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ABSTRACT 

In this paper we propose a numerical collocation method to approximate the solution of linear integral mixed Volterra- 
Fredholm equations of the second kind, with particular weakly singular kernels. The collocation method is based on the 
class of quasi-interpolatory splines on locally uniform mesh. These approximating functions are particularly suitable to 
tackle on problems with weakly regular solutions. We analyse the convergence problems and we present some numeri-
cal results and comparisons to confirm the efficiency of the numerical model. 
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1. Introduction 

Splines have been used in numerical integration, with all 
their well known properties, ever since they entered in 
the numerical analysis scene [1]. 

In the nineties, splines have been used in more general 
aspects in numerical integration such as product integra-
tion and numerical approximation of models with Cauchy 
principal value integrals [2,3]. 

However these results are not completely satisfactory 
as they use functional values at equally-spaced nodes, 
whereas in applications it is desirable to densify points in 
places where the integrand function is not smooth and 
use fewer nodes where it is. To tackle on this problem, 
Rabinowitz [4] proposed, with respect to numerical inte-
gration, the use of an important class of splines, known 
as variation diminishing splines (VDS), introduced and 
investigated, as a tool of approximation theory, in the 
seventies by Schoenberg [5]. 

Subsequently, to improve the quality of the approxi-
mation, the quasi interpolatory (q.i.) splines, proposed 
and analysed by Lyche and Schumaker, [6], in different 
kind of integrals are used, algorithms are given and con-
vergence results are proved in [7,8]. 

From the second half of the nineties, taking advantage 
of all these results, the use of q.i. splines in different kind 
of integral equations is suggested and analysed in [9-12]. 

In this work we apply a numerical model based on cu-
bic q.i. splines approximation to special mixed Volterra- 

Fredholm integral equations of second kind with particu-
lar convolution kernels. 

In Section 2 we present the mathematical model, in 
Section 3 we recall the background on q.i. spline space, 
in Section 4 the numerical method is described, Section 5 
is devoted to convergence analysis, finally in Section 6 
we show numerical results to complete the theoretical 
statements and to emphasize the efficiency of the method 
in the case of solution with discontinuity from the first 
derivative. 

2. Volterra-Fredholm Integral Equations 

In this paper we consider the following Volterra-Fred- 
holm integral equation: 

           1

1 20 0
, d , d

x
u x f x k x s u s s k x s u s s     (1) 

where  : 0,1u    is the unknown function,  f x  is 
a known function such that  0,1 .f C  The kernels 
 , ,s1k x   2 ,k x s  are of the form: 

0 1 and logs x s


x          (2) 

if    and 0,   there exists a unique function 
 0,1u C  solution of (1). 

3. On the q.i. Splines 

In the following we recall the necessary background on 
q.i. splines space. 
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Let  0, 1, , 1,:m m m m m m m X x a x x x b        be 
a partition of the interval  : ,J a b

 : max , 0H x x H   m 
 with  

1, ,
0

m j m j m m
j m

 
 as  and let  

 : 0, , 1jd j m 
0 1md d  

  be a vector of positive integers 
where  (p ≥ 2) and  . p

m

,jd p 1, ,j m 
We set 

1

0
: jj

n p d



    and define 

 : 1, ,n it i n p   
m

  as the nondecreasing sequence 
obtained from X  by repeating ,j mx  exactly jd  
times,  0, , 1.j m 

 n  is the set of knots defining the p-order poly- 
nomial spline space , np  Any spline space .S  , npS   
based on the set mX  is said to be locally uniform if: 

1, ,

1, ,

, 1, 1, ,j m j m

k m k m

x x
A k j j m

x x





   


 1  

where 1A   does not depend on  nor m . j
Let consider as a basis for the spline space , npS   the 

set of the normalized B-splines ,i p  of 
order  defined by the following recurrence relation: 

 , n 1,B i 
p

     , , 1
1 1

i pi
i p i p i p

i p i i p i

t xx t
B x B x B x

t t t t


 
   


 

  1, 1  

  1
,1

1,
.

0, otherwise
i i

i

t x t
B x  

 


 

To the aim to define q.i. spline operators we consider a  
set  of nodes T ij   belonging   1, , ; 1, ,i n j   p

n for each  to a subset of  and such 
that 

1, ,i   ,i i pt t 
ij ih   for . j h

In [7] and in [13] the following sets are suggested: 

 1 : : 1 , 1, , , 1, ,
1

i p i
ij i

t t
T t j j p i

p
  

    


  n  

2

1
: : , 1, , , 1, ,

2
i p i

ij i

t t
T t j j p i

p
        

 
  n

p

 

3 1: : , 1, , , 1, ,ij i jT t j p i p n       

p

 

4 : : , 1, , , 1, ,ij i jT t j p i p n        

1
5 : : , 1, , , 1, ,

2
i p i j

ij

t t
T j p i p n   

      p  

 

1

6 2 1 3 1

1
2

: , 1, ,

: : , : , ,

: , 1, ,
2 2

i i

i i i i

ip ppi

i n

T

p p
i n

 

   

 

 

