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ABSTRACT 

Using our proof of the Poincare conjecture in dimension three and the method of mathematical induction a short and 
transparent proof of the generalized Poincare conjecture (the main theorem below) has been obtained. Main Theorem. 
Let Mn be a n-dimensional, connected, simply connected, compact, closed, smooth manifold and there exists a smooth 
finite triangulation on Mn which is coordinated with the smoothness structure of Mn. If Sn is the n-dimensional sphere 
then the manifolds Mn and Sn are homemorphic. 
 
Keywords: Compact Smooth Manifolds; Riemannian Metric; Smooth Triangulation; Homotopy-Equivalence;  

Algorithms 

1. Introduction 

We can fix some Riemannian metric g on a manifold Mn 
of dimension n which defines the length of arc of a 
piecewise smooth curve and the continuous function 
 ; x y  of the distance between two points , nx y M . 

The topology defined by the function of distance (metric) 
  is the same as the topology of the manifold Mn [1]. 

In Section 1, using a smooth triangulation considered 
in the main theorem and a Riemannian metric we con-
struct an algorithm of extension of coordinate neighbor-
hood. With the help of this algorithm we get that every 
compact, connected, closed manifold Mn of dimension n 
having the triangulation above can be represented as a 
union of a n-dimensional cell Cn and a connected union 

–1nK of some finite number of simplexes of the triangu-
lation having dimension less or equal . A suffi-
ciently small closed neighborhood of 

 –1n
–1n


K  is called a 

geometric black hole [2]. Simplexes with boundaries can 
be retracted i.e. a decomposition 1nn nM C K      can 
be obtained where 1nK   contains less simplexes than 

1nK   does. 
In Section 2, we consider the proof of the main theo-

rem consisting of the realization of several algorithms. 
Using the method of mathematical induction and the al-
gorithms we retract all the simplexes from 1nK   to a 
point x0, therefore a decomposition  0

n nM C 
nS
x  is 

obtained and Mn is homeomorphic to the sphere . 

2. On Algorithm of Extension of Coordinate 
Neighborhood  

1) Let Mn be a connected, compact, closed and smooth 
manifold of dimension n and Cn be a cell (coordinate 
neighborhood) on Mn. A standard simplex ∆n of dimen-
sion n is the set of points  de-
fined by conditions  

 1 2, , , n
nx x x x  R

1 20 1,  1, ,  1.i nx i n x x x         

We consider the interval of a straight line connected 
the center of some face of ∆n and the vertex which is 
opposite to this face. It is clear that the center of ∆n be-
longs to the interval. We can decompose ∆n as a set of 
intervals which are parallel to that mentioned above. If 
the center of ∆n is connected by intervals with points of 
some face of ∆n then a subsimplex of ∆n is obtained. All 
the faces of ∆n considered, ∆n is seen as a set of all such 
subsimplexes. Let  nU D  be some open neighborhood 
of ∆n in Rn. A diffeomorphism  

    : n п nU М   n 

n

  is called a singular n- 
simplex on the manifold Mn. Faces, edges, the center, 
vertexes of the simplex   are defined as the images of 
those of ∆n with respect to  . 

The manifold Mn is triangulable [3]. It means that for 
any ,  0l l n 

: l
 such a finite set  of diffeomor-

phisms 

l
пМ    is defined that  

a) Mn is a disjunct union of images ;  Int ,  Фl l  

Copyright © 2013 SciRes.                                                                                  AM 



A. A. ERMOLITSKI 1362 

b) if  then  for every i where 

i  is the linear mapping transferring the 
vertexes  of the simplex  in the ver-
texes  of the simplex . 

Фl 
k  

0 , ,v 
ˆ, , ,iv v 

1l
i Ф  

1

1:  k

v
kv 

,

1k
k0 k

We suppose that there exists a smooth finite triangula-
tion on Mn which is coordinated with the smoothness 
structure of Mn and fix the triangulation. Such triangula-
tions exist for manifolds of dimension 2 or 3. 

2) Let 0
n  be some simplex of the fixed triangulation 

of the manifold Mn. We paint the inner part 0Int n  of the 
simplex 0

n  white and the boundary 0
n  of 0

n  black. 
There exist coordinates on 0Int n  given by diffeomor-
phism 0 . A subsimplex 0

1
01
n n    is defined by a 

black face 1
01 0
n n    and the center 0  of с 0

n . We 
connect 0  with the center  of the face с 0d 1

01
n   and 

decompose the subsimplex 01
n  as a set of intervals 

which are parallel to the interval 0 0 . The face с d 1
01
n   is 

a face of some simplex 1
n  that has not been painted. 

