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ABSTRACT 

For a correspondence in question we establish a sequence of fundamental geometrical objects of the correspondence 
and find invariant normalizations of the first and second orders of all hupersurfaces under the correspondence. We sin- 
gle out main tensors of the correspondence and establish a connection between the geometry of point correspondences 
between n + 1 hypersurfaces of projective spaces and the theory of multidimensional (n + 1)-webs. 
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1. Introduction 

Differentional geometry of point correspondences be- 
tween projective, affine and euclid spaces of equal di- 
mensions were studied and were studing by scientists till 
1920. One can finds the analysis of obtained results to 
1964 in the paper [1] by Ryzhkov. 

Among all papers devoted to the theory of point cor- 
respondences between two three-dimensional spaces we 
must note papers [2] written by Svec, [3] written by Mur- 
racchini, [4] written by Mihailescu and [5] by Vranceanu. 
They introduce characteristic directions of point corres- 
pondences, consider some special classes of correspond- 
ences, show connections of point correspondences between 
spaces with different parts of differentional geometry. 

Properties of point correspondences between n-dimen- 
sional projective, affine and euclid spaces are studied by 
Ryzhkov [6], Sokolova [7] and Pavljuchenko [8]. 

A straight line  passing through the point  0 ,nM M
 







0,M


n

 is called a first order normal of a hypersurface of 

-dimensional projective space in the point 0,M


 if the  

straight line has no other points with the tangent hyper- 
plane of the hupersurface [9]. We call a -dimen- 
sional plane as the second order normal of the hypersur-  

 1n  

face in the point 0,M


 if the tangent hyperplane of the  

hypersurface in the point 0M


 includes this  1n  -  

dimensional plane and this  -dimensional plane  1n 
does not pass through the point 0M


It is known that the main problem of nonmetric dif- 

ferentional geometry of a surface is a construction of 
invariant normalization of this surface. To construct an 
invariant first normal in a point of a surface it is 
necessary to use third-order differential neighbourhood 
of the point [10]. In our previous papers we showed that 
to construct an invariant first normal in points of two 
surfaces under point correspondences it is sufficient to 
use a second-order differential neighbourhood of corre- 
sponding points, but to construct an invariant second 
normal in points of two surfaces under point corre- 
spondences it is necessary to use third-order differential 
neighbourhood of the point. 

. 

In the current paper we will find invariant normali- 
zations of the first and second orders of all hupersurfaces 
under the correspondence. 

There exists a connection between the geometry of 
point correspondences between three spaces or surfaces 
and the theory of multidimensional 3-webs (Akivis [11]). 
We showed it in papers [12,13], devoted point corre- 
spondences between three projective spaces and between 
three hupersurfaces of projective spaces. 

The theory of of multidimensional (n + 1)-webs is con- 
structed in the paper [14] by Goldberg. In the current 
paper we will consider a connection between the geo- 
metry of point correspondences between 1n   hyper- 
surfaces of projective spaces and the theory of multi- 
dimensional (n + 1)-webs. 
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In the way of the investigation we use the exterior 
differentiation, tensor analysis and G.F.Laptev invariant 
methods [15]. 

2. Main Equations of Correspondence, the  
Sequence of Main Geometrical Objects 

Let us consider n + 1 smooth hypersurfaces 1n nV P
    

 , , 0,1, 2,3, ,n    
:C V


n

 of projective spaces and a point 
correspondence  between these 
hypersurfaces. 

1 0
n n

n
V V  

Let 0M


 be corresponding points of hypersurfaces  

nV


. A correspondence 
1 0

: n n
n

C V V V n    generates 

 families point subcorrespondences  3
1nC 

: n
n

C V V V
  

 

: n nT V V
  



n

n

 obtained by fixation of n  2 corres- 

ponding points and generates  point mappings 

 by fixation of n1 corresponding points. 

2
1nC 

Mappings  must be regular in neigh- 

bourhoods of points under correspondences of surfaces 

: nT V V
  



nV


,  and have the inverse mappings. nV


We will assume, that surfaces nV


 belong to different 

projective spaces nP


. The geometry of correspondences  

under consideration will be studied according to the 
transformation group, which is a direct product of pro-  
jective transformation groups of spaces nP


. 

