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ABSTRACT 

The current paper is mainly devoted for solving centrosymmetric linear systems of equations. Formulae for the deter-
minants of tridiagonal centrosymmetric matrices are obtained explicitly. Two efficient computational algorithms are 
established for solving general centrosymmetric linear systems. Based on these algorithms, a MAPLE procedure is 
written. Some illustrative examples are given. 
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1. Introduction 

Throughout this paper, A  and TA  denote the deter-
minant and the transpose of the matrix A  respectively. 
Also x    denotes the greatest integer less than or equal 
to .x  Centrosymmetric matrices have practical applica-
tions in numerical analysis, information theory, statistics, 
physics, harmonic differential quadrature, differential 
equations, engineering, sinc methods, magic squares, 
linear system theory and pattern recognition. The inter-
ested readers may refer to [1-12]. 

Solving and analyzing linear systems of equations is a 
fundamental problem in science and engineering applica-
tions. The cost of solving any linear system using Gauss 
or Gauss-Gordan algorithms is  The motivation 
of the current paper is to develop efficient algorithms for 
solving any centrosymmetric linear system having  
equations and  unknowns provided that the coefficient 
matrix of the system is nonsingular. The cost of each 
algorithm depends on the solvers of two associated linear 
systems having smaller sizes than n. More precisely, if n 
= 2m, then each of the two associated linear systems 
consists of m equations. If n = 2m + 1, then we have one 
system having m equations and the other has (m + 1) 
equations. Consequently, if the two associated linear 
systems have special structures, then the cost of the cen-
trosymmetric algorithm could be considerably reduced, 
in particular for large values of n. 

 3 .O n

n
n

The paper is organized as follows. In Section 2, some 
properties of the exchange and the rotate matrices are 
presented. Formulae for centrosymmetric tridiagonal 
determinants are obtained in Section 3. In Section 4, two 
computational algorithms for solving centrosymmetric 
linear systems are given. A MAPLE procedure is given 
in Section 5. Some illustrative examples are presented in 
Section 6. 

Definition 1.1. The n n  matrix with 1’s on the 
northeast-southeast diagonal and 0’s elsewhere 

0 0

1 0

,

0 1

1 0 0

nJ
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            (1) 

is called the exchange matrix of order  The subscript 
on n

.n
J  is neglected whenever the size is obvious from 

the context. 

Definition 1.2. Let  
, 1

n

ij i j
A a


  be an n  matrix.  n

The rotate of ,A  denoted ,RA  is defined by 

.RA JAJ                   (2) 

Definition 1.3 [9]. Let  be an  
, 1

n

ij i j
A a


 n n  

matrix. Then 
 A  is said to be centrosymmetric if .RA A  
 A  is said to be persymmetric if T .RA A  *Corresponding author. 
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 A  is said to be centrogonal if 1,RA A  provided 
0.A   

 A  is said to be skew-centrosymmetric if R .A A   
 A  is said to be bisymmetric if T .RA A A   

Note that the bisymmetric matrix is both symmetric 
and centrosymmetric. It is also both symmetric and pre-
symmetric. 

2. Some Properties of The Exchange and The 
Rotate Matrices 

Let us begin this section by giving some helpful results 
concerning the exchange and rotate matrices. For more 
details see [1,3,8,9,12-21]. 

The exchange matrix nJ  enjoys the following prop-
erties: 
 T 1.J J J    

 
, e

 
ve

, odd
nk

n
n

I k
J

J k


 


n

,

where nI  is the identity matrix of order  .n

  
   

 
1

2
1, if 0 or 1 mod 4

1
1, if 2 or 3 mod 4 .

n n

n

n
J

n

    
 

 

 The matrix product JA  is a version of the matrix 
A  that has been reflected in line at 0 degree to the 

horizontal measured counter-clockwise. 
 The matrix product AJ  is a version of the matrix 

A  that has been reflected in line at 90 degrees to the 
horizontal measured counter-clockwise. 

 The matrix product RJAJ A  is a version of the 
matrix A  that has been rotated counter-clockwise or 
clockwise by 180 degrees. 

Note that the exchange matrix J is equal to the identity 
matrix I but with the columns in reverse order. More pre-
cisely,  1 1, , ,n nJ e e e 

, ,n ij

 where  
 

 1 2, , ,i i i nie     ,
1, 2,i    is the Kronecker symbol which is 

equal to 1 if  and zero if . i j i j
It is also worth mentioned that the matrix J  is some-

times called the counter-identity matrix or contra-identity 
matrix or per-identity matrix or the reflection matrix or 
the reversal matrix. 

