the reflection matrix or
the reversal matrix.

Exchange matrices are smple to construct in software
platforms. For example, to construct J, in MAPLE, a
single line of code can be used asfollows:

n:=5:J:=array(1..n,1..n,sparse): for i ton do J[i, n +
1-i]:=10d: J||n:= op(J);

orn:=5:J:=matrix(n, n, 0): foritondo JJi,n+1-
i]:=1od: J||n:=op(J);

Therotateof A, AR of order n satisfies:

o (AB)"=AB"
o (A+B)"=(A"+B).
2<JA

o If row of Ais (a,,a,..8,1,8,), then row

n+1-i

of A% is (a,,8,.,8,.a,). Inother words, the

centrosymmetric matrix A is the same when read
backwards as when read forwards.

3. Centrosymmetric Deter minants

Centrosymmetric determinants take the form:

&, &, - A,
Ly &y o Gy,
: : : S 3
&y v By @
a:l.,n a1,2 a1,1
in which
row = (8,8, 18 1,8y ),
and

FOW,,1 :(ain’ai,n-l""’ai,z’aﬁl)'

. n
f hi=12--,|—]|.
oreach =12, LJ

In particular, centrosymmetric tridiagona determi-
nants are of special importance. For convenience of the
reader, we present some definitions, notations and prop-
erties associated with tridiagonal matrices.

A tridiagonal matrix T :(aij )inj:1 takes the form:
[d, a O 0 |
b, d, & 1
T=0 . 0 | 4
bn—l dn—l aTI—l
|0 - 0 b d |

These types of matrices frequently appear in many ar-
eas of science and engineering. For example in parallel
computing, telecommunication system analysis and in
solving differential equations using finite differences, see
[22,23]. A generd nxn tridiagona matrix of the form
(4) can be stored in 3n memory locations, rather than
n?> memory locations for a full matrix, by using three
vectors a=(a,a,,,a,), b=(b,b,,b), and
d=(d,,d,,---,d,) with b =a =0. This is adways a
good habit in computation in order to save memory space.
To study tridiagonal matrices it is very convenient to
introduce avector ¢ inthefollowing way [24]:

c=(C,C,,C,), (5
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where
bac, L

-1

It is helpful to restate some important results concern-
ing tridiagonal matrices of the form (4). For more details
the interested reader may refer to [24-28].

Let p,gqr and s are positive integers such that
1<p<g<n and 1<r<s<n.

Define the submatrix of A, denoted A[p.q,r.s|,
of order (q-p+1)x(s—r+1) by

¢=d, ¢=d - k=23:-,n. (6)

ap,r ap,r+1 ap,s

p+l r ap+l,r+l ap+1,s (7)

A[p.q,r.s]=

a'q,r aq,r+l aq,s

In particular, let F =A[lk1k], 1<k<n, and
f, =|R|. theleading principal minor of A
Theorem 3.1 [24]. Consider
f,=[T[1.11.1] =|d,|=d,,

®
f =[T[L.kLK]=|R| k=23-n

Then the determinants in (8) satisfy a three-term re-
currence

fe=d fi-bacifi k=12, ©)

where theinitial valuesfor f, are f,=1 and f =
Lemma 3.2 [29]. If the LU factorization of the ma-
trix T in(4) ispossible, then we have

IT|= Hck (10)

where c,c,,---,c, are given by (6). Meanwhile, the
Doolittle LU factorization [30] of T isgiven by:
T =LU, where
1 0 : 0]
L)
G
0 0
L= ,
—n-1 1 0
Cn—2
o -~ 0 b, 1
L Cra
c a O 0]
0 c, a .
andU=: "-. . . 0
: ' Cn—l a'n—l
0 0 c, (11)
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Lemma3.3[26].1f ¢ #0,r=12,---,n, then
f=]]c.i=12-n (12)
k=1

Lemma 3.4 [26]. If ¢ =0, 1<i<n-1, and either
a =0 or b,,=0, then T isasingular matrix.