With any point 0 nM V
 

  we associate a projective 

moving frame consisting of the point 0M


 points iM


 

 of the tangent hyperplane of the 

hypersurface 

 , , , 1, 2,i j k 

nV

, n


 in the point 0M


 and a point 1nM

   

outside the tangent hyperplane. 
The equations of infinitesimal displacement of our  

projective frames  have the form:  0, ,i nM M M
    1

v



,v
u ud M M

 
                (1) 

where   , , 0,1, , 1u v w n   v
u

  are 1-forms contain-  

ing parameters, on which the family of frames in 
question depends, and their differentials. The forms v

u
  

satisfy the structural equations of projective space: 

.v w
u ud

  

v
w     

We can write equations of hypersurfaces nV


 as 

follows: 
1

0 0.n


                    (2) 

The Pfaffian forms 0
i


  define displacements of cor- 

responding points 0M


 of hypersurfaces nV


. It follows 

that the forms 0
i


  satisfy the following linear relations: 

0 0 0
0 0 1 1

0.i j i j i j
j j j

n n
t t t                (3) 

Since for const   forms 0
i


  are linearly inde- 

pendent, therefore the following conditions are true: 

det 0.i
jt


  

We can transform all frames of projective spaces in  

points 0M


 by setting j
i i jM t M

 
 . For new frames 

 nM M M
 0, ,i 


1 0

j we will have 0 .i i
jt

  
  

0
i



 By Equa- 

tions (3) relations between forms   take the simplest  

case. Let us suppose that necessary transformations of 
frames are done and we can write relations between  

forms 0
i


  of frames  0, ,i nM M M

   1  as follows 

0 0 0
0 1

0.i i i

n
                  (4) 

Geometrically Equations (4) mean that frames in points  

0M


 of spaces 1nP
   are chosen so that directions in 

points 0M


, 0M


 are corresponding by mappings T


. 

To find equations of a mapping  we fix  : nT V V
  

 n

points 0M


, where ,   . Using Equations (2), (4), 

we have 
1 1

0 0 0 00, 0, 0.n n i i

   
                (5) 

Consider projective mappings K


, where 

0 0 1, ,i i n nK M M K M M K M M
         1.     

By Equations (1), (5) the following relations satisfy 
projective mappings: 

0 0 1 ,0K d M d M M
   

   

where 1
 —a quantity of the first order according to 

v
u

 . The projective mapping K


:T V

 has a first order tan- 

gency with the mapping  in correspond- 0 n V
  

 n

ing points 0,M


 0.M


 

Open Access                                                                                             AM 



V. S. BOLODURIN 16 

Equation re ms (2), (4) a ain equations of our problem. 
With the help of exterior differentiation of these equa- 
tions and applying Cartan’s lemma we obtain 

1
0 0

0
, ,n j i i i k

i ij j j jk    
               (6) 

where ,ij ji 
   ,i i

jk k  j   0
0,

i i i
j j j  

    



  

 , ,  1,2,3,  , .n  

0 0
i j

ij   
   

urfaces .nV


 

Note that quadratic forms  are asymp- 

to

ave equations of  
ma

tic quadratic forms of hypers

Now in the family of frames we h
pping 

0
T


 in the way 

1 1 1
0 0

0 0

1
0 0 0

00 0

, 0

0, 0, ,

n j j n
i ij

n i i i i i
j j jk

    

 

  0, n
ij i   

0

,

k

 
    

  



 

     
 


   (7) 

and similar for T


 

1n  1 1
0 0 0

1
0 0 0

, , 0

0, 0, .

j n j n
i ij i ij

n i i i i i
j j jk

      

    

    

0

,

k


    

 



 

     
 

 
    (7’) 

where  and   2i i i i
jk jk jk jk   

       i i
jk k  j   . 

To c ions (6 xteontinue the system of Equat ) we use e - 
rior

0
i l

 differentiation of these equations and Cartan’s 
lemma. We obtain new equations: 

 0 1
0 1

n k
jk jk n ijk  

    

 
0

0 0 0
( ) ( ) ( )

0

1
0 0 1

,

2

.

i i i i
jk k j k j k j

i i
jk n jk jkl

n

   

   

    



       

     


   

  

 


   

   (8) 

To write these equations we used operators   and  

 . Operator   is defined by forms 
0

i
j  and we have 

0 0 0
,l l ii i i i l

jk jk lk jl jkj k l           d 

and similarly operators   are defined by forms .i
j

  

Quantities ijk
  are symmetric with respect he to t

indices i, j an for quantities id k, jkl
  some additional 

finite conditions are true. 

