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ABSTRACT

For a correspondence in question we establish a sequence of fundamental geometrical objects of the correspondence
and find invariant normalizations of the first and second orders of all hupersurfaces under the correspondence. We sin-
gle out main tensors of the correspondence and establish a connection between the geometry of point correspondences
between n + 1 hypersurfaces of projective spaces and the theory of multidimensional (n + 1)-webs.
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1. Introduction

Differentional geometry of point correspondences be-
tween projective, affine and euclid spaces of equal di-
mensions were studied and were studing by scientists till
1920. One can finds the analysis of obtained results to
1964 in the paper [1] by Ryzhkov.

Among all papers devoted to the theory of point cor-
respondences between two three-dimensional spaces we
must note papers [2] written by Svec, [3] written by Mur-

racchini, [4] written by Mihailescu and [5] by Vranceanu.

They introduce characteristic directions of point corres-
pondences, consider some special classes of correspond-
ences, show connections of point correspondences between
spaces with different parts of differentional geometry.
Properties of point correspondences between n-dimen-
sional projective, affine and euclid spaces are studied by
Ryzhkov [6], Sokolova [7] and Pavljuchenko [8].

A straight line [l\él 0I\gl n}, passing through the point
I\gl o» 1s called a first order normal of a hypersurface of
n -dimensional projective space in the point I\él 0, if the

straight line has no other points with the tangent hyper-
plane of the hupersurface [9]. We call a (n—l) -dimen-
sional plane as the second order normal of the hypersur-
face in the point l\él o» 1f the tangent hyperplane of the

hypersurface in the point I\‘f/l0 includes this (n-1)-
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dimensional plane and this (n—l) -dimensional plane
does not pass through the point M .

It is known that the main préblem of nonmetric dif-
ferentional geometry of a surface is a construction of
invariant normalization of this surface. To construct an
invariant first normal in a point of a surface it is
necessary to use third-order differential neighbourhood
of the point [10]. In our previous papers we showed that
to construct an invariant first normal in points of two
surfaces under point correspondences it is sufficient to
use a second-order differential neighbourhood of corre-
sponding points, but to construct an invariant second
normal in points of two surfaces under point corre-
spondences it is necessary to use third-order differential
neighbourhood of the point.

In the current paper we will find invariant normali-
zations of the first and second orders of all hupersurfaces
under the correspondence.

There exists a connection between the geometry of
point correspondences between three spaces or surfaces
and the theory of multidimensional 3-webs (Akivis [11]).
We showed it in papers [12,13], devoted point corre-
spondences between three projective spaces and between
three hupersurfaces of projective spaces.

The theory of of multidimensional (n + 1)-webs is con-
structed in the paper [14] by Goldberg. In the current
paper we will consider a connection between the geo-
metry of point correspondences between n+1 hyper-
surfaces of projective spaces and the theory of multi-
dimensional (n + 1)-webs.
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V. S. BOLODURIN 15

In the way of the investigation we use the exterior
differentiation, tensor analysis and G.F.Laptev invariant
methods [15].

2. Main Equations of Correspondence, the
Sequence of Main Geometrical Objects
Let us consider n + 1 smooth hypersurfaces \én c I? sl
(£,7,6=0,1,2,3,---,n) of projective spaces and a point
correspondence C:V x---xV _ —V _  between these
hypersurfaces. : ! 0
Let I\g , be corresponding points of hypersurfaces

\é .- A correspondence C:V  x---xV —V  generates
1 n 0

C.., families point subcorrespondences

C :\é XV —V _ obtained by fixation of n — 2 corres-
Tn

2

ponding points and generates C.,,

point mappings
5T :\é ,»—V, by fixation of n-1 corresponding points.
n n
Mappings 'él':\g{n—>Vn must be regular in neigh-
n n

bourhoods of points under correspondences of surfaces

\é .» VYV, and have the inverse mappings.
n

We will assume, that surfaces \é , belong to different

projective spaces I;n . The geometry of correspondences

under consideration will be studied according to the
transformation group, which is a direct product of pro-
Jjective transformation groups of spaces P, .