Exchange matrices are simple to construct in software 
platforms. For example, to construct 5J  in MAPLE, a 
single line of code can be used as follows: 

n := 5: J := array(1..n,1..n,sparse): for i to n do J[i, n + 
1 - i] := 1 od: Jn := op(J);  

or n := 5: J := matrix(n, n, 0): for i to n do J[i, n + 1 - 
i] := 1 od: Jn := op(J); 

The rotate of ,A  RA  of order  satisfies: n

   .
RRA A  

    T T .
RRA A

1R 

 

 R  provided 1   1 ,A A  A  exists. 

   .
R R RAB A B  

    .R R RA B A B    

 .RA A  

 If irow  of A is  1 2 , 1, , , ,i i i n ina a a a ,  then 1n irow     

of RA  is  , , , , .a a a a, 1 2 1in i n i i  In other words, the  

centrosymmetric matrix A  is the same when read 
backwards as when read forwards. 

3. Centrosymmetric Determinants 

Centrosymmetric determinants take the form: 

1,1 1,2 1,

2,1 2,2 2,

2, 2,2 2,1

1, 1,2 1,1

,

n

n

n

n

a a a

a a a

a a a

a a a




   



              (3) 

in which 

 1 2 , 1, , , ,i i i i n inrow a a a a  ,  

and 

 1 , 1 ,2, , , ,n i in i n i irow a a a a    1 ,  

for each 1, 2, , .
2

n
i

    
  

In particular, centrosymmetric tridiagonal determi-
nants are of special importance. For convenience of the 
reader, we present some definitions, notations and prop-
erties associated with tridiagonal matrices. 

A tridiagonal matrix  takes the form:  
, 1

n

ij i j
T a




1 1

2 2 2

1 1 1

0 0

0 0

0 0
n n n

n n

d a

b d a

T

b d a

b d
  

.

 
 
 
 
 
 
  


 

  
 



       (4) 

These types of matrices frequently appear in many ar-
eas of science and engineering. For example in parallel 
computing, telecommunication system analysis and in 
solving differential equations using finite differences, see 
[22,23]. A general n n  tridiagonal matrix of the form 
(4) can be stored in  memory locations, rather than 

 memory locations for a full matrix, by using three 
vectors 

3n
2n

 1 2 ,a aa , , , na   and  1 2, , , ,nb b bb 
 1 2, , , ndd dd  with 1b a  This is always a 

good habit in computation in order to save memory space. 
To study tridiagonal matrices it is very convenient to 
introduce a vector  in the following way [24]: 

0.n 

c

 1 2, , , ,nc c cc                 (5) 
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where 

1
1 1

1

, , 2k k
k k

k

b a
c d c d k n

c




    ,3, , .     (6) 

It is helpful to restate some important results concern-
ing tridiagonal matrices of the form (4). For more details 
the interested reader may refer to [24-28]. 

Let  and , ,p q r s  are positive integers such that 
 and 1 .  1 p  q n r s n  

Define the submatrix of ,A  denoted  .. , .. ,A p q r s  
of order  by   1 1q p s r    

 

, , 1 ,

1, 1, 1 1,

, , 1 ,

.. , .. .

p r p r p s

p r p r p s

q r q r q s

a a a

a a a
A p q r s

a a a



   



 
 
 
 
 
  




   


    (7) 

In particular, let  1.. ,1.. ,kF A k k   and 1 ,k n 
,k kf F  the leading principal minor of .A  

Theorem 3.1 [24]. Consider 

 
 

1 1 11..1,1..1 ,

1.. ,1.. , 2,3, , .k k

f T d d

f T k k F k n

  

   
        (8) 

Then the determinants in (8) satisfy a three-term re-
currence 

1 1 2 , 1, 2, ,k k k k k kf d f b a f k n      ,

nd 

       (9) 

where the initial values for kf  are 0 1  a 0. f 1f   
Lemma 3.2 [29]. If the 

tri
LU  
en w

factorization of the ma-
x T  in (4) is possible, th e have 

1

.
n

k
k

T c


                  (10) 

where  are given by (6). Meanwhile, the 1 2, , , nc c c
le LU  factDoolitt orization [30] of T  is given by: 

2

1

1

2

1

1 1

2 2

1 1

, whereLU

1 0 0

1

0 0
,

1 0

0 0 1

0 0

0

and 0 .

0 0

n

n

n

n

n n

n

T

b

c

L
b

c

b

c

c a

c a

U

c a

c







 

 
 
 
 
 
   
 
 
 
 
  

 
 
 
 
 
 
  

 

 

  

 




 

   
 
       (11) 

Lemma 3.3 [26]. If n0, 1, 2, , ,rc r    then 

.
1

, 1, 2, ,
i

i k
k

f c i n


               (12) 

Lemma 3.4 [26]. If 0,ic   1 1i n   ,  and either 
0ia   or 1 0,ib    th trix. 