Lemma 3.5 [24]. If ¢ #0 foreach i=12,---,n-1,
then the three-term recurrence (9) reduces to the two-
term recurrence

f=cf,, i=12--,n (13)

Algorithm 3.1 (DETGTRI [31]).

The determinant of the matrix in (4) can be computed
using the following symbolic algorithm.

INPUT: Order of the matrix n and the components,
a,d,h,i=12-,n,(a,=b =0).

OUTPUT: The determinant of the matrix T in (4).

Step 1: Use (6) to compute the simplest forms of the
n components of thevector c.

If ¢ =0 forany i<n,set ¢ =t (t isjustasym-
bolic name) and continue to compute ¢ _,,C,,,-:+,C, in
termsof t by using (6).

Step 2: The simplest rational form of the product

P(t)=]]c (this product is a polynomial in t) evalu-
r=1

ated at t=0 is equa to the determinant of the matrix
T in(4),ie, [T|=P(0).

The cost of the DETGTRI agorithm is O(n). The
algorithm is easy to implement in all Computer Algebra
Systems (CAS) such as MACSYMA, MATHEMATICA
and MAPLE.

Lemma 3.6. Consider the tridiagonal matrix T,
given by:

[d, a O 0]
b, d, a :
T =0 . 0 | (14)
. . bn—l dn—l an—l
0 - 0 b d]

Let S,, U, and V, be nxn matrices defined re-
spectively asfollows:

S =T,

and V, :Tn|bﬁkkh ,

U n - Tn|an—1_)kanfl (15)

[\ —>dytk

where k is a scalar quantity. Then by applying the
DETGTRI agorithm, we see that:

[Sol = [To| £ K[Toc]. (16)
|Un| = |Vn| = |Tn| - k_l) bnan—l |Tn—2|1 (17)

having used (12) and (13).
Let A=(31,- )inj:l is an nxn centrosymmetric ma-

trix, then the three following facts are useful when we
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deal with such matrices:
Fact (1): If row =(a,,8,,@ ,4.8,), then
FOW,, 1 :(ain'ai,n—l""'aﬁZ'ail)'

In other words, the centrosymmetric matrix A isthe
same when read backwards as when read forwards.
Fact (2): If n=2m ispositive even number, then

1 Im Im
Ql:ﬁ|:‘3m _Jm:|,

is orthogonal.
Fact (3): If n=2m+1 ispositive odd number then
l, 0 I,
1
Q2=E 0 V2 o0 |
J, 0 -3

m m

is orthogonal .
Armed with the above facts, we may formulate the

following result whose proof will be omitted.
Theorem 3.7. Let Rz(rij )inj:l be an nxn of even

order say n=2m, then R can bewrittenin the form:
R- A JBJ Y A+JB o (18)
B JAY] ’

where ABeR™™.
The determinant of the matrix R in (18) isgiven by:

A-JB

If n isodd,i.e, n=2m+1, thenwehave:

A v JBJ
R=lu" q u'J
B Jv JAJ

A+JB J2v 0 (20)

=Q| vau" g 0
O 0 A-JB

Q;:

where ABeR™™, u,ve R™ and qeR.
The determinant of the matrix R in (20) isgiven by
A+JB 2v
IR=
Jau' g
Concerning the inverse of centrosymmetric matrices
the reader may refer to [8].
As an interesting specia case of the Theorem 3.7, we
give the following result.