¢

With any point M ,€V , we associate a projective
$ 4
moving frame consisting of the point M, points M
¢ 5

(i, j.k,---=1,2,---,n) of the tangent hyperplane of the
hypersurface \én in the point I\él , and a point I\él el

outside the tangent hyperplane.
The equations of infinitesimal displacement of our

projective frames {l\él 0,I\.f/l i»M n+,} have the form:
<

dM, =
¢

S

M, M

\

. are 1-forms contain-

where (u,v,w=0,1,---,n+1) @

ing parameters, on which the family of frames in
question depends, and their differentials. The forms @,
satisfy the structural equations of projective space:

do'=0"Ao).
eloopl e

We can write equations of hypersurfaces V  as
4
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follows:

?3“ =0. ©)

The Pfaffian forms | define displacements of cor-

responding points l\él o, of hypersurfaces \é , - 1t follows

that the forms cé)l) satisfy the following linear relations:

i (IS TNNURIIE 2 ey
thod+tiptertiol=0 ®

Since for & =const forms (é)}) are linearly inde-
pendent, therefore the following conditions are true:

det #0.

t)
We can transform all frames of projective spaces in
points I\f/l o Dby setting hgizgijhg ' j- For new frames
{M »M',M n+1} we will have @'L :ttija)(’;. By Equa-
5 3 3 5 s ¢
tions (3) relations between forms @'L take the simplest
S

case. Let us suppose that necessary transformations of
frames are done and we can write relations between

forms cg:) of frames {I\él 0,I\L{Ii,l\{lml} as follows
S S
cé):)+cloz)+-~-+a)i0=0. “)

Geometrically Equations (4) mean that frames in points
M, of spaces P, are chosen so that directions in
4 ¢

points I\él o» M, are corresponding by mappings ;I' .
n n

To find equations of a mapping 2’ :\é "=V, we fix
n 7

points I\él o» Where 0 # &,n. Using Equations (2), (4),

we have
n+l

o' =0,0)"=0, 0, +o},=0. Q)
$ n 5 n
Consider projective mappings ;K , where
n
KM,=M,, KM.=-M,, KM __, =M __.
R n et n oo ™ n "

By Equations (1), (5) the following relations satisfy
projective mappings:

KdM,=dM +6 M,
én 50 '70 51]]0

where ‘?1 —a quantity of the first order according to
?\J The projective mapping if has a first order tan-
n
gency with the mapping !0 :\é ,—V , in correspond-
ul n

ing points l\g 0w M.
n
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16 V. S. BOLODURIN

Equations (2), (4) are main equations of our problem.
With the help of exterior differentiation of these equa-
tions and applying Cartan’s lemma we obtain

n+1 i i k
/la),Q => AL w,, 6
i ” %:aﬂ"‘ﬂo ©
i g i_ i g0
whete Zy=2y Ah= A )=0)-500

(aaﬂa}/: 9% 9"'9n)'

Note that quadratic forms ¢, = /g,ua):)cé)é are asymp-
S

totic quadratic forms of hypersurfaces \é -

Now in the family of frames we have equations of
mapping T0 in the way
o] = A a)o,a)-”” Ai a)o,a)g”—O,
‘ n+1 i i i k (7)
Oa) +a)0 0, i) S(')zj:/ljkz)o,

aa

and similar for T

ol =20, 0" = /L a)o,a)(”)”—O,

a a a ﬂ (7,)
" =0,00+wy=0, Q) -Q\ = 1" of.

ﬂ a yij a ﬁ’J af Ky

where é”jk:(iijk+ﬁ/%ijk—2$zjk)) and ;};”jki;}]’:q.