We draw an interval between 0  and the vertex  of 
the subsimplex 1

d 1v
n  which is opposite to the face 1

01
n   

then we decompose 1
n  as a set of intervals which are 

parallel to the interval 0 1 . The set 01 1d v n n   is a union 
of such broken lines every one from which consists of 
two intervals where the endpoint of the first interval co-
incides with the beginning of the second interval (in the 
face 01

1n  ) the first interval belongs 01
nto   and the 

second interval belongs 1
nto  . We construct a homeo-

morphism (extension) 1
01 :  n

01 01 1
nInt Intn   . Let 

us consider a poin 01
n

 
t x Int  and let x belong to a bro-

ken line consisting of two intervals the first interval is of 
a length o 1f s  and the second interval is of a length  

2

of
s  and let x be at a distance of s from the beginning of 
the first interval. Then we suppose that  1

01 x  belongs  

to the same broken line at a distance of 1 2

1

s s
s

s


  from  

the beginning of the first interval. It is clear that 1
01  is a 

homeomorphism giving coordinates on 1 01 Int n n  . 
We paint points of  01 1Int n n    white. Assuming the 
coordinates of points of white initial faces of subsimplex 

01
n  to be fixed we obtain correctly introduced coordi-

nates on 0 1Int n n    . The set 1 0 1
nn    is called 

a canonical polyhedron. We paint faces of the boundary 

1  black.  
We describe the contents of the successive step of the 

algorithm of extension of coordinate neighborhood. Let 
us have a canonical polyhedron 1k   with white inner 
points (they have introduced white coordinates) and the 
black boundary 1k  . We look for such an n-simplex in 

1k  , let it be 0
n  that has such a black face, let it be 

1
01
n   that is simultaneously a face of some n-simplex, let 

it be 1
n , inner points of which are not painted. Then we 

apply the procedure described above to the pair 0
n , 1

n . 
As a result we have a polyhedron k  with one simplex 

more than 1k   has. Points of Int k  are painted white 
and the boundary k  is painted black. The process is 
finished in the case when all the black faces of the last 
polyhedron border on the set of white points (the cell) 
from two sides. 

After that all the points of the manifold пМ  are 
painted in black or white, otherwise we would have that 

0 1
пМ n nM M  (the points of 0

nM  would be painted 
and those of 1

nM  would be not) with 0
nM  and 1

nM  
being unconnected, which would contradict of connec-
tivity of пМ .  

Thus, we have proved the following. 
Theorem 1. Let пМ  be a connected, compact, closed, 

smooth manifold of dimension n. Then 1п n nМ C K   , 
1n nC K   

–1п
, where  is an п-dimensional cell and пС

K  is a union of some finite number of -sim- 
plexes of the triangulation. 

 –1п

3) We consider the initial simplex 0
n  of the triangu-

lation and its center 0 . Drawing intervals between the 
point 0  and points of all the faces of 0

с
с n  we obtain a 

decomposition of 0
n  as a set of the intervals. In 2) the 

homeomorphism  : 0  was constructed and Int n  пС
  evidently maps every interval above on a piecewise 
smooth broken line   in Cn. We denote  0\пМ cnM . 

nM
п
 is a connected and simply connected manifold if 

М  is that. Let  0;1І  , we define a homotopy 
 ; у  ;: : х tn nMF M І F x t     in the following 

way 
a)  ;F z t z  for every point ; 1nz K
b) if a point x belongs to the broken line   in  

and the distance between x and its limit point 

пС
1nz K   

is  s x  then  ;у F x t  is on the same broken line 
  at a distance of    1 t s x  from the point z. 

It is clear that  ;0F x х ,  ;1F x z  and we have 
obtained the following. 

Theorem 2. The spaces nM  and  are homotopy- 
equivalent, in particular, the groups of singular homolo-
gies 

–1пК

 n
kH M  and  1n

kH K  are isomorphic for every 
k.  

Corollary 2.1. The space –1пK  is connected and if Mn 
is simply connected then  is simply connected too. –1пК

Remark 1. The white coordinates are extended from 
the simplex 0

n  in the simplex 1
n  through the face 

1
01
n   hence 1

01
nInt   has also the white coordinates. On 

the other hand there exist two linear structures (intervals, 
the center etc.) on 01

n  induced from 0
n  and 1

n  re-
spectively. Further, we set that the linear structure of 

1
01
n   is the structure induced from 0

n . 
Remark 2. In the process of getting of  in 2) we 

can construct a maximal tree L connecting by intervals 
all the centers of the n-simplexes of the triangulation via 
the centers of some white faces. 

nC

Conversely, if we have such a maximal tree L con-
necting by intervals all the centers of the n-simplexes of 
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the triangulation via the centers of some faces (any from 
two possible centers of a face can be chosen) then we can 
extend white coordinates from any simplex 0

n  on the 
maximal cell Cn as it was shown in 2). Thus, the maximal 
tree L defines the maximal cell C3 and white faces. 