Corollary 3.8. In Theorem 3.7, if R = T, is centro-
symmetric tridiagonal matrix, then we have

E {mz KT
’ |Tm|(|Tm+1|_bm+1am |Tm,1|), if n=2m+1.

where k is the common value of the elements in positions

(m, m+1) and (m+1, m) of the matrix R=T, whenn=2m.
Proof. To compute the centrosymmetric tridiagonal

determinant of order n. Two cases will be considered:
Case (1): n=2m In this case, the centrosymmetric

|A-JB|. (21)

if n=2m,

|R|=|A+ JB||A- JB|. (19 tridiagonal matrix takes the form:
'dl a o0 0 0 e 0]
b, d, & . : '
0o 0
: bm—l dm—l a‘m—l 0
0 0 d k 0 0
T =T, = b, m (22
0 0 k |d, b O 0
: 0 la,, dny by
0 K .0
: : : a, d, b
0 - .. 01l o 0 a d|
Applying Theorem 3.7, we have [T,| =|T,,|=|L||M|. where
d a 0 0
b, d, & :
L=A+JB=|0 0
bm—l dm—l am—l
0 0 b, d +k
and
Open Access AM
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d, 0 0 and
b, 3, : M= [T =K [Ty
M=A-JB= O - 0 Therefore we get
P e B T =Tl =[L M
0 0 b, d, -k (23)
=[T. " k[T,
By using Lemma 3.6, we obtain .
K Case (2): n=2m+1. In this case, the centrosym-
|L| - |Tm| + |Tmfl| metric tridiagonal matrix takes the form;
(d, a O 0 0 0 ... 0]
b, d, & : : ' :
o . - 0 :
bm—l m-1 am—l 0
0 0O b, d,| a, 0 0
Tn :T2m+1 = 0 O bm+l dm+1 bm+1 0 0 . (24)
0 0 |a, |d, b, 0 0
: : 0 |ay, dyy by :
: 0 B ' -0
. : . E a d, b
|0 0 0 0 0 a d]
Applying Theorem 3.7, we obtain [T, | =[T,..|=|L||M|, here
d a O 0
b, d, & :
L=A-B=A=T,=[{0 . . . 0
bm—l dm—l am—l
0 0 b, d,
and
[d, a O 0 |
b, d, :
:{A+JB \/Ev} 0 - o |
T
Vara b, d, +2a,
L O 0 \/Ehﬂ+1 dm+1 n
By using Lemma 3.6, weobtain |L|=|T,| and
d a O 0
b, d :
|M|_A+JB NEY I P o
= i = .
vard b, 4 <7a,
0 O \/Ebmﬂ dm+1
By using the DETGTRI agorithm [31] together with (12) and (13), then we have
AM
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d a 0 - O d a 0 0
b, d, a . : b, d, a, . :
|M|: o . . 0|=|0 " " T 0
: . b, d, 2a, [: . b, d, a,
0O -~ 0 b, d,| |O 0 2b,, d,,
bm+lam berlam
= (Clcz "'Cm)amﬂ = |Tm|am+1 = |Tm| dm+l - 2C— = |Tm| Cna _C—
Tm Tm
=Cha |Tm| _|C_|h'n+lam = |Tm+1 _|C_|bm+1a'm = |Tm+1| - bm+1am |Tm—1| .
Therefore 4. Algorithmsfor Solving Centrosymmetric
2 =T Linear Systems
" - szﬂ_l_ T (25)  Solving linear systems practically dominates scientific
—| m|(| m+1|_bm+1am| rwl|)' computing. In the present section, we focus on solving
From (23) and (25), we see that in order to compute linear s_ystems of centrosymmetric type. Two cases will
be considered:

the determinant of a centrosymmetric tridiagonal matrix

of order n, then all we need is to compute ¢,,c,,---,c, Case (i): n=2m For this case we are going to con-

struct an algorithm for solving centrosymmetric linear

if n=2m and ¢,c,,---,C,,; if n=2m+1. systems of the form:
fay @, v A Aga v @uma G | x 17 b
a a o aQ,m a2,m+1 T a2,2m—1 a2,2m
: R AR I [ %
a'ml a'mz ot a'm,m am,m+1 e am,Zm—l am,2m Xm _ bm . (26)
Anom Qnoma 0 B Gam &, a1 . .
az,zm aZ,Zm—l o a2,m+1 aQ,m "' a ay X)Z(:_l bé;n_l
| Qom  Qoma 7 Ama S v Ap &y |0 T =T