To continue the system of Equations (6) we use exte-
rior differentiation of these equations and Cartan’s
lemma. We obtain new equations:

_ 0 _ n+1

§n+l
i i 0 i 0 i 0
Vaﬂb]k—aé'(é‘(ka)j)+5(ka)j))+25(ka)j) ®)
5/1”((0 /ljka) +Z/1'Jk|a)0

ap a 0 n+l apy
To write these equations we used operators V and
V.. Operator V is defined by forms (02'1 and we have
. . o .
VA =d A% — i golj = Al g())k +/1Ijk (02: )
and similarly operators V. are defined by forms Q'J
S
Quantities A are symmetric with respect to the
H
indices i, j and k, for quantities /ﬂl ijk, some additional
apy

finite conditions are true.
The system of quantities /}J’k’ ;}} ijk define the geo-

metrical object according to G.F.Laptev invariant me-
thods [15]. This object is the fundamental geometrical
object of second order of point correspondence

C :\{ n><m><\ﬁ n —>\é n
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If we continue Equations (8), we obtain the system of
differentional equations of a sequence of fundamental
geometrical objects of point correspondence under con-
sideration

A ﬂ l'
i jk> aﬁjk7 ﬂ,}/JkU

3. Characteristic Directions of Point
Correspondences

Let us consider a mapping !’ :\é . — V. If frames are
7 n

fixed in corresponding points of hypersurfaces \én,

\

n
mation of tangent directions of hypersurfaces

then the object glijk define the quadratic transfor-

n°

i ik
w,—> Q. = 0lo;.
g0 [
In geometry of point correspondences [1] directions
are said to be characteristic if they are invariant accord-
ing to these quadratic transformations. They must satisfy

a system of equations

”kw ?0—‘9?0 ©)

A geodesic curve of hypersurface \é“’ connected

with the family of first order normals, is called a curve,
whose 2-dimensional osculant plane passes through cor-
responding first order normals of hypersurface in every

point (see for exsample [9]). If Pfaffian forms cgi define
a tangent direction to a curve ¢ in a point l\él 0> then

relations
V., =00
¢ ¢
are the condition of the geometrical second order tan-
gency of the curve ¢ and a geodesic curve having the
same tangent direction in this point I\gl 0

Characteristic directions have the following property.
If a curve ¢ e\é . and a geodesic curve have second

order tangency along a characteristic direction in the point
I\él . e\é ., then the image ;I' (¢)eV, of the curve
n n

under ;I' :\é . —V , has the similar property in the point
n 7

M, eV, by the corresponding characteristic direction.
n n
It follows from Equations (7,) (7°), (9) and relations
V.0'+V o' :/1' wlok
e Ty Igogo
From geometric meaning of characteristic directions it
is clear, that they depend on the choice of first order
normals of a hypersurface and do not depend on the

AM



V. S. BOLODURIN 17

choice of second order normals.
We can rewrite Equations (9) in this way
o]
, /1 w a) =0.
g0y K00

We obtained equations of cubic cones. Characteristic
directions are common generatrices of these cones.

Let us assume, that any direction @ in a point M,
4 ¢

by some choice of a first order normal on hypersurfaces

\é” is characteristic for a mapping ;I' :\é .—V . Then
ul n

the last equations must be sutisfied for any magnitudes
?:) Therefore, the following conditions are true for

simillar correspondences
5“ 2 1, =0.
After calculations we get the relations:
i 1 i i
ij" :_n (51' ﬂ’:k +6 i:j),
(10)

i | i |
ap) n+1(5 a )+5“ZE(”))’

where a # 3.
Theorem 1. If any direction cg'o in a point I\él , by

any choice of first order normals on hypersurfaces \én
is characteristic for a mapping ;I' :\é .—V ., then for
n n
n>1 hypersurfaces V & degenerate into hyperplanes
¢

and the correspondence becomes Godeux’s homography.