If 
en T  is 

0c
a singular ma

Lemma 3.5 [24]. i   for each 1,2, , 1,i n   
duces to the two- then the three-term recu ce (9) re

term recurrence 
.

rren

1, 1,2, ,i i if c f i n             (13) 

Algorithm 3.1 (DETGTRI [31]). 
The determinant of the matrix in (4) can be computed 

using the following symbolic algorithm. 
INPUT: Order of the matrix and the components, n  

 0 .  
f th

1, , , 1, 2, , ,i i i na d b i n a b 
OUTPUT: The determinant o


e matrix  in (4). 

Step 1: Use (6) to compute the simplest fo
components of the vector 

T
rms of the 

n  c . 
If 0ic   for any i n , set  sym- 

bolic ) and cont o com  in 
term y usin

Step 2: The simplest rational form of the product 

ic t
pute 

 ( t  is just a
 name
s of t  b

inue t
g (6). 

1 2i i n  , , ,c c c

 
n

rc
1r

P t   (this i valu- product s a polynomial in t ) e

ated at 0t   is equal to the determinant of the matrix 
T  in (4), i.e.,  0 .T P  

The cost of the DETGTRI algorithm is  O n . The 
omputer Algebra algorithm is easy to implement in all C

Sy , MATHEMATICA 
an

nal matrix 
gi

0 .

stems (CAS) such as MACSYMA
d MAPLE. 
Lemma 3.6. Consider the tridiago n

ven by: 
T  

1 1 0 0d a

2 2 2

0n

b d a

T

1 1 1

0 0
n n n

n nb d
  b d a

 
 
 
 
 
 
  



  

 
 

 


        (14) 

sp
Let ,nS  nU  and nV  be n n  matrices defined re-
ectively as follows: 

1 1

and ,
n n n nd d k a ka

b
V T

   


      (15) 

,T U T 

n n

n n n n

n n b k

S



where k  is a scalar quantity. Then by applying the 
DETGTRI algorithm, we see that: 

1 ,nS T k T                     (16) n n

  1 21 ,n n n n n nU V T k b a T          (1 ) 7

having used (12) and (13). 

Let  
, 1

n

ij i j
A a


  is an  centrosymmetric ma-  

trix, then the three following facts are useful when we 

 n n
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deal with such matrices: 
Fact (1): If  then 

In other words, the centrosymmetric matrix 

 1 2 , 1, , , , ,i i i i n inrow a a a a 

 1 .i  1 , 1 2, , , ,n i in i n irow a a a a   

A  is the 
same when read backwards as when read forwards. 

 (2)Fact : If 2n m is posi even number, then  tive  

1

1
,

2
m m

m m

I I
Q

J J

 
   

 

is orthogonal. 
Fact (3): If is positive odd number then 2 1n m   

2

0
1

mI I 


0
2

0

m

m m

Q

J J


 

  

facts, we may formulate the 
fo ng result wh  will

can be written rm: 

   (18) 

y: 

2 0 ,  

is orthogonal. 
Armed with the above 
llowi ose proof  be omitted.  

Theorem 3.7. Let  
, 1

n

ij i j
R r


  be an n n  of even 

or 2 ,m  thender say n  in the fo R  

TQ1 1 ,
A JBJ A JB

R Q
B JAJ A JB

   
       

 

where , .m mA B   
nThe determi he matrix R  in (18) is given bant of t

.R A JB A JB               (19) 

,If n  is odd, i.e., n 2 1m   t ave: hen we h

T T

T T
2 22 0 ,Q q Q  
 

u

2 0

0 0

BJ

J

B J JAJ

A JB

A

 
  
  

 
 

  

u
v

v       (20) 

w

The determinant of the matrix in (20) is given by 

A Jv
R q u

JB

here , ,m mA B  1  and .q   , mu v 
R  

T

2
.

2

A JB
R A

q


 

v

u
 JB         (21) 

Concerning the inverse of centrosymmet
the reader may refer to [8]. 

As an interesting special case of the Theorem 3.7, we 
give the following result. 

Corollary 3.8. In Theorem 3.7, if R = T  is centro-
tric tridiagon matrix, th ave 

ric matrices 

n

symme al en we h

 

2 22
1 , if 2 ,m mT k T n m

  

1 1 1 , if
n

m m m m m

T
T T b a T  

 
2 1.n m  

 

where k is the common value of the elements in positions 
(m

centrosymmetric tridiagonal 
de

, m+1) and (m+1, m) of the matrix R = Tn when n = 2m. 
Proof. To compute the 
terminant of order .n  Two cases will be considered: 
Case (1): 2 .n m  In this case, the centrosymmetric 

tri
 

diagonal matrix takes the form: 

1 1

2 2 2

0 0

b d a

1 1 1

2

2 2 2

1 1

0 0 0 0

0 0

0 0 0

0

0 0 0 0

m m

m m
n m

d a

b d a

b d k
T T

k

a

a d b

a d

  

 
 

1 1 1

0 0

m

m m md b  

0

0 0
.