Block multiplication is particularly useful when there are patterns in the matrices to be multiplied. Therefore it is
convenient to rewrite (26) in the partitioned form

A | JBJ X, B,
e Sy U e 27
st e @
where

&, d, - ai,m am,zm am,zm—l am,m+1
- U

: : i : Bom Hom1 7 Lma

&y Gy am,m ai,zm al,Zm—l ai,rml
Xy =% % X s Xo = [Xa Xz Xom]

B, =[b.b,.0,]" and B, =[b,.,.b,, by ]

The system in (26) can also be written in matrix form where R= (aﬂ )2”‘ is the coefficient matrix of the sys-
asfollows: b=t

Rx = b, (28)  tem (26), X=[X, %, %,] and b=[b,b,, b, ]

Open Access AM
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is the constant vector.
Algorithm 4.1. An algorithm for solving centrosym-
metric linear system of even order.
To solve the linear system of the form (26), we may
proceed as follows:
INPUT: The entries of the coefficient matrix R and
the constant vector b in (28).
OUTPUT: Solution vector X =[x, %, %] -
Step 1. Congtruct the mxm matrices P, Q and
them-vectors b and b asfollows:
m
P= A+‘]B:|:a1'j +a1',2m+l—j]

ij=1'
Q: A-J B:|:a1j —31’2m+17j:|:1]_:17

b= by by b, + By 1,70+ By + by '

and
b=[by~ by B, ~ by 10wy By

Step 2: Compute |R=|P||Q. If |R=0 then Ex-
iterror(‘No solutions’) end if.

Step 3: Solve the two linear systems:

Py=b, and Qz=b, for y=[y1,y2,~--,ym]T and
2=(2,2,,-,2,] respectively.

Step 4: The solution vector X =[x,%, -, %] is
given by

Ly +2)

ifi=42---,m,
> 1

)ﬁ:

1
(y2m+l—i ~ Domet-i )
2

The Algorithm 4.1, will be refereed to as CENTRO-
SYMM-I agorithm.
Concerning the computational cost of the CENTRO-

ifi=m+Lm+2,---,2m

27

SYMM-I agorithm:
The time complexity of Step 1is

[ ]
m?+m’ +m+m

n

2
=2m2+2m=2x[ﬂj +2x D
2 2

Lein=lrio
2 2

(n)

(%n2+n additions/subtractions and no multiplica-

tions/divisions).

The time complexity of Step 3 depends on the solvers
of the two linear systems. For example, tridiagonal
linear systems can be solved in linear time (see [25]).
The time complexity of Step 4 is O(n) (n addi-
tions/subtractionsand n multiplications).
Step 3 isthe step that leads to the reduction of the time
complexity, because instead of solving alinear system of
N equations, we end up with two linear systems half the
size of the origina one. If the original system is solved
with Gaussian elimination (GE) method, then the time

complexity will be §n3+0(n2). But, if GE method is

used to solve the two systems in the third step, then the
time complexity of our algorithm will be

gm3+0(m2)=%n3+0(n2),

which is a significant reduction. If a method more effi-
cient than the GE method is used, then the time complex-
ity of our algorithm will be less (see also [16]).

Case (ii): n=2m+1. In this case the linear system
to be considered has the form:

Ay a Am  Ama Bme Qom  Boma |
ay Ay BGm  Lma B Bom oma |[ X% ] [ B ]
z : : : : : Col % b,
An A2 Am  Bnma Fmmez Bnom  Bmome || :
A1 A2 Aniam  Gmiami Gmeam Qn12  Qnaa X1 | = bm+l ) (29)
Anomi1 mom Amez  Amma Fnm An2  8m : :
: : : : : : Dl % | | by,
&oma  Hom Bz Dma & m azz Ay ([ Xoma] [P
| Qoma Hom Uiz HAma A a, |
or equivaently,
A BI| %, B
ut | g [ U || X |=| By |5 (30)
B[] X,| | B
Open Access AM
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where
& & - 4y Anomt Bmam T Bmmez
pef B Eelgl P
: : K : Boma Hom 7 Lomeo
Ay Ay a'm,m a1,2m+1 a1,2m al,m+2
T T
V:[al,m+1’az,m+1!""am,m+1:| U :|:a'm+l,l’am+l,2""'am+l,m:| ) q:[am+1,m+1:|’
T T
Xy =% % %0 ] 0 X = [ X0 Xus Xomaa ]
T T
Blz[bl'bz""'bm] and BZ :[bm+2'bm+3""'b2m+l] .
The linear system (30) can also be written as: metric linear system of odd order
RX = b, (31) To solve the linear system of the form (29), we may
ol proceed as follows:
where R=(3ﬂ' )i ~, isthe coefficient matrix of the sys- INPUT: The entries of the coefficient matrix R and
" the constant vector b in (31).
tem (29),

OUTPUT: Solution vector x = [xl,x2,~-«,x2m+l]T.

T T
X=[X% Xoma | and D=[by,b;, by Step 1: Construct the matrices P, Q of orders

is the constant vector. m+1 and m respectively and the vectors b and b
Algorithm 4.2. An agorithm for solving centrosym- of dimensions m+1 and m respectively asfollows:
i &1+ oma Qo+, v Ant& g, 231,m+1 1
B A+JB 2V B az,1+?2,2m+1 &5 +:a2,2m &Hm +:a2,m+2 2a2:,m+1
= al : : . : : ,
it anome 8m2t@nam 7 BnmtAnme  28nma
[N 12 o 8mi1m (e m+l |

m iterror(“No solutions”) end if. A
Q=A- ‘]B:[aﬂ _3112m+2-il,j:1’ Step 3: Solve the two linear systems Py=b, and

. . Qz=b, for
b:[bl+b2m+l’b2 +b2m"”’bm+bm+2’bm+1]

Y=[%Yor s Yo Vo] @ 2=[2, 20,2,

and
- T respectively.
L i T Step 4: The solution vector X =[%, %, Xma] IS
Step 2: Compute |[R=|P||Q|, If [R=0 then Ex-  givenby
1 .
E(yi +7) if i=12--,m,
)g = ym+1 |f | = m+1,

%(ym%i ~Zympi) If i=M+2,m+3.-,2m+1.

The Algorithm will be refereed to as CENTRO- SYMM-II agorithm:

SYMM-I1 algorithm. ) i 1,
Concerning the computational cost of the CENTRO- ~ ® Thetimecomplexity of Step 1is SN +0(n).

Open Access AM
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e Thetime complexity of Step 3 depends on the solvers
of the two linear systems.
e The time complexity of Step 4 is O(n) (see also
[16]).
It may be convenient to finish this section by giving
the following result, whose proof will be omitted.

Theorem 4.1. Let A=(g;) _ be a non-singular

n
ij=1

centrosymmetric square matrix of order n. Consider the
four linear systems of centrosymmetric type:

AXx =b, (32

AJx =b, (33)

JAX=b (34)
and

ARX =D, (35)

Then the two linear systems (32) and (35) are equiva
lent. The same is true for the linear systems (33) and (34).
Moreover, if the common solution of the systems (32)
and (35) is x =(k,,k,,~--,k,)", then the common solu-

tion of the systems (33) and (34) is x = (K, K, ,,-,k) -

5. Computer Program

In this section, we are going to introduce a MAPLE pro-
cedure for solving centrosymmetric linear systems (26)
and (29). This procedure is based on the CENTRO-
SYMM-I and CENTROSYMM-I1 Algorithms.
> restart:
centrosymm:=proc(R::array,f::vector,n::posint)

local i, r,m,f1,f2,A,.Jm,JH,y.x,B,Y ,Z X:

global xsoln,detR,detP,detQ,P,Q;