Really, let conditions of the theorem be true in corres-

ponding points l\g o of all hypersurfaces V  accord-
S

ing to some first order normals [M oM n+1:| , then rela-
¢

tions (10) are satisfied. We transform first order normals

on hypersurfaces \é” as follows
l\él sl E I\él +M ., where Ei are arbitrary quantities.
S

We denote the values quantities A, A"}, for new
me aff (Jk)

frames {I\gl O,Rgi,hg'n+l} of hypersurfaces of the

;i
correspondence as i o 0{% zjk).

Calculations show that

i g i i i
2= bl bt A=

& =& oo dud

s (K) 5k
Since any direction @ 1is characteristic according to
£

first order normals on hypersurfaces V , then
S
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quantities axla Jk’/}, "Eik) must also satisfy relations (10).
Let us consider the object j;] "E ik We have
()
il )4l
After substituting the values l ; ﬂ;,(m) %,k ,

and considering similar terms we obtaln
1 i i i |
(il ag)-a gy -
These relations must be true for any values E' , then
m(&} A+ Ay ) 5 25=0.

Contructing these relations with respect to the indices
i and |, we arrive at the equation l x=0 for n>1.
In a similar way we get /1 =0.

It is known that hypersurfaces degenerate into hyper-
planes if the asymptotic tensors ?ij =0.

In this case a point correspondence
C:V x---xV =V between hypersurfaces transforms
1 n 0

into a point correspondence C:P x---xP_ — P be-
1 n 0

tween hyperplanes. Since quantities A ijk, /% ; i) satisfy re-

lations (10), then mappings ;F degenerate in projective
n

mappings. Correspondences between projective spaces hav-
ing similar properties are called Godeux’s homography.

4. Invariant Normalizations of
Hypersurfaces under Point
Correspondences

under the corres-

Moving frames of hypersurfaces \é”

pondence depend on parameters of two types. There ex-
sist principal parameters determined displacements of cor-
responding points I\gl , of hypersurfaces \é .- Since

points I\gl , are connected by the correspondence the num-

ber of independent principal parameters is equal to n’.
By the Equations (4) 1-forms @, are independent lin-
ear combinations of differentials 0f principal parameters.

The Pfaffian forms «; depend linearly on diffe-

rentials of principal parameters and differentials of other
parameters. The other parameters define trasformations
of moving frames for fixing points l\él o- We denote val-
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18 V. S. BOLODURIN

ues of forms . as 7z, =wy(5) for fixing principal
¢ ¢ 4

parameters.
We denote as V5, V., values of operators V, V,

and denote as ﬁij values of the Pfaffian forms §02ij for

fixing principal parameters.
By Equation (6) we have:

(02'1-(5) 7Z'J—7Z' 5'7[
it follows V; =V.

With the help of the operator V; we can write Equa-
tion (8) for the case w; =0, as follows:

0 n+1
Vgﬂjk=/1jk(iz'0—7l' ),
¢ ¢ 5

n+l
5
Vs iijkzzg(ikﬂ /Ijk”n+1+25(ik g?)_ﬁ'jkg-:wl’ (11
Vs D{Zb K= 25(Ik T {}jk{fnw

where a = f.

It follows from relations (11) that quantities /1 are
relative tensors.

It is known that the main problem of nonmetric differ-
entional geometry of a surface is a construction of invar-
iant normalization of this surface. According to theory
[10] for a hypersurface it is necessary to construct on the
basis of the sequence of fundamental geometrical objects
of the correspondence under consideration some quanti-
ties. These quantities must satisfy the following equations:

For the invariant first order normal (straight line)

V‘Xi=—Xi(7t0—7rn+1)—7ri , 12

o ¢ P - 0 [ n+l1 ¢ n+1 ( )
For the point on the invariant first order normal

5X=—X(7r°—7z"+1)—7r0 , 13

P e 0 ¢ n+l p n+l1 ( )

For the second order normal ((n-—1) -dimensional
plane inside the tangent hyperplane)

VoXi=-i. (14)

Below we will assume, that asymptotic quadratic forms
of hypersurfaces V | are nondegenerate. By virtue of
S

this, det

#0. It follows there exsist tensors /}ij,

symmetric with respect to the indices i, j. These ten-

sors sutisfy conditions /}ik /;ki = 5; By Equation (11) we

have differential equations:

VA =2 (7[8 —ﬂ”*l).