0md b

m

 
 
 
 
 
  
 
 
 
 
 
 
  

  
  

 
 
 

 

  
  

 

Applying Theorem 3.7, we have 


  



                     (22) 


  



2 ,n mT T L M   where 
 

1 1

2 2 2

1 1 1

0 0

0 0

0 0
m m m

m m

d a

b d a

L A JB

b d a

b d k
  

 
 
 
   
 
 
  


 

  
 



 

 

and 
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.

By using Lemma 3.6, we obtain 

1 1

2 2 2

1 1 1

0 0

0 0

0 0
m m m

m m

d a

b d a

M A JB

b d a

b d k
  

 
 
 
   
 
 
  


 

  
 



 

and 

1m mL T k T    

1 .m mM T k T    

Therefore we get 

2

2 22
1 .k T 

          (23) 
n m

m m

T T L M

T

 



Case (2): .2 1n m   In this case, the centrosym- 
metric tridiagonal matrix takes the form: 

 

1 1

2 2 2

1 1 1

2 1 1 1 1

1 1 1

2 2 2

1 1

0 0 0 0 0

0 0



0

0 0 0 0

.0 0 0 0

0 0 0 0

0

0 0

0 0 0 0 0

m m m

m m m

n m m m m

m m m

m m m

d a

b d a

b d a

b d a

T T b d b

a d b

a d b

a d b

a d

  

   

  

 
 
 




 
 
 

   
 
 
 
 
 
 
 
 

  
    

  
   

  
  
  

   
   

    
  

              (24) 

 
Applying Theorem 3.7, we obtain 2 1 ,n mT T L M   here 

 

1 1

2 2 2

0 0

0 0

0 0

m

m m

d a

b d a

A JB A T

1 1 1m m mb d a

b d
  

L
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1 1

2 2 2

T

1 1

0 0

2 0 0 .
2 2

0 0 2

m m m

m m

d a

b d a
A JB

M
q b d a

b d 

 
 
            
 
 

v

u


 

  

 



 

 
By using Lemma 3.6, we obtain mL T  and 

 

1 1

2 2 2

T

1 1

0 0

2 0 0 .
2 2

0 0 2

m m

m m

d a

b d a
A JB

m
q b d a

b d 


 

v

u


 


 



 

 
By using the DETGTRI algorithm [31] together with (12) and (13), then we have 

M  
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1 1 1 1

2 2 2 2 2 2

1 1 1 1

1 1
1 2 1 1 1 1

1 1 1 1 1 1 1

0 0 0 0

0 0 0 0

2

0 0 0 0 2

2

.

m m m m m m

m m m m

m m m m
m m m m m m m m

m m

m m
m m m m m m m m m m m

m m

d a d a

b d a b d a

M

b d a b d a

b d b d

b a b a
c c c T T d T c

c c

T T
c T b a T b a T b a T

c c

 

   

 
   

      

 

  
       

  

     

 
   

     
   

 

  




 

Therefore 

 
2 1

1 1m m mT T b a   1 .

n m

m m

T T

T






       (25) 

From (23) and (25), we see that in order to compute 
the determinant of a centrosymmetric tridiagonal matrix  
of order , then all we need is to compute 

if  and  if 

4. Algorithms for Solving Centrosymmetric 
Linear Systems 

Solving linear systems practically dominates scientific 
computing. In the present section, we focus on solving 
linear systems of centrosymmetric type. Two cases will 
be considered: 

Case (i): n

n m
1 2, , , mc c c  

.  2 1 2 1, , , mc c c  2 1n m 

2 .n m  For this case we are going to con-
struct an algorithm for solving centrosymmetric linear 
systems of the form: 

 

11 12 1, 1, 1 1,2 1 1,2

21 22 2, 2, 1 2,2 1 2,2

1 2 , , 1 ,2 1 ,2

,2 ,2 1 , 1 , ,2 ,1

2,2 2,2 1 2, 1 2, 22 21

1,2 1,2 1 1, 1 1, 12 11

m m m m

m m m m

m m m m m m m m m m

m m m m m m m m m m

m m m m

m m m m

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 

 

 

 

 

 





 
 

 
 

       
 
 

1 1

2 2

2 1 2 1

2 2

.m m

m m

m m

x b

x b

x b

x b

x b
 



       

    
    
    
    
         
    
    
    
         



 
 


             (26) 

 

Block multiplication is particularly useful when there are patterns in the matrices to be multi . Therefore it is 
convenient to rewrite (26) in the partitioned form 
 

plied

1 1

2 2

,
A JBJ X B
B JAJ X B

     
     

      
                                                (27) 

w







 and .
 