The system of quantities , i
jk j  k   define the geo-  

m

If we continue Equations (8), we obtain the system of 
di

3. Characteristic Directions of Point  

Le   If frames are 

etrical object according to G.F.Laptev invariant me- 
thods [15]. This object is the fundamental geometrical 
object of second order of point correspondence 

1 0
: n n n

n
C V V V   . 

fferentional equations of a sequence of fundamental 
geometrical objects of point correspondence under con- 
sideration 

, , ,i i
jk jk jkl  

     

Correspondences 

t us consider a mapping : .n nT V V
  



fixed in corresponding points of hypersurfaces ,nV


 

,nV  then the object i

 jk
  define the quadratic trans  

on of tangent direc s of hypersurfaces 

0 0 0.
i i i j k

jk   

for-

mati tion

      

In geometry of point correspondences [1] directions 
are said to be characteristic if they are invariant accord- 
ing to these quadratic transformations. They must satisfy 
a system of equations 

 0 0 0.
i j k i
jk   

                  (9) 

A geodesic curve of hypersurfa

w

ce ,V  connected  n

ith the family of first order normals, is called a curve, 
whose 2-dimensional osculant plane passes through cor- 
responding first order normals of hypersurface in every  

point (see for exsample [9]). If Pfaffian forms i


  define 

a tangent direction to a curve   in a point 0,M


 then 

relations 
i i

  
     

are the condition of the geometrical second order tan- 
gency of the curve   and a geodesic curve having the  
same tangent direction in this point 0M


. 

Characteristic directions have the lo fol wing property. 
If a curve nV


  and a geodesic curve have second 

order tangen g a characteristic direction in the point 
,o n

cy alon
M V
 

  then the image   nT V
 

  of the curve 

n nV V
 

  has the similar property in the point 

o

under :T


nM V
 

  by the corresponding characteristic direction. 

 from Equations (7,) (7’), (9) and relations 

0 0.
i i i j k

jk 

It follows

    
        

From geometric meaning of characteristic directions it 
is
no

 clear, that they depend on the choice of first order 
rmals of a hypersurface and do not depend on the 
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choice of second order normals. 
We can rewrite Equations (9) in this way 

[ ]l i j k
0 0 0 0.jk   

      

We obtained equations of cubic c nes. Characteristic 
directions are common generatrices of these cones. 

o

Let us assume, that any direction 0
i


  in a point 0M



aces

 

by some choice of a first order norm n hypersurf  

n

al o
V


 is characteristic for a mapping n nV
  

 . T

last equations must be sutisfied itudes 

0

:T V

for a

hen 

the 
i

ny magn


 . Therefore, the followin

sim

g conditions are true for 

illar correspondences 
[ ]
(m j

 ) 0.l i
k

   

After calculations we get the relations: 

 
      1

,
1

i i l i l
j kjk lk ljn  

     


         (10) 

where 

1
,

1
i i l i l
jk j lk k ljn  

     


  . 

Theorem 1. If any direction 0
i


  in a point 0M



es 

 by 

any choice of first order normal n hypersurfac nVs o


  

is characteristic for a mapping : n nT V V
  

 , then   for

1n   hypersurfaces nV


 degene perplanes  rate into hy

and t e b
Really, let conditions of the th

he correspondenc ecomes Godeux’s homography. 
eorem be true in corres-  

ponding points 0M
 n of all hypersurfaces V


 accord- 

ing to some first order normals 0 1nM M 
 
  

hen rela-  

tions (10) are satisfied. We transf der normals  
on hypersurfaces V

 
, t

orm first or

n
 as follows  

1 1,
i

n iM t M M
  
    where itn 

 are arbitrary quantities. 