4) Definition 1. a) A simplex 1 1, 1k nK k n      
is called free if it has at least one free face 1k   i.e. 
such a face that it is not a face of any other k-simplex 
from 1nK  . 

b) An edge 1
0 1x x   is called semi-isolated if it is 

not an edge of any simplex from 1nK  . A semi-isolated 
edge 1  is called isolated if it is free. 

Let us have a free simplex 1k nK   with some free 
face 1k  . We consider such a polyhedron   that   
is the set of all n-simplexes having common point with 

1k  . 
Proposition 3. We can redistribute coordinates of 

white points of the polyhedron   (retract the free sim-
plex k ) i.e. construct the corresponding mapping   
in such a way that the following conditions are fulfilled: 

a) all the points of Int  are painted white i.e. have 
new white coordinates, 

b) white coordinates of points of boundary faces of the 
polyhedron   are not changed. 

Proof. a) We consider the unit disk D2 having the cen-
ter in the origin  of the coordinate system  
of  and the radius . 

0O y 1 2Ox x
2R 0 1y y

 

x1

x2

z1z2
z3z4

1

y2y1 y0

O 1

D2

 
 

We define a mapping  by the following 
way: 

2: D D  2

      0 2 1 2 0 1 2 2,  ,  ;y y y y y y y y       
 for any chord 1 4z z  which is parallel to 0  1y y

 1 2 1 3,z z z z    2 3 ,z z    1 1,z z    2 4z z   
z z ,  3 4 4 4.z z   

It is clear that   maps  onto  
and 

2t \D y y0 1In 2IntD
id   on the boundary circle of . 2D

–1 2:kD xb) We consider the unit disk 1 2 1k
2x 2x  

O
–2

1:k
kSD x 

  
 having the center in the origin  of the coordinate 

system  and the semidisk 
1

1 2 1kOx x x  0 , 
, . By inductive hypothesis 

we assume that such a mapping  has 
been constructed that 

2kx  0 2 2
1 2x x  2

2 1kx  

1 1: kD D   k

  maps  onto 
1

1Int \k kD SD 2

Int kD   and id   on the boundary of . 1kD 

2 2
1 2:kD x xFurther, we consider the unit disk    

2 1kx   in the coordinate system , the 
semidisk 1k k

1 2 kOx x x
–1kSD x: 0  0, x 

k
,  

and the family of disks t k , 

2k

2 2 2
1 2 kx x x   

1 2 2 2
1 2D x x x  

1 1
: 1

x t  ,  1;1 t



. We denote  
By inductive hypothesis there exists such the family of 
mappings 

2 1k k
t tSD D SD   1 .k

t   : 1;11 1k kD D 
t t t  that every t  

maps 21 \k
tD SDInt k

t
   onto 1In  and tt k

tD  id   on the 
boundary of 1k

tD  . Union of all t  gives the mapping 
, : k kD D   maps 1In  onto  and t \kD S kD  Int kD

id   on the boundary of . kD
Thus, the mapping   is constructed for any nN  

by the method of mathematical induction. 
c) It is clear that there exists such a homeomorphism 

 that :   nD    nD    and  k nSD  1 . 
We define the mapping 1

      then  

 : Int \ Intk     is a required homeomorphism 
introducing new white coordinates in Int . 

QED. 
Remark 3. In is clear that the rebuilt complex 1nK   

is connected and simply connected because of a homo-
topy-equivalence. 

5) We assume that in the process of painting free sim-
plexes white by the Proposition 3 we get a representation 

1,  K C 1n n nM C K    , where K1 is the connected 
union of black edges of the triangulation. Since the proc-
ess of painting free simplexes white does not influence 
simply connectivity of a space that has been obtained 
every step then K1 is a tree if the complex 1nK   is sim-
ply connected. Painting isolated edges of K1 white by the 
Proposition 3 we have got unique black point x0 as result. 
Thus, we obtain a representation  0 ;n n nM C B x   , 
where  0 ;nB x   is an open geodesic ball with the cen-
ter in x0 and of a radius  . The manifold Mn is homeo-
morfic to the sphere Sn by the following lemma 4. 

Lemma 4 [1]. If a topological manifold Mn is a union 
of two n-dimensional cells then Mn is homeomorfic to the 
sphere Sn. 

3. Proof of the Main Theorem 

The proof has a combinatorial nature and assumes the 
realization of a number of algorithms. We consider that 
step by step. The initial complex 1nK 

n

 is assumed to be 
connected, simply connected and without free simplexes. 