The system in (26) can also be written in matrix form 
as follows: 

                 (28) 

where 

here 

11 12 1, , 1

21 22

1, 1

m m m

m

a a a a

a a
A B

  

 
 

 

   

,2 ,2 1m m m ma a

2,ma 


2,2 2,2 1 2, 1

1,2 1,2 1

,
m m m

m m

a a a

a a a
 



 
 
 
 
  

   



 

1 2 ,m m m ma a a
 
  

 

 1 1 2, ,X x x 
 

T 2 1, ,m mx X x  T2 2, , , ,m mx x   

 T1 1 2, , , mB b b b   T2 1 2 2, , ,m m mB b b b    

,R x b  

 2

, 1

m

ij i j
R a


  is the coefficient matrix of the sys-  

tem (26),  and    T1 2 2, , , mx x xx   T1 2 2, , , mb b bb 
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is the constant vector. 
Algorithm 4.1. An algorithm for solving centrosym-

metric linear system of even order. 
To solve the linear system of the form (26), we may 

proceed as follows: 
INPUT: The entries of the coefficient matrix  and 

the constant vector  in (28). 
OUTPUT: Solution vector 
Step 1: Construct the 

R

T
b

 1 2 2, , , mx x xx  . 
m m  matrices ,P  Q  and 

the m-vectors  and llows: 



.

Step 2: Compute

b̂ b  as fo

,2 1 , 1
,ij i m j i j

P A JB a a   
       

m

m

,2 1 , 1
,ij i m j i j

Q A J B a a   
       

 T

1 2 2 2 1 1
ˆ , , ,m m m mb b b b b b    b   

and 

 T1 2 2 2 1 1, , ,m m m mb b b b b b    b   

 .R P Q  If 0R   then Ex-
iterror(‘No solutions’) end if. 

Step 3: Solve the two linear systems: 
ˆ,P y b

, ,z z

 and  for  and  

ectively. 

Step 4: The solution vector  is 
ven by 

,Q z b
T

 resp

 T1 2, , , my y yy 

 1 2 , mzz 

 T1 2 2, , , mx x xx 
gi

 


2
1

i i

ix

y

 


 

2 1 2 1

1
if 1, 2, , ,

2 m i m i

y z i m

z   

  






Algorithm 4
gorithm. 

putation  of the CENTRO

SYMM-I algorithm: 
 The time complexity of Step 1 is  

if 1, 2, , 2 .i m m m   

The .1, will be refereed to as CENTRO-
SYMM-I al

al cost - Concerning the com

 

2 2

2
2

2 2

2 2 2 2
2 2

1 1

2 2

m m m m

n n
m m

n n n O n

  

     
 

   

   

( 21

2
n n  additions/subtractions and no multiplica-  

 The time complexity of Step 3 depends on the solvers 
of the two linear systems. For example, tridiagonal 

tions/subtractions and  multiplicatio
Step 3 is the step that leads to the reduction of the time 

complexity, because instead of solving a linear system of 
equations, we end up with two linear systems half the 

size of the original one. If th  original system is solved 
with Gaussian elimination (GE) method, then the time  

complexity will be 

tions/divisions). 

linear systems can be solved in linear time (see [25]). 
 The time complexity of Step 4 is  O n  ( n  addi-

n ns). 

n  
e

 3 22

3
n O n . But, if GE method is  

used to solve th  two systems in the third step, then the 
time complexity of our algorithm will be  

e

   3 2 34 1 2

6
m O m n O n   , 

ethod more effi-
ci n the time com
ity of our a  will b see also [16]). 

Case (ii): 

3

wh  significant reduction. ich is a If a m
ent than the GE method is used, the plex-

lgorithm e less (
2 1.mn    In this case the linear system 

to




 be considered has the form: 
 

11 12 1, 1, 1m ma a a a a 


1, 2 1,2 1,2 1

2 2,2 2,2 1

1 2 , 2 ,2 ,2 1

1, 1, 1 1,

,2 , ,

m m m

m m m

m m m m m m m

m m m m m m

m

a a

a a

a a

a a a

a



 

  

   






        




1 1

2 2

2,2 1 2,2 2, 2, 1 2, 22 21 2 1 2 1

1,2 1 1,2 1, 2 1, 1 1, 12 11

m m m m m m m

m m m m m

x b

x b

a a a a a a a x b

a a a a a a a
    

  

21 22 2, 2, 1 2,m ma a a a a

, 1 ,

2

m m m m ma a a a a

a a



1,1 1,m m  1,2 1,1

,2 ,

m m

m m

a a

a a
 


1 1

1

,m mx b 

,2 1 , 2 1m m m m m m m m ma a a a 

2 2m mx b

2

                                                   
 
 

 

 
  

 
 

     

          (29) 

 
or equivalently, 
 

1 1
T T

1 1

2 2

,m m

A JBJ X B

q J x b

B J JAJ X B
 

    
    

    
    