We denote the valu ites quant ies  ,i i
jk jk 

    for new 

frames  0 1, ,i nM M M
   

  of hyp of the 

correspo  .
i

ersurfaces 

ndence as i
jk , jk

  

Calculations show
 
  

 that 
it

Since any direction 

   0 0 0
, .i ii i i i

jk jkjk jkt
 
       

0
jk jk jk t

   
     

0
i


  

hype

is characteristic according to 

first order normals on rsurfaces  then  

qu

,nV


antities  ,i i
jk jk 

 
  ust also satisfy relations (10). 

Let us consider the object .i

m

 jk
    have We

    
     0 0

1

1
1

.
1

i
j klk lj

i l
j k jklk lj t

n



 

 

    



   


After substituting the values 

and considering similar terms we obtain 

l i l  

ii l

n   

   0 0
,ll l

lklk lk t
 
      

 
0 01

i i i
j lk k lj ln

    
0 0

1
0.l

jk t   

These relations must be true for any va




 

lues  then 
0

,lt

 
0 0 0

1
0.

1
i i i
j lk k lj l jkn

       


 

Contructing these relations with respect to  indicesthe  
 and , we arrive at the equation i l

0
0jk   for .  

 a sim lar way we get 
1n 

In i 0jk
  . 

It is known that hypersurfaces degenerate into hyper-  
lanes if the asymptotic tensors ijp  0.


   

In this case a point correspondence  

1 0
n n n

n
:V V VC     between hypersurfaces transforms 

into a point correspondence 
0

n  be- 
1

: n n
n

C P P P  

tween hyperplanes. Since quantities  ,i i
jk jk 

   satisfy re- 

lations (10), then mappings T


tive 

mappings. Correspondences between projective spaces hav- 
ing similar properties are called Gode ography. 

4. Invariant Normalizations of  
Hypersurfaces under Point  
Correspondences 

 degenerate in projec

ux’s hom

Moving frames of hypersurfaces nV


 un

ndence depend on parameters of two 
t principal parameters de

der the corres-  

po types. There ex- 
sis termined displacements of cor-  
responding points 0M


 of hypersurfaces nV


. Since  

points 0M


 are connected by the correspondence the num-  

c 2ber of independent p ipal parameters is equal to n . 
By the Equations (4 orms i

rin
) 1-f 0

  are indep nt lin- ende
binaear com tions of differentials of principal parameters. 

The Pfaffian forms v
u

  depend linearly on dif - 

rentials of principal parameters  differentials of other 
parameters. The other parameters define trasformations 

fe  

and
 

of ng moving frames for fixi  points 0M


. We denote val- 
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ues of forms v
u

  as  v v
u u 

    for fixing principal  

We denote as 
parameters. 

,    values of operators ,    

and denote as i
j  valu ffian forms ies of the Pfa

0
j  for 

fixing principal param
By Equation (6  h : 

  0
0

0
,i i ii

jj j j

eters. 
ave) we

 
       

it f



ollows .     

With the hel  thep of  operator 
0 0,i   as 

 0 1

1
0 0 0

,

2 ,

n

i
jk n k

i
jk n

 
 

 











 we can write Equa- 
tion (8) for the follows: 

,  (11) 

where 

 case 

i i



 

 



  



 

1
0 0 0

0
( )

i
jk n

k jjk 

 



 

 

0 1

0 0
( ) 1 ( )2 2

jk jk n

i i i
jk k j j

    

 
    



   

 
It follows 

. 
from relati quantities ons (11) that ij

  are 
relative tensors. 

ow  the  of nonmetric differ- 
f in
 th

It is kn
entiona et

n that main problem
l geom ry of a surface is a construction o var- 

iant normalization of this surface. According to eory 
[10] for a hypersurface it is necessary to construct on the 
basis of the sequence of fundamental geometrical objects 
of the correspondence under consideration some quanti- 
ties. These quantities must satisfy the following equations: 

For the invariant first order normal (straight line) 

 0 1
0 1 1,

i i n i
n nx x     

  
                (12) 

For the point on the invariant first order normal 

 0 1
0 1

n
n 

     0 ,nx x
  

 1  

e tange

 

nt hyperplane) 
0.i ix  

          (13) 

For the second order normal (  1n  -dimensional 
plane inside th

        

otic quadratic for  

          (14) 