X:= vector(n): m:=floor(n/2): J=array(1..m, 1..m,

Sparse):
for i to mdo Jm+1-i,i]:=1 od:
A:=linalg[submatrix](R,1..m,1..m):
if n=2*m then

# Case(l):niseven #
# Step 1in CENTROSYMM-I Algorithm.
B:= linalg[submatrix](R,m+1..n,1..m):
P:=evalm( A + evalm(J&*B)):
Q:=evalm( A - evam(J&*B)):
# Step2in CENTROSYMM-I Algorithm.
detP:=linalg[det] (P): detQ:=linalg[det](Q):
detR:=detP *detQ:
if detR = 0 then ERROR("Singular Matrix !!!1 ")
fi;
# Step3in CENTROSYMM-I Algorithm.
fl:=array(1..m): f2:=array(1..m):
for i tomdo

fA[I]:=f[i]+f[2* m+21-i];

Open Access

f2[i]:=f[i]-f[2*m+1-i];
od;
Y :=array(1..m): Z:=array(1..m):
Y:= lindg[linsolve](P,f1): Z:=linag[linsolve]
(Qf2):
# Step4in CENTROSYMM-I Algorithm.
foritomdo
X[il:==12=(Y[i]+Z]i]);
od;
for i fromm+1to ndo
X[i]:=12* (Y [n+1-i]-Z[n+1-i]);
od;
xsoln:=simplify([seq(X[r],r=1..n)]):
else
#Case(2): nisodd #
# Step1in CENTROSYMM-I1 Algorithm.
B:= linalg[submatrix](R,m+2..n,1..m):
H = evalm( A + evalm(J&*B)):
y:=linalg[submatrix](R,1..m,m+1..m+1):
x:=linalg[submatrix](R,m+1..m+1,1..m):
P:=linalg[blockmatrix](2,2,[H,2*yx,[2]]):0p(P);
Q:=evam( A - evam(J&*B)):
# Step2in CENTROSYMM-I1 Algorithm.
detP:=lindg[det](P): detQ:=linag[det](Q): detR:=
detP *detQ:
if detR = 0 then ERROR("Singular Matrix !!!1")
fi;
# Step3in CENTROSYMM-I1 Algorithm.
fl:=array(1..m+1): f2:=array(1..m):
foritomdo
fA[I]:=f[i]+[2* m+2-i];
f2[i]:=f[i]-f[2*m+2-i];
od;
f1[m+1]:=f[m+1];
Y :=array(1..m+1):
Y:= linag[linsolve](P,f1):
(Q.f2):
# Step4in CENTROSYMM-I1 Algorithm.
for i tomdo
X[il:=12=(Y[i]+Z[i]);
od;
X[m+1]:=Y[m+1];
for i fromm+2tondo
X[il:=1/2* (Y [n+2-i]-Z[ n+1-i]);

Z:=linalg[linsolve]

od;
xsoln:=simplify([seq(X[r],r=1..n)]);
fi:
end proc:

6. lllustrative Examples

All results in this section are obtained with the help of
the MAPLE procedure centrosymm.
Example 6.1. Solve the centrosymmetric linear system
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3-11 0
2 -1 -3 4
10 2 -2
3 3 -3 4
11 2 -1
03 -1 1
1 -1 3 -2
13 1 2
2 3 0 -1
1 3 2 -3

Solution:

4

1 -3 2 3 1[x] [-1
1 -1 0 3 2|x| |1
3 2 1 3 1|%]| |9
4 2 3 -11|x/| |16
2 1 -1 3 0||x| |6
3 -1 2 1 1||x%| |9
1 4 3 3 3||x/| |4
3 2 2 0 1% |7
2 4 -3 -1 2|x%]| |2
4 0 1 -1 3% |6]