    

v
u u

v
 







                                  (30) 
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w





 

here 
 

11 12 1, ,2 1

21 22 2,

2,2 1

1 2 , 1,2 1

m m m

m

m

m m m m m

a a a a

a a a
A B

a

a a a a







  
  
   
  
  
    


 

   


,2 , 2m m m ma a  



  

2,2 2, 2

,
m ma a  

 

1,2 1, 2m ma a  

T

1, 1 2, 1 , 1, , , ,m m m ma a a     v   m

T

1,1 1,2 1,, , ,m m ma a a   ,   u   1, 1 ,m mq a       

 

 T1 1 2, , , ,mX x x x   2 2 ,m mX x x 
 

 T1 1 2, , , mB b b b  and 2 2 ,mB b b

T2 1, ,mx   

T, .b  

3 ,

3 ,m 2 1m

metric linear system of odd ord
 

The linear system (30) can also be written as: 

,R x b                     (31) 

where is the coefficient matrix of the sys-  

tem (29),  

 and 

is the constant vector. 
Algorithm 4.2. An algorithm for solving centrosym-  

er 
To solve the linear system of the form (29), we may 

proceed as follows: 
INPUT: The entries of the coefficient matrix R and 

the constant vector  in (31). 

OUTPUT: Solution vector 

Step 1: Construct the matrices  of orders 

 2 1

, 1

m

ij i j
R a




  

 T1 2 2 1, , , mx x x x   T1 2 2 1, , , mb b b b   

b

 T1 2 2 1, , , mx x x x  . 

,P  Q
1m   and respectively and the 

ensi
m  

ons 
vectors b̂  and b  

of dim 1m   and resp llows: 
 

m

m









 



d 

.

Step 2: Compute 

m  ectively as fo

1,1 1,2 1 1,2 1,2 1, 1, 2 1, 1

2,1 2,2 1 2,2 2,2 2, 2, 2 2, 1

T

,1 ,2 1 ,2 ,2 , , 2 , 1

1,1 1,2 1, 1, 1

2

2
2

,

2

m m m m

m m m m

m m m m m m m m m m m m

m m m m m m

a a a a a a a

a a a a a a a
A JB

P
q

a a a a a a a

a a a a

 

 

 

   

   
                
  

v
u




    



 

,2 2 , 1
,

m

ij i m j i j
Q A JB a a   

       

 T1 2 1 2 2 2 1
ˆ , , , ,m m m m mb b b b b b b    b   

an

 T1 2 1 2 2 2, , ,m m m mb b b b b b    b   

 then Ex-  

iterror(“N
Step 3

,R P Q

o solutions”) end if. 
: Solve the two linear systems ˆ,P y b  and 

,Q z b

 If 0R 

 for  

 and 

respectively. 
Step 4: The solution vector  is 

given by 
 

 T1 2 1, , , ,m my y y y y   T1 2, , , mz z zz   

 T1 2 2 1, , , mx x x x 

 

 
1

2 2 2 2

1
if 1,2, , ,

2
if 1,

1
if 2, 3, , 2 1.

2

i i

i m

m i m i

y z i m

x y i m

y z i m m m



   

  


  

     






 

The Algorithm will be refereed to as CENTRO-
SYMM-II algorithm. 

Concerning the computational cost of the CENTRO-

SYMM-II rithm: 

 The time complexity of Step 1 is 

 
algo

 21

2
n O n . 
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 The time complexity of Step 3 depends on the solvers 
of the two linear systems. 

 see also 
[16]). 

It may be convenient to fi
owing result

 4.1. Let  be a non-singular  

centrosymmetric square m f order  Consider the 
four linear systems of cen e: 

The time complexity of Step 4 is  O n  (

nish this section by giving 
the foll , whose proof will be omitted. 

Theorem  
, 1

n

ij i j
A a




atrix o
trosymmetric typ

.n

,A bx                     (32) 

,AJ bx                     (33) 

JA bx                      (34) 

and 

.RA bx                     (35) 

Then the two linear systems (32) and (35) are equiva-
nt. The same is true for the linear systems (33) and (34). 

Moreover, if the common solution of t  systems (32) 
and (35) is  then th olu-  

tion of the sy  .

omputer Program 

In this section, we are going to introduce a MAPLE pro-
ce trosymmetric linear sy
n ure is base  the 

MM-I and CENTROSYMM-II Algorithms. 
restart: 
centrosymm:=proc(R::array,f::vector,n::posint) 

local i, r,m,f1,f2,A,Jm,J,H,y,x,B,Y,Z,X: 
global xsoln,detR,detP,detQ,P,Q; 
X:= vector(n): m:=floor(n/2): J:=array(1..m, 1..m, 

arse): 

 is even 
NTROSYMM-I Algorithm. 

..n,1..m

NTROSYM

f2[i]:=f[i]-f[2*m+1-i]; 
od; 

(1..m): 

o 
i]); 

[i

xsoln:=simplify([seq(X[r],r=1..n)]): 
else 

Case(2): n is odd 
Step 1 in CENTROSYM -II Algorithm. 