     

 
 

  
   
 

               







   (3) 

where 1 1 ,
1

i i p
i

t t

p
   




  n 1, , ,i    with a suitable  

choice of the nodes for the remaining values of : in i

3T T5  as in [7] and in  as in [13]. 6

Let now consider the operator 
T

  ,: ,
nn pC a b S   

so defined: 

     ,
1 1

: ,
p

p ij
i j

g x B x v g
n

n i ij
 

          (4) 

where  

 
1

:
p

j

s


i

ij

ij is

s j

v 





 










             (5) 

     
  , 1 ,

1

1 ! !
: 1

1 !

j

,ij i k i j k
k

k p k
c d

p
  



 
 

 j k
  (6) 

with  , 1 1 , , ,i k kc symm t    1it  1i p   
 , 1 , 1d symm 

p 
, , i j k  j k i i j  

In the following we use in (4)   
 (see [6]). 

4, 1jd 
 , ,j m1,  0 1 4,md d    and 7ij T  , where 7T  
is defined as  in (3) with the remaining nodes suitably  6T

chosen as: 1,2 1,3 
1,4 2,4 1: , : ,

2


      

,2 ,3
,4 1,4: , :

2
n n

n n

 
n  


  . Consequently we obtain  

that the following properties for the operator  hold: n
1p- n  reproduces exactly a polynomial of    degree 

that is [6]: 

= ,n pP P P  

-as ij  chosen in T  belong to a proper subinterval 
of p

7

,i it t  ,   for all i  and  then  is a 
projection operator [14], that is:  

1, , ,j   p

p

n

,,
n

S S   .              (7) nS S

4. The Numerical Model 

The Equation (1) can be reduced to the following 
compact form  

,I u f    
             (8) 

where: 
- I  is the identity operator; 
-  is the following operator: 

1 2g g g   

: ,x

: ,x

 

where: 

      1

1 10
d ,g x k s g s s x    0,1

0,1

 

      1

2 20
d ,g x k s g s s x    

   
1

, if 0
, : .

0 if

s s x
k x s

s x
1k x   


  
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Let 

n nr I u    
  f

n

n

             (9) 

where n  is in (4). If we collocate (9) in a set of  
points, we could completely define n . Neverthless 
the choice of the set 7  of the nodes and the definition 
of ij  as in (5) allow, by the algorithm, to reduce the 
dimension of the collocation system. Consequently the 
collocation system on a set of distinct collocation points 

 chosen in  is the following 
one 

u

 1,2,k 

np
u



T



v

, ,k  0,1 ,

      0, 1, 2, ,n k n k kr I u f k         
    

(10) 

We assume as an approximation of the solution of (1) 
the following function belonging to  spline space , npS 

   ,
1 1

,
pn

n i p
i j

w x B x v u
 

   ij i  

where the iu  are the approximated values of function 
 in u 1i , obtained from the collocation system (10). 
Finally we observe that to complete the algorithm we 

must to compute the coefficients of the collocation 
system and then to evaluate the following integrals: 

     1 1 ,0
1 1

, dk
pn

n k ij ij i p
i j

u k s v u B s


 
 

   s

s

ds

ds

d

d

u

   (11) 

     1

2 2 ,0
1 1

, d
pn

n k ij ij i p
i j

u k s v u B s 
 

      (12) 

which lead to the determination of 

    1
1 ,1 1 ,10

,k p
i k iB k s B s s


         (13) 

and 

   1 1
2 ,1 2 ,10

, p
i k iB k s B s s s         (14) 

with . 1, ,i n 
The computation of (13) and (14) is carried out 

through a closed analytical form, when possible. 
Otherwise we substitute (11) and (12) with: 

     1 1 1 ,0
1 1

,k
pn

n k ij ij ij i p
i j

k u k v u B s s


  
 

   

and  

     1

2 2 2 ,0
1 1

,
pn

n k ij ij ij i p
i j

k u k v u B s s  
 

    

respectively. 

5. On the Convergence 

In this Section we study the convergence of  for 
 

nw 
.n 

Let   0,1 ,E C


   be a Banach space on   
with 

    : max ;0 1 0,1y y y t t y C


       

and the norm of the operator  : E E

1

sup
y

y
 

   

Lemma 1: Let  n  be a sequence of l.u. partitions. 
The operator   ,1

n
S 


: 0,n C p  is a bounded compact 

operator and such that for 0,1g C  

0 as .n g g n


            (15) 

Proof: 
As ij  in (6) for all  are bounded and  ,i j

 1 ij iss
s j

  


  in (5) has a minimum (see [7]), then   n

defined in (4) is a bounded operator. 
Moreover, as 7ij T   ( , for all i ), the 

thesis follows (see Theorem A in [7]). 
1, ,j   p

Furthermore it can be noted that the kernel 

    1 2, ,k x s k x s k x s   ,  

satisfies the following properties: 
1)  ,k x s  is Riemann-integrable as function of s , 

for all  0,x 1 . 

2)    1
 for  , 0,1x x  . 