E e\l e

By Equation (11) we obtain:

Open Access

2 ki | 2 | n+
Vg(c_ﬁélzl(mj:_gﬂl(;énk( n+})

n

n+1>

+2(n+1)61 7z‘l’—27r

0

n+l jk i n+l Jk 0 n+l
Y [ng zﬁfﬂ“kj ozt 'k(”O"o’"ﬂ)

n a#f

0
+2(n+1)61

OJ (n +n) n+1’

where «a # £ . Note that for n>1 quantities

i 1 2 ki I n+1 ik i
Op__ 2 [C_nz{)l Z/l(|k) A azﬂjb(jk)J

n“+n-2 i p C. o
(15)

satisfy equations

i i 0 n+i i
Va‘p =-p (ﬁo_ﬂ-m—l)_ﬂ-nﬂ'
0 o V0% 7 0

Therefore, by Equation (12) the quantities pi define
0

the invariant first order normal geometrical object of the
hypersurface \é .- From Equation (11) we have

gz

i
,B jk) J 25(k ﬂ‘ ﬂ-n+1
n a#f

It follows that quantities

i 1 ki I 1 I
5 __n2+n—2[221 [i'k _C_nza#?jk(lk)j

~(n+1)2* (/1 ' —é 2 %wn

a aa na:ﬁﬂaﬂ

(15%)

satisfy Equation (12) and define the invariant first order
normal geometrical objects of the hypersurfaces V .

To construct the invariant second order normal geo-
metrical object of the hypersurface V , we consider
¢

quantities

1
Ek_n+1[ g "‘]
1
pk__[;t alk+ 2Zﬁ’lk]

a n+1 nwﬁﬁ

(16)

Calculations show that quantities pk satisfy Equa-
tion (14).

Thus, it is proved.

Theorem 2. If asymptotic quadratic forms of n+1

hypersurfaces \én are nondegenerate and n>1, then
a point correspondence C:V  x---xV _ —V between
1 n 0

these hypersurfaces determine invariant first and second

AM



V. S. BOLODURIN 19

orders normals for all hypersurfaces in a second-order
differential neighbourhood of corresponding points.
Note that to find necessary objects we used quantities

Z /}} ' (i) . A quantity /” « may be used instead of the
azf
previous one. In general cases there exist C,f different
quantities /2 % ity Therefore, different invariant normali-
zations of hypersurfaces exist. In the paper we used a
symmetrical case.
Below we will suppose that n>2. Thecase n=2 is
considered in paper [12].

5. The Main Tensors of the Point
Correspondence betweenn + 1
Hypersurfaces

Let us use the quantities p', p, for construction of in-
s ¢

variant frames of the correspondence. We introduce an

invariant family of frames {l;l 00 l;l 0 lé\tl nﬂ}, defined by

points

N,=M,, N,;= .
yo = fo i n+l

M+pM, N, ,=p M+M
5 ?I§O §n+1 ?é:l 5

We denote Pfaffian forms of infinitesimal displace-

ment of these frames as o). Then relations between
4

l-forms o, and @, can be written as follows
S
0 0 i i i n+l1 n+1
O, =W,—P.@W,, On=0,, O; =),
{:0 50 ?'60’ {:0 50’§| }:I b
al=oltp oj-0!"p’,
5 5 £i ¢ ¢ £
_ _ (17)
i i i i 0 n+1 it n+1
o =V +o, .+ (a) ) )— o, ,
§n+1 ::? §n+1 ? go §n+1 E?ét
0_ 0 j Jjo_n+l
0;=V.p +o;—p;p;@y+p;p ®; .
¢ i ¢ e &g ¢
By Equations (12), (14) quantities
p +a)n+1+p (a)o—a)ﬂﬂ), V.p;+®; depend on
¢ ¢ ¢ PR

dlfferentlals of principal parameters, therefore we can

write forms ¢! and o', as follows
¢ ¢

0_ i i [y
gi —ggijgm gnu—;gjgo- (18)