Below we will assume, that asympt ms 
of hypersurfaces nV


 are nondegenerate. By virtue of 

this, det 0ij
  . It follows there exsist tensors ,ij


   

symmetric with respect to the indices i , j . These ten-  

sors sutisfy .kj j 
 conditions ik i    

 0
0

ij

 
  

n: 

By Equation (11)   we

have differential equations: 

1
1 .ij n

n  
  

   

By Equation (11) we obtai

    
2

n n

n 

0 1
0 12 20 0 0 0

0
1

0 0 0

2 2

1 2 ,

ki kil l n
nlk lk

ij i
j n

C C
     

     

  




 



 
    

 

 

 
 

    
   

0 1
0 12 20 0

0 2
1

0 0 0

1 1

2 1

jk jki i
njk jk

n n

ij i
j n

n n

C C

n n n

     
     

  




  0 0

,

n



  
   

 

   

 
 



where   . Note that for  quantities 1n 

   2 2 20 00

1 2 1

2
i ki jkl i

lk jk
n n

n
p

n n C C    
   

 

 
   

   
   

(15) 

satisfy equations 

 0
0 1

0 0 00 0

.i i n i i
n np p   
       1

d  

the invariant first order normal geometrical object of the  
hypersurface From Equation (11) we have 

Therefore, by Equation (12) the quantities 
0

ip  efine 

0
.nV  

 
0

( ) 12

1
2 .i i i

jk k jjk      i
n

jkC    


n  


 

hat q

 
      

It follows t uantities 

 

   

2 2

2

1 1
2

2

1

kii l l
lk lk

n

i
jk

n

p
n n C

C

    

 

  







 
       

 






   ’) 

satisfy Equation (12) and define the invariant first order  
normal geometrical objects of the hypersurface

To construct the invariant second order normal geo-  
metrical object of the hypersurface 

1 jk i
jkn

 
   

 



 (15

s .nV


 

nV


 we consider  

quantities 

 200 0

,
1

l l
k lk lkp p

n C 

1 1 

 2
,

1
l l l

lk lk
lk

n

p
n C

1 1

n

 
     (16) 

kp


 

 

    
  



 
  



Calculations show that quantities  satisfy Equa- 
tion (14). 

Thus, it is proved. 
Theorem 2. If asymptotic quadratic forms of 

 


  
  



kp


1n    
hypersurfaces nV


 are nondegenerate and  then 

th etermine invariant first and second 

 1n  ,

1 0
nVa point correspondence :    between  n n

n
C V V 

ese hypersurfaces d
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or rder
hb oints

 objects we used 

ders normals for all hypersurfaces in a second-o  
differential neig ourhood of corresponding p . 

Note that to find necessary quantities  
i
 jk 

 . A quantity i


 jk

previous one. In general cases there exist 2
nC  different 

qu i

 ead of the  may be used inst

antities  .jk
  Therefore, different invariant normali- 

zations o es ex
symmetrical case. 

ase

f hypersurfac ist. In the paper we used a 

Below we will suppose that 2n  . The c  2n   is 
considered in paper [12]. 

5. The Main Tensors of the Point  
Correspondence between n + 1  
Hypersurfaces 

Let us use the quantities p ,i
kp  

 

variant frames of the correspondence. We 

ariant family of frames  ,

for construction of in- 

introduce an 

inv  defined by  0 1, ,i nN N N
   

points 

0 0 0 1 1, , .i i i n i nN M N M M N M Mp p
      

i

 

s of infinitesim

f these frames as 

       

We denote Pfaffian form al displace-  

ment o .u
v

  Then relations between 

1-forms u
v

  and u
v

  can be written as follows 

1n
t


  (17) 

By Equations (12), (14) quantities  

 0 1
1 1 0 1

0 0 1
0

,

,

.

i

i i i ti i n
n n n

jj n
i i i j j i

i

p p

p p p p

p p p p p



      

       

   

   

   

 
  



  

     

    

0 0 1 1
0 0 0 0 0, , ,i i i n n

i i ip
      
          

1
0

jj j j n
i i

i



   



 0 1
1 0 ,i ii n

n np p    
   

      1
0

i ip 
 

eters, therefo

 depend on 

re we can differentials of principal param

write forms 0
i

  and i
1n

   as follows 

0
0 1, .0
j i i

i ij n ja
      

ja               (18) 