B:= linalg[submatrix](R,m+ ): 
H := evalm( A + evalm(J&*B)): 
y:=linalg[submatrix](R,1..m,m+1..m+1): 
x:=linalg[submatrix](R,m+1..m+1,1..m): 

](2,2,[H,2*y,x,[2]]):op(P); 

rithm
nalg[det](P): detQ:=linalg[det](Q): detR:= 

detP *detQ: 
tR = 0 then ERROR("Singular Matrix !!!!") 

MM-II Algorithm
1:=array(1..m+1): f2:=array(1..m): 

for i to m do 
f1[i]:=f[i]+f[2*m+2-i]; 
f2[i]:=f[i]-f[2*m+2-i]; 

od; 
f1[m+1]:=f[m+1]; 
Y:=array(1..m+1): 
Y:= linalg[linsolve](P,f1): Z:=linalg[linsolve] 
(Q,f2): 

Step 4 in CENT
for i to m do 

X[i]:=1/2*(Y[i]+
od; 
X[m+1]:=Y[m+1]
for i from m+2 to n do 

X[i]:=1/2*(Y[n+1
od; 

All results in this section are obtained with the help of 
symm. 

le
he
e common s T

1 2, , , ,nk k kx   

stems (33) and (34) is  T

1 1, , ,n nk k kx   

5. C

dure for solving cen stems (26) 
d (29). This proced d on CENTRO-a

SY
>

sp
for i to m do J[m+1-i,i]:=1 od: 
A:= linalg[submatrix](R,1..m,1..m): 
if n=2*m then 

#  Case(1): n
#  Step 1 in CE

#  

B:= linalg[submatrix](R,m+1 ): 
P:=evalm( A + evalm(J&*B)): 
Q:=evalm( A - evalm(J&*B)): 
#  Step 2 in CENTROSYMM-I Algorithm. 
detP:=linalg[det](P): detQ:=linalg[det](Q): 
detR:=detP *detQ: 
if detR = 0 then ERROR("Singular Matrix !!!! ") 
fi; 
#  Step 3 in CE M-I Algorithm. 
f1:=array(1..m): f2:=array(1..m): 
for i to m do 

f1[i]:=f[i]+f[2*m+1-i]; 

Y:=array(1..m): Z:=array
Y:= linalg[linsolve](P,f1): Z:=linalg[linsolve] 
(Q,f2): 
#  Step 4 in CENTROSYMM-I Algorithm. 
for i to m d

X[i]:=1/2*(Y[i]+Z[
od; 
for i from m+1 to n do 

X ]:=1/2*(Y[n+1-i]-Z[n+1-i]); 
od; 

# #  
#  M

2..n,1..m

P:=linalg[blockmatrix
Q:=evalm( A - evalm(J&*B)): 
#  Step 2 in CENTROSYMM-II Algo . 
detP:=li

if de
fi; 
#  Step 3 in CENTROSY . 
f

#  ROSYMM-II Algorithm. 

Z[i]); 

; 

-i]-Z[n+1-i]); 

xsoln:=simplify([seq(X[r],r=1..n)]); 
fi: 

end proc: 

6. Illustrative Examples 

the MAPLE procedure centro
Example 6.1. Solve the centrosymmetric linear system           
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3 1 1 0 4 1

2 1 3 4 2 1

1 0 2 2


    
 

1


22 x 11

31 x


9

41 x 16

5

1
 .

6x


9

7

8

3

1

x

x



4

92 x  2

10x  6

3 2 3 1

1 0 3

3 3 2 1 3

4 2 3 1

3 2 1 1 3

1 2 1

4 3 3

1 2 3 3 2 2 0

1 1 2 4 3 1

2 3 1 4 0 1 1 3

 


 






    

  

7

x  1 
  
  

3 3 3 4 1
 

 

  
  

1 1 2 1  0 x 6
  
  
    

0 3 1 1 2 3

1 1 3 2 4 1

   


   

  
  
1 3  

2 3 0

1 3 

  
  
   

 
Soluti
Here  centrosymm, we ge

 

on: 
ocedure10n   and 5.m   Using the pr t the following results: 

4 4 3 3 5  
4 2 3 3 3

2 3P

   
 ,  3 0 6

4 2 0 2 3
 
 

0 3

2

1 4 1 0 5  



2 2 1 3

0 4 3

1

4 6

1 2 3 2

Q

 3

5 1

 
   

,4 0


 
6 5

1

 
 


 

 
   

 

 and  Tˆ 5,13,16, 20,15b  T
7,9, 2,12, 3 ,  b   730912.R P Q     

 

The so



 
  

and 


 


 
 