By new frames Equations (4), (6) of the correspond-
dence C can be written in the form:

a}““:}tijag, oLtoy+to=0,

¢ N n (19)
i -Zi =Y alos,

21 9l Zﬂ:aﬂJkﬂO

Open Access

where 2' —? 5'00 and

i i i i i i
= Ay +25; 5k> _jjkg +26;; 0pk> _ﬂ”jkg’ ,
; (20)
aﬁjk_ﬂ‘jk_{—z jpk)_f}jkpln a*p.
Calculations show, that quantities a o @ ijk satisfy
equations k4

V.a' =0,V ,a' =0.
éaajk s éaﬂjk

Therefore, quantities a ijk, aijk are absolute tensors
aa af

of a second-order differential neighbourhood of the cor-
respondence. They satisfy some additional conditions:

a' a a' a a, =0, a =0,
Pl el L L ﬁakl’; oK) 1 1k

f}jk(aa' ZZaﬂJkJ OﬂJkéc?ﬂ

n a*f
By relations (7), (7°), (19) in the family of new frames
we have equations of mapping T0 in the way

n+l _ j n+l _ j n+l _
O =1ij00p0i =104 Oy =0,
a a o 0 00 a
n+l1 i i i i i k
o, =0,0,+0,=0, 2. -3 = o
0U ’ao 00 ’ aJ 0J ankaU’
and similar for T
n+l _ j n+l _ j n+l1
Oi =1ij0p0i =140, 0, =0,
a a B P a

n+l i i i i fi k
o, =0,0,+0,=0, 2. -%X.=a .0
50 PR 0BT g G gy k0

where a', = a +rat —2a;

and a" =a’
ap K s K Jk kJ

ap () ap * pa

We will call tensors  a 'J-k, a 'ijk as main tensors of the
aa aff

i U .
correspondence. Tensors a 'jk, a ' define quadratic trans-
af

formations o — o' —a e Jok, generated invariant
z° 4 s ¢

charactiristic directions in corresponding points of hyper-
surfaces.

Let us consider correspondences C if there are rela-
tions

i Ul
ay=2a;=0.

aa af

A point correspondence C:V  x---xV —V is called
1 n 0

geodesic, if any tangent directions of hypersurfaces \é n

in corresponding points M, became charactiristic for
S

mappings I:\én—>Vn by some choice of the first
n n
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20 V. S. BOLODURIN

order normals in these points.

It is true.
Theorem 3. For n>1 a point correspondence
C:\{n><---xvn—>\({n will be geodesic if ahd only if
n

main tensors a', =a", =0.
aa afp

Really, let there exist (n+1) families of the first
order normals of hypersurfaces under correspondence by
them a point correspondence C :\{ p X xVo _>\én is

n

geodesic. Then relations (10) must be true. In this case as
follows from Equations (15), (15°) the first order normal
objects of hypersurfaces p' = 0.

¢

By setting p' =0 in relations (16), we get values of
s

second order normal objects of hypersurfaces under
correspondence in this way:

1 1

——> Aty P=— (zwz/z,kj

Opk: n+1a¢ﬁaﬂ( ) a n+1 aa

If we substitute values pi, p, in Equation (20) and
5 5

use relations (10), then we obtain

a' =0.
aa Jk a/f Jk
Conversely, if we use invariant first and second order
normals in all hypersurfaces under correspondence and
tensors
at. =a" =0, 21
aa ke aff Jk ( )
then relations (10) are true.

Any tangent direction o-i) becomes charactiristic by
4

invariant first order normals in corresponding points of
hypersurfaces. It follows the point correspondence
C:V , x---xV —V  isgeodesic.