By new frames Equations (4), (6) of the correspond- 
dence C  can be written in the form: 

1
0 0 0 0

0 1

0

, 0

,

n j i i i
i ij

n

i i i k
j j jka

  
     



    

   



0  

where 0
0

i i i
j j j

,

       (19) 

  
     and 

( ) ( )
0

( )
00 0

2 2

2 , .

i ii i i i
jk jk j k jk j k

ii i i
jk jk j k jk

a p p p

a p p

   

 

  

    

    

   

0 0

,jk p
  (20) 

Calculations show, that quantities ,i i
jk jka a

 
 satisfy 

equations 

0, 0.i i
jk jka a  

     

,i i



Therefore, quantities jk jk 

of a secon

a a  are absolute tensors  

d-order differential neighbourhood of the cor- 
respondence. They satisfy some additional conditions: 

 

   2 0
0, 0.jkjk i i i

jk jk jk
n

a a a
C      

 
 

, , 0, 0,

1

i i i i l l
jk kj jk kj lklka a a a a a

 
   

    

 
   

 
 



By relations (7), (7’), (19) in the family of new frames  
we have equations of mapping 

 

0
T


 in the way 

0,

k

1 1 1
0 0 0

0 00

1

, ,

0, 0, ,

n j n j n
i ij i ij

n i i i i i

  
     

0 0 0 0
00 0

j j jka
  

   

  



  

      
 

and similar for T


 

1 1 1
0 0 0

1
0 0 0

, , 0,

0, 0, .

n j n j n
i ij i ij

n i i i i i
j j jka

     

  

     

0
k

 
   

  



  

     
 

  2i i i i
jk jk jk jka a a a

   
     and i i

jk ka a
 
  . where j

We will call tensors ,i i
jk ja a

 
  

s ,i i

k as main tensors of the 

correspondence. Tensor jk ja a
 



0 0 ,i j
jka

  

k define quadratic trans- 

ons 0
k

 

formati i i

 
      generated invariant  

ch in corresp
surfaces. 

pondence
tions 

aractiristic directions onding points of hyper- 

Let us consider corres s C  if there are rela- 

0.i ia a jk jk 
   

A point correspondence  is called 
1 0

n n n
n

geodesic, if any tangent directions of 

:C V V V  

hypersurfaces nV


 

in corresponding points 0M


 beca e charactiristic for 

 by some choice of the 

m

mappings  : n nT V V
  

 first 
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or nts. 

nce



der normals in these poi
It is true. 
Theorem 3. For 1n   a point corresponde  

1 0
: n n n

n
C V V V    will be geodesic if ahd only if 

main tensor 0.  s i
jka

 
 i

jka 

Really, let there exist n 1  families of the first 
or s of hypersur r correspondence by  
th denc

geodesic. Then relatio
uations (15), 5’) the first order normal  

rsurfaces 

der normal faces unde
em a point correspon e 

1 0
: n n n

n
C V V V    is  

ns (10) must be true. In this case as 
follows from Eq (1

objects of hype 0.ip   


By setting 0ip   in relations (16), we get values of  


second order normal objects of hypersurfaces under 
correspondence in this way: 

   
0 1 1

l l
k lk lkp

n n     
 

 
      

  

Conversely, if we use invariant first and second order 
norm
te

            (21) 

then relations (10) are true. 

1 1
,l

k lkp    ,
 

If we substitute values ,ip  p  in Equation (20) and 
 

use relations (10), then we obtain 

k

0.i i
jk jka a

 
   

als in all hypersurfaces under correspondence and 
nsors 

i i
jk jka a

 
  0,  

Any tangent direction 0
i


  becomes charactiristic by 

invariant first order normals in corresponding points of 
hypersurface

 

s. It follows the point correspondence  

n  is geodesic. 

e-Invariant  

Point Correspondence 

n cessa
Equations (13). We p ns (18). With the 

g Cartan’s 

1 0
: n n

n
C V V V  

6. The Whole Projectiv
Normalization of Hypersurfaces under the  

To finish normalizations of hypersurfaces under consid- 
eration it is e t objects satisfying ry to construc

rolong Equatio
help of exterior differentiations and applyin
lemma we obtain new equations: 

 1i i na a  
     0 0

1 0 1,
i

j j n j n    
0 0 0 0 0 

 1 0 0
1 0 1.

i i n i
j j n j na a     

   
       

We construct quantities 
2 00

1 1
, .i ia ap pi inn  

These quantities satisfy Equations (13) and define in- 
variant points on the first order normals of hypersurfaces  

     

nV


. 