0
lim , , d 0,
x x

k x s k x s s


    

3) 
 

 1

00,1
max , d .
x

k x s s


    

Consequently the operator  in (8) is a bounded 
compact operator. 

u

Moreover this condition states the existence and unique-
ness of the solution of (1) (see [15]), that is the existence 
of   1

I


  . 
Lemma 2: Let  n  be a sequence of l.u. partitions. 

Let consider the sequence of bounded and projection 
operators  in (7): n   ,0,1

npC S  , it follows that: 

0 as .n n                (16) 

Proof: As    : 0,1 0,1C C  is a compact opera-
tor and since (15) holds, then (16) is proved. 

Theorem 1: Let  n  be a sequence of l.u. partitions. 
Let consider the bounded and projection operator 

  ,: 0,1C
n

Sn p  . For all  sufficiently large (n ≥ N) 
the operator 

n
 n

     
1

,1 0,1I C C : 0  exists.  
Moreover it is uniformly bounded, that is: 

  1
sup n
n N

I M



               (17) 

and 

  1

n nu w I u u 


     n       (18) 
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uthat is  for  n

Proof: from (10) (see [15]) 
w  .n

 
 

 

1

1

1
1

n

N

I
I M

I




 








  

 







 


   

  0n nr x               (19) 

As  is bounded projection operator (19) becomes: n then (17) is proved. 
From (21) it follows (18), that is 0,nu w   

 exactly with the same rate of convergence as ,n 
nu u  does (see Lemma 1). 

0n n nI w I u          
         (20) 

From (20) we can easily obtain 

  
1

n nu w I u u 


      n





    (21) 
Remark 1. The assumption of the ij  points in 7T  

( 1, ,j

Now we must prove the existence and boundedness of 
.   1

nI


  
By simple algebraic steps it follows that 

    1

n nI I I I  
       

           (22) 

p   for all ) is decisive for the convergence. 
Moreover we underline that the choice of the 7ij

i
T   

arises from a compromise between two practical different 
constraints: maximizing the polynomial precision of the 
approximation and minimizing the collocation system 
order (see [13]). 

6. Numerical Results 
It is necessary to ensure that  

has an inverse bounded operator. 
  1

nI I


      
In what follows we present some numerical results for 
some Volterra-Fredholm integral Equations (1), by using 
the numerical method presented above. The algorithm is 
implemented by MATLAB 7.3. 

As, from Lemma 2, 0n      as , we 
can find an integer  such that 

n 
N

  1

1
supN n
n N I







  


 


  


 We consider the following equation:  

           
 

1

1 20 0
, d , d

0,1 .

x
u x f x k x s u s s k x s u s s

x

   



  ,
 

Consequently, adapting Theorem 3.1.1. in [15], we 
obtain for  n N

In Tables 1 and 2 we show the results obtained with 
the choice     1 2

1 2, ,k x s k x s s x
     and  

 1 , logk x s s x  ,  2 , 1k x s 
   

 
11

1

1

1
n

N

I I
I


 




        

  


   


 

and we can conclude that    
11

nI I
   

      

,  respectively, and λ = 
1. In particular, the polynomial exactness of the method 
till third degree is tested. 


In the interval [0,1]  we choose  points 11m  jx  

 1, ,9j   , all simple. 
  

exists and it is bounded. 
Considering that from (22) 

 

     

1

11 1

n

n

I

I I I



 



 



       



  

 

   

The unknown function is approximated in 13 nodes 
belonging to  0,1 . For brevity in Table 1 we indicate 
the mean of the absolute values of the errors evaluated in 
the interval. 

In Table 3 we show the results obtained with the 

choice   1 2

1 , ,  2 , 0k x s 
 

k x s s x
     ,   ,u x x  

 
2

f x x x


   with different number of nodes in  and consequently 

 

Table 1.    k x s k x s s x
1 2

1 2, ,
    . 

 f x   u x  ERR  

  3 22 3 1 1 2 4x x x x       x 164.45 10  

  3 22 7 1 1 6 5 8 1 2 5 32 5x x x x x x       
7 2  x3 179.08 10  

  4 2 32 9 1 1 8 7 48 35 64 1 2 35 256 35x x x x x x x        
7 2  x4 51.88 10  
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Table 2.  1 , logk x s s x  ,  2 , 1k x s  . 

 f x   u x  ERR  

2 logx x x   1 154.44 10

 2 3 log 11 6 3 1 3x x x    x2 151.02 10  

 4 5 log 137 60 5 1 5x x x    x4 57.41 10  

 

Table 3.   1 2

1 , ,  2 , 0k x s k x s s x
    . 

x 11m   21m   41m   101m   

0.1 37.6 10  31.1 10  57.1 10  66.9 10  

0.5 56.6 10  51.1 10  63.4 10  78.4 10  

1 51.8 10  63.0 10  61.2 10  73.2 10  

 
[0,1] . The results denote that the use of the cubic q.i. 
splines with a suitable densification of the nodes near  
using the graded mesh in [16], leads to absolute errors of 
the same order as the results obtained in [16] with the 
choice of quadratic nodal spline and the same meshes. 

0,
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