1 n 0

6. The Whole Projective-Invariant
Normalization of Hypersurfaces under the
Point Correspondence

To finish normalizations of hypersurfaces under consid-
eration it is necessary to construct objects satisfying
Equations (13). We prolong Equations (18). With the
help of exterior differentiations and applying Cartan’s
lemma we obtain new equations:

V&(Szlj I—al»(ﬂ'nﬂ—gg)—é‘-

1
0a 1\ o M1 o

V(;a‘j +a ( jS—ﬂo)ﬂs'
aa aa

n+1

1
We construct quantities p = Z 1, p=——a

a n ea
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These quantities satisfy Equations (13) and define in-
variant points on the first order normals of hypersurfaces

\'
¢

Let us find a geometrical meaning of chosen invariant
points. We consider hypersurfaces V . We fix the hy-

n-

persurface V ,, then gg =0,a# . The set of invar-
a
iant first order normals of the hypersurface V , gener-
a

ates n-parametrical fimily of straight lines. This set is
called as a congruence of straight lines.
Let point L=yN,+N be a focus of the con-
o 1 a a

n+l1

gruence of the straight lines [N oN nﬂ} then infini-

tesimal displacement of focus L must belong to the

a

straight line [N oN M]. Since

o

dL=()N,+( )N, +(yo +an+|)N 0
then focuses L are obtained by conditions

yO' +Gn+1 0

(Zﬁj +§Ijjgé =0.

To get values Yy, defined focuses on the straight line

or

[N oN nﬂ], we consider the equation
a a

Z&} +§IJ =0.

For roots of this equation we have

We can define the harmonic pole [16] on each straight
line [N oN M} of the congruence according to the

point N, and n focuses by the relation

1 1 :
sziwo—i_'ﬁml:_ﬁgiwo—’_wml:’;‘n
i=l a

Let points N,,, of frames coinside with invariant
5

points a= pl2|0+l;ln+1, where quantities p are
¢ ¢
defined by val - ' p=-—a’ Ot
efined by values Op_n_zz(fii’p__ﬁii' ther
AM



V. S. BOLODURIN 21

points of frames we leave without changing. After these
transformations quantities a i become absolute tensors
Ca

and quantities a ij become relative tensors of the corre-
Sa

spondence. Some relations are true
>ai=0, a;=0.
P Oa ao

Forms ?2” will depend only on differentials of

principal parameters that’s why they can be written as

Za e

/;aa

follows 0'

Itis proved.
Theorem 4. For n>1 a point correspondence
C:V x---xV_ —V  define the whole projective-invar-
1 n 0

iant normalization of hypersurfaces in the third differen-
tial neighbourhood of corresponding points.

7. Point Correspondences between (n + 1)
Hypersurfaces of Projective Spaces and
Multidimensional (n + 1)-Webs

A point correspondence C between n+1 hyperspaces

\é” of projective spaces ?HH is a local differential

n -quasigroup from the algebraic point of view. There
exists an (n+1)-web connected with this n-quasigroup.
To find this web it is sufficient to consider a new mani-
fold constructed as \é n x\{ X x¥ . A correspondence

C will be determined as an n*-dimesional smooth sub-
manifold. There exist n+1 foliations of codimension
n on this submanifold. Each foliation is determined by
the hypersurface \é”’ These foliations define (n+1)-

web W(n + 1, n) on the n*-dimensional submanifold.
We introduce additional forms

_ i_l i k
R (22)
and quantities

Jk zzﬂ’ljk

a

Jk -
ap ap n }/#57

where a # 3.
By relations (11) we have

V, by =0.

Therefore, quantities b’  determine a tensor of a
aff

second-order differential neighbourhood of the corre-
spondence. It can be written as

b= a2 al

k k
ap?ap’ C] vl

Open Access

Using relations (17) we obtain
i1 ik i
§02j _Fgﬂ:fﬁ“”?(’ —%j

forms a)'J do not depend on a choice of frames in cor-

1 i k
_Fgﬁ:%“k)go. Therefore,

responding points of hypersurfaces.