Let us find a geometrical meaning of chosen invariant  
po ces . We fix the hyints. We consider hypersurfa - nV



persurface nV


, then 0 0,i


    . The set of invar- 

iant first order normals of the hypersurface nV  gener-  


ates -parametrical fimily of straight lines. This set is 
ca

n
lled as a congruence of straight lines. 
Let point 0 1

1
nL y N N

      be a focus of the con- 

gruence of  straight line ,
 

  then infini- 

tesimal displacement of focus L

 the s 0 1nN N 

  


 must belo  to the ng

straight line 0 1 .nN N  
 
  

 Since 

   0 1 ,n n id L N N N
     

 
 

then focuses L

0 1. . i iy
 
     


 are obtained by c nditions 

0 1n
 

o

0i iy

    

or 

0 0.i i j
j jay

 
  


    

 

To get values y


, defined focuses on the straight line 

0 1 ,nN
  N 

  
 we der the equation  consi

0.i i
j jay


    

For roots of this quation we have 

1

.

 e
n

i
i i

We can define the harmonic pole [16] on each straight  

line 

i

ay


   

0 1nN N
  

 
  

 of the congruence according to the  

po ation int 0N  and n  focuses by the rel


0 1 0 1
1

1 1
.1

i
i n i n n

i

N N a N N Ny
n n     

n

  


     

Let points 1nN
   of frames coinside with invariant 

points ,N1 0 1n n 
N Np
  
    where quantities p


 are 

defined by values 
2 00

1 1
, .i i

i ia ap p
nn  

    Other  
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points of frames we leave without changing. After these  
transformations quantities ija


 become absolute tensors 

and quantities i
ja


 become relative tensors of the corre-  

sponde e true 

0

nce. Some relations ar

Forms 

0
0, 0.i i

i ia a
 
   

1n
 

 

 will depend only on differentials of 

w

follows 

principal parameters, that’s hy they can be written as 
0

1 0
i

n i  
.a


    

It is proved. 
orrespondence  

n define the whole projective-invar-  

iant normalization of hypersurfaces in the third differen- 
tia ourh

ersurfaces of rojective Spaces and  
nsional (n + 1)-Webs 

A nce ces 

Theorem 4. For 1n   a point c

1 0
: n n

n
C V V V    

l neighb ood of corresponding points. 

7. Point Correspondences between (n + 1)  
Hyp  P
Multidime

 point corresponde C  between 1n   hyperspa

nV


 of projective spaces 1nP
   is a local differential  

n -quasigroup from the algebraic point of view. There 
exists an  1n  -web connected with this n-quasigroup. 
To find this web it is sufficient to consider a new mani-  

e  

- 
ma n 

 

fold constructed as 
0 1

.n n n
n

V V V    A correspondenc

C will be determined as an 2n -dimesional smooth sub
nifold. There exist 1n   foliations of codimensio

determn  on this submanifold. Each foliation is ined by 
the hypersurface nV


. These foliations define  1n  -  

2web W(n + 1, n) on the n -dimensional submanifold. 
We introduce additional forms 

  020 0

1
,i i ki

j j jk
nC 

                (22) 

and quantities 

 2

1
,i i i

jk jk jk
n

b
C   

 


    

where   . 
By relations (11) we h e av

Therefore, quantities 

0.i
jkb 

   

i
jkb


 determin

rential neighbourhood of the corre- 
spondence. It can be written as 

e a tensor of a  

second-order diffe

 2

1
.i i i

jk jk jk
n

b a a
C   

    

Using relations (17) we obtain  

   0 02 20 00 0

1 1i i k i .i k
j jjk jk

n n

a
C C  

        Therefore,  

forms i
j  do not depend choice of frames in cor- 

sponding points of hyper faces. 

 on a 

re sur
To write equations of  1n  -web adjoined to corres- 

pondence C  we use Equations (4), (22) and structural 
equations of projective spaces. We obtain 

0
k

0 0 0 00, ,i i j i ji
j jkd b

     
           

0 0
i k i i k l i k l
j j k jkld b b

    
0 0.jkl  

             

The uations show that forms ieq j  are the forms of 
an affine connection assosiated to the web W  and 

te i

 

nsors jkb


 are the torsi sor of W  [14]. 