M. EL-MIKKAWY, F. ATLAN

Here n=10 and m=5. Using the procedure centrosymm, we get the following results:

4 -4 3 -3 5
4 2 -3 3 -3
P=12 3 3 0 6
4 2 0 2 3
1 4 1 0 5

b=[51316,20,15]" and

The solutions of the systems

(4 -4 3 -3 5[y, | [5]
4 2 -3 3 -3||y, 13
2 3 3 0 6|y|=|16
4 2 0 2 3|yl |20
11 4 1 0 5] V] |15]
and
2 2 -1 3 3[z] [-7]
0 4 -3 5 -1}z 9
0 3 1 -4 0|zl|=|2
2 4 6 6 -5|z| |12
1 -2 3 -2 1]z |-3]

2
0
Q=|0
2
1

2 -1 3 3
4 -3 5 -1
-3 1 4 0|,

4 -6 6 -5
-2 3 -2 1

b=[-7,9,212-3]", |R=|P|x|Q|=-730912.

ae y=[21-122] and z=[0,-1-1,0,-2] .

Therefore, we have

1 1
><1=§(y1+21)=l % =2 (5= 2%)=2

1 1
% :E(y2+22)20= X :E(y4_z4) 1

1 1
%=2(Vatz)=-1 %=2(%:~2)=

Open Access

0,

1

1
E(yz_zz)

1
X4=E(y4+24)=1, %

1 1
stz(ys"'zs):o’ Xlozz(yl_zi) 1

Hence the solution vector is
x=[1,0,-110,21011]".

Example 6.2. Solve the centrosymmetric linear system

2100000000 0][x] [2]
1210000000 0|x]| |1
0121000000 0|x]| |1
0012100000 0|x]| |3
0001210000 0|x]| |4
000012100 0 0|x|=3]
0000012100 0[x] |1
0000001210 0|x%]| |1
00000001210|x]| |3
0000000012 1|x,]| [4
0000000001 2||x] |3

Solution: Here n=11 and m=5. Using the proce-
dure centrosymm, we obtain the following results:
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210000

2100
121000

1210
012100
P= , Q=01 21
001210

0012
000122

0001
000012

b=[554,453] ad b=[-1-3-223,
IR =|P|x|Q=12.

The solutions of the systems

21000 0][y] [5
12100 0|yl |5
01210 0|yl |4
001 210|y| |4
00012 2|yl |5
00001 2|y [3

and
2100 0][z] [-1
1210 0|z| |-3
0121 0|z|=-2
001 2 1|z |2
0001 2|z |3

are y=[211111] and z=[0,-1,-1,1,1] .
Therefore, we get

1
(Ys—2)=0,

1
)(l:E(yl+21):]" X :E

1 1
% =5(%+2)=0, %=2(¥,~2)=0.

1.

1 1
% =5(%+2)=0 % =2(y;-2)

1 1
x4:§(y4+z4):], )(1025(3’2_22):1-

1 1
X5:E(y5+zs):l- )(11:§(y1_21):1-

X =Y =1

Hence the solution vector is

x=[10,01110,011] .

Example 6.3. Solve the centrosymmetric linear system

Open Access

N B O O O

10-12 3 21 0 41][x] [-1
213 -16 6 -1 3 12|x]| |2
321 0 -1 2 1 1 3 4|x]| |1
432 1 0 1 3 401||x]||3
543 0 1 2 4 5 13||x]| |0
315 2 2 1 2 3 45|x/| |3/
104 3 1 0 1 2 3 4fx]| |1
431 1 2 -1 0 1 23|x| |1
213 -16 6 -1 3 12|x| |4
140 1 -2 3 2 -10 1% |3]
Solution:

Here n=10 and m=5. Using the procedure cen-
trosymm, we obtain the following resullts:

Error Singular Matrix !!!! This means that the given
system has no solutions.

(1]

(2]

(3]

(4]

(5]

(6]

(8]
(9]

[10]
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