To write equations of (n+1)-web adjoined to corres-
pondence C we use Equations (4), (22) and structural
equations of projective spaces. We obtain

. . o o
>0,=0,doy=0irpj+). blLoirnoy,
= & a a aﬂaﬂ a B

i k i
dow; - o] Ao,

i k | i k |
=Y blopro,+ bloiroy.
PR a a B afp a B
The equations show that forms !

; are the forms of
an affine connection assosiated to the web W and

tensors bﬂijk are the torsion tensor of W [14].
a

It is known that parallelizable webs [11] are the
simplest class of (n + 1)-webs. A correspondence be-
tween (n + 1) hypesurfaces of projective spaces is said to
be parallelizable if the (n + 1)-web of this correspon-
dence is parallelizable. The necessary and sufficient con-
ditions for correspondence to be parallelizable are rela-
tions

Calculations show that if hypersurfaces are given then
parallelizable correspondences between (n + 1) hypesur-
faces of projective spaces exist and depend on (n+1)n
functions in n variables.

In paper [11] specific classes of webs are introduced
called a class of (2n + 2)-adric webs. For these classes
the following relations are true

b () =0

Comparing these relations with conditions (21), we
note that they are true for geodesic correspondences,
that’s why the (n + 1)-web adjoined to the geodesic cor-
respondence between (n + 1) hypersurfaces of projective
spaces is always (2n + 2)-adric web of type 2.

A point correspodence C :\{n><--~><\£n —>\é , gener-

ates C.,, families point subcorrespondences
gng \é xV —>V obtained by fixation of n — 2 corres-
1 ’7

ponding points. We can adjoin the web W (3,n) to each

subcorrespondence C . Let us find equations of corres-
sng
pondences C and equations of three-webs joined to
&ng
them. Equations of correspondences C can be written
0ng

in the following way
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i i i
c,t+o,+0,=0.
o] a B

Substituting these values into equations of (n + 1)-web
we have after transformations

i_ ]
dgo—go/\(%1+(§lﬁjkg +$kjao)+a“k]a /\0'0,

i ]
d%o—%w(%ﬁfﬂw% +3ﬁw“o) atmgings

The forms
k
are connection forms of this three-web and the tensor

bi is the torsion tensor. If we take a corres-
aﬁ[lk] K]

pondence (;, then the torsion tensor of three-web
afy

adjoined to C can be written as follows

afy
i i [
AR AT AT,
There exist the so-called paratactical three-webs [11].
In accordance with this, point correspondences between
(n + 1) hypersurfaces of projective spaces are called

paratactical, if all their subcorrespondences C are
apy

paratactical ones (torsion tensors are equal zero). The
following relations

Jk]_O

are conditions of the existence of paratactical correspon-
dences.

8. Conclusions

We write main equations of a point correspondence be-
tween n+1 hypersurfaces of projective spaces and con-
struct the sequence of main geometrical objects of the
correspondence. we define characteristic directions of a
correspondence and prove that there exist invariant char-
acteristic directions.

We construct whole projective-invariant normaliza-
tions of all hupersurfaces and prove that invariant first
and second orders normals for all hypersurfaces (n > 2)
under point correspondences are determined in a second-

order differential neighbourhood of corresponding points.

We single out main tensors of the correspondence and
define some partial cases of correspondences.

We establish a connection between the geometry of
point correspondences between n+1 hypersurfaces of
projective spaces and the theory of multidimensional (n +
1)-webs. In particular we prove that the (n + 1)-web
adjoined to the geodesic correspondence between (n + 1)
hypersurfaces of projective spaces is always (2n + 2)-

Open Access

adric web of type 2.

(1]

(7]

(10]

[11]

[12]
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