It is known that parallelizable webs [11] are the 
simplest class of (n + 1)-webs. A corre

on ten

spondence be- 
tween (n + 1) hypesurfaces of projective spaces is said to 
be parallelizable if the (n + 1)-web of this corr pon- 
dence is parallelizable. The necessary and sufficient con- 
ditions for correspondence to be parallelizable are rela- 
tions 

n
n pesur- 

fa

es

0.i
jkb


  

 then Calculations show that if hypersurfaces are give
parallelizable correspondences between (  + 1) hy

ces of projective spaces exist and depend on  1n n  
functions in n  variables. 

In paper [11] specific classes of webs are introduced 
called a class of (2n + 2)-adric webs. For these classes 
the following relations are true 

0.ib    jk

Comparing these relations with conditions (21), we 
no

o iv

te that they are true for geodesic correspondences, 
that’s why the (n + 1)-web adjoined to the geodesic cor- 
respondence between (n + 1) hypersurfaces of pr ject e 
spaces is always (2n + 2)-adric web of type 2. 

A point correspodence 
1 0

: n n n
n

C V V V    gener- 

ates 3
1nC   families point subcorrespondences  

: n nC V V V
    n   obtained by fixation of n − 2 corres- 

can adjoin the web  to each ponding points. We 

su

 3,W n

bcorrespondence .C


 Let us find equations of corres- 

pondences C


 and equations of three-webs joined to 

them. Equations of correspondences 
0
C


 can be written 

in the following way 
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1)-web 
we have after trans

0 0
i i 

Substituting these values into equations of (n + 

0 0.i

o  
   

formations 

 0 0 0 0 0
0

,i j i i k i k k
j jk kjd a a

        0
i j

jka
 

            

   0 0 0 0 0 0
0

k
j jk kj jk        



.i j i i k i k i jd a a a            

k

The forms 

0

i i k i
j 0 0jk kja a

   
     

are connection forms of this three-web and the tensor  

   
i i

jk ja b


  k

pondence ,C

is the torsion tensor. If we take a corres- 


 then the torsion tensor of three-web 

adjoined to C


 can be written as follows 

     .
i i i

jk jk ja a a
  

   k

called paratactical three-webs [11]
In  with this, point correspondences between 
(n + 1) hypersurfaces of projective spaces are calle

There exist the so-
 accordance

. 

d  
paratactical, if all their subcorrespondences C


 are  

paratactical 
following relations 

ones (torsion tensors are equal zero). The 

  0i
jka


  

are conditions of the existence of paratactical correspon- 
dences. 

8.

 o

We construct whole projective-invariant normaliza-

int correspondences are determined in a second-
ighbourhood of corresponding p

 of the correspondence and 

estab

sic correspondence between (n + 1) 
hy
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, Vol. 17, No. 2, 1962, pp. 191-198. 

[4] T. Mihailescu, “Geometrie Differentiala Projectiva,” Teo-
ria Corespond  1963. 
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 Conclusions 

We write main equations of a point correspondence be- 
tween 1n   hypersurfaces of projective spaces and con- 
struct the sequence of main geometrical objects f the 
correspondence. we define characteristic directions of a 
correspondence and prove that there exist invariant char- 
acteristic directions. 

 

[12

tions of all hupersurfaces and prove that invariant first 
and second orders normals for all hypersurfaces (n > 2) 
under po  

[13

order differential ne
We single out main tensors

oints. pp. 8-15. 

[14] V. V. Goldberg, “On (n + 1)-Webs of Multidimensional 
Surfaces,” Doklady Akademii Nauk SSSR, Vol. 210, No. 4define some partial cases of correspondences. 

We lish a connection between the geometry of 
point correspondences between 1n   hypersurfaces of 
projective spaces and the theory of multidimensional (n + 
1)-webs. In particular we prove that the (n + 1)-web 
adjoined to the geode

persurfaces of projective spaces is always (2n + 2)- 

adric web of type 2. 
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