 
  

are  and 

Therefore, we have 

lutions of the systems 

14 4 3 3 5 y     

24 2 3 3 3 13y          
 32 3 3 0 6 16

2 3 20

y

y

   
    

 

4

5

5

15y
 
 

4 2 0
1 4 1 0 5    

12 2 1 3 3 z   

20 4 3 5 1 9z      
3

4

5

7

0 3 1 4 0 2

12

1 2 3 2 1 3

z

z

z

 

    
 
 
      

 

2 4 6 6 5


 




 T2,1, 1, 2,2 y  T0, 1, 1,0, 2 .   z  

 1 1 1

1
1,

2
x y z    2,=)(

2

1
= 556 zyx   

 2 2 2

1
0,

2
x y z     7 4 4

1
1,

2
x y z    

 3 3 3

1
1,

2
x y z      8 3 3

1
0,

2
x y z    

 4

1
1,x y z  4 42

    9 2 22

1
1,y z    x

 5 5 5

1
0,

2
x y z     10 1 1

1

2
x y z  1.  

e solution vector is 



Hence th

1,0, 1,1,0, 2 x T
,1,0,1,1 .  

Example 6.2. Solve the centrosymmetric linear system 

12 1 0 0 0 0 0 0 0 0 0 x  
  

2

2

3

4

5

6

7

8

9

10

11

1 2 1 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0

0 0 1 2 1 0 0 0 0 0 0

0 0 0 1 2 1 0 0 0 0 0

0 0 0 0 1 2 1 0 0 0 0

0 0 0 0 0 1 2 1 0 0 0

0 0 0 0 0 0 1 2 1 0 0

0 0 0 0 0 0 0 1 2 1 0

0 0 0 0 0 0 0 0 1 2 1

0 0 0 0 0 0 0 0 0 1 2

x

x

x

x

x

x

x

x

x

x

  
 
 
 
 
 
 
 
 
 
 
 
 
 

   

1

1

3

4

.3

1

1

3

4

3

 
 
 

  
  
  
  
  
  

  
  
  
  
  
  
  

 

 

Solution: Here 11n   and  Using the proce- 
dure centrosymm, we obtain the following results: 

5.m 
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2 1 0 0 0 0

0 0

0 1 2 1 0 0
,

0 0 1 2 1 0

0 0 0 1 2 2

0 0 0 0 1 2

P

 

  
 
 
 
  

 

1 2 1 0 
 

1 2 1 0 0 
 

 2 1 0 0 0

,0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

Q

 

 
 
 
  

 

 Tˆ 5,5,4,4,5,3b  and  T1, 3, 2,2,3 ,   b  

12.R P Q    

The solutions of the systems 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
  

1

2

3

4

5

6

5

1 2 1 0 0 0 5

0 1 2 1 0 0 4

0 0 1 2 1 0 4

0 0 0 1 2 2 5

0 0 0 0 1 2 3

y

y

y

y

y

y

 
  
  
  

  
  
  
  

      

 

2 1 0 0 0 0

and 

1

2

3

4

5

2 1 0 0 0 1

1 2 1 0 0 3

0 1 2 1 0 2

0 0 1 2 1 2

0 0 0 1 2 3

z

z

z

z

z

  
     
    
  
  
     

 

are and z T2,1,1,1,1,1y   T0, 1, 1,1,1 .    

Therefore, we get 

 1 1 1

1
1,

2
x y z     7 5 5

1
0,

2
x y z    

 2 2 2

1
0,

2
x y z     8 4 4

1
0.

2
x y z    

 3 3 3

1
0,

2
x y z     9 3 3

1
1.

2
x y z    

 4 4 4

1
1,

2
x y z     10 2 2

1
1.

2
x y z    

 5 5 5

1
1,

2
x y z     11 1 1

1
1.

2
x y z    

6 6 1,x y   

Hence the solution vector is  

Example 6.3. Solve the centrosymmetric linear system 

 T1,0,0,1,1,1,0,0,1,1,1 .x  

1

2

3

4

5

6

7

8

9

10

1 0 1 2 3 2 1 0 4 1 1

3 1 2 2

3 2 1 0 1 2 1 1 3 4 1

4 3 2 1 0 1 3 4 0 1

5 4 3 0 1 2 4 5 1 3

3 1 5 2 1 2 3 4 5

1 0 4 3 1 0 1 2 3 4

4 3 1 1 2 1 0 1 2 3

2 1 3 1 6 6 1 3 1 2

1 4 0 1 2 3 2 1 0 1

x

x

x

x

x

x

x

x

x

x

2 1 3 1 6 6 1

2

    
     
 
  
  
  
   
  
  
  

   
      
      

3

0
.

3

1

1

4

3


 




 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Solution: 
Here 10n   and 5.m   Using the procedure cen-

trosymm, we obtain the following results: 
Error Singular Matrix !!!! This means that the given 

system has no solutions. 
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