1) Proposition 5 (opening an input). Let 1  be 
some n–simplex of the triangulation having a black face 

01
1n 1nK   . Then 1

01
nInt   can be repainted white to get 

a new decomposition 1nn nM C K  n, where 1K   is 
a new connected and simply connected complex. 

Proof. The face 1
01
n   is the common face of n-sim- 
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plexes 0
n  and 1

n . We cansel the white painting of 
points of 1

n  and paint the n-simplexe 1
n  black. Re-

painting of 1
n  black brings to a gap of the maximal tree 

L (see the Remark 2) on n subtrees  or less 
where the center of 0

1 2, ,, nL L L
n  belongs to 1 . Further, we ex-

tend white coordinates from 0

L
n  into 1

n  through the 
face 1

01
n 

n
 as it was shown in 2), 1 and connect the cen-

ters of 0 , 01
1n  , 1

n  by intervals. Those centers be-
long to the subtree 1 . Other faces of 1L n  are black and 
they are simultaneously some faces of other n-simplexes. 

We consider the following cases. 
a) 1  or we have no a gap. The black faces of L  L

1
n  remain black. 
b) We have got k subtrees  2, n1 2, ,L L L k

n

, k  
where the subtrees 2  define cells called dead 
ends. We repaint the closures of the dead ends black. 
Further, we are looking for a black face of 1

, , kL L

  which is 
simultaneously a face of other n-simplex with the center 
from . This face remains black. For every subtree  1L

 2,k

L

iL i   we consider a n-simplex with the center  

from i  that has a common black face 1
1
n
i   with 1

n . 
We extend white coordinates from 1

n  through 1
1
n
i   

along the subtree i  as it was shown in 2), 1 and repaint 
inner points of this face and points of the corresponding 
dead end white. Further, we connect by intervals the 
centers of 

L

1
1
n
i   with the centers of 1

n  and the other 
simplex connecting  and . 1 i

After repainting all the dead ends white we obtain a 
new maximal tree L defining a new maximal cell . 
Retracting all the free simplexes by the Proposition 3 a 
new rebuilt complex 

L L

3C

1nK   is obtained which is con-
nected and simply connected because of homotopy- 
equivalence. 

QED. 
Remark 4. A broken line has been obtained in the 

proof above which connects by intervals the centers of 0
n , 

1
01
n  , 1

n . This broken line is a part of the subtre 1L  
of the maximal tree L. Let n-simplexes 0

n
e 

  and 1
n  

have a common e 1
01
n fac    having the white inter part 

1
01t nand In    has no common points with the maxim  

tree L . Then we can connect the cent s o 0
n

al
er  f  , 1

01
n  , 

1
n  by the broken line by the method considered in the 

proof above. 
2) We assume the following inductive hypothesis: 
The generalized Poincare conjecture (the main theorem) 

can be proved by the method considered in [4] for di-
mension n–1 i.e. the representation  1 1n n

0M C x   
can be obtained by the algorithm from 2), 1 and by the 
Propositions 3, 4, 5. 

It is obvious for  (see 5), 1) It is proved for 
 in [4]. 

–1n 2
–1n  3
We choose a small ball  n

0B x  with the center in a 
vertex x0 which is diffeomorphic to a small ball in   nR

and call a trace of k-simplex  1,k k n    with a vertex  

in x0 its intersection 1k   with the sphere  1
0

nS x  
(smooth manifold) which is the boundary of  0

nB x . 
The sphere  1

0
nS x  is supposed to be transversal to all  

the k-simplexes  1, nk   with the vertex x0. Such a  

sphere  1
0

nS x  exists because of the smoothness of 
the triangulation of Mn [5,6]. All other vertexes of the 
triangulation are supposed to be out of . The ball  0

nB x
 0  can be chosen in such a vay that every edge 

with the endpoint x0 has only one point of the intersec-
tion with 

nB x

 x1nS 
0  and every k-simplex k  with the 

vertex x0 has only one connected component 1k   of 
 1

0
k nS x  . Let  0

kBs x  be the set of black k-sim-  

plexes with x0 as their vertex and .     0 0
1

k

k

Bs x Bs x



n

There exists one to one correspondence between the set 
of simplexes having a vertex (endpoint) x0 and the set of 
their traces on  1

0
nS x  therefore all steps of the algo-

rithm below bring to the corresponding steps on the 
sphere  0x1nS   and the converse is true. In particular, 
a process of the construction of a maximal tree 1L  on 
the sphere  1

0S xn  (see the Remark 2) brings to the 
construction of a tree L1 connecting by intervals all the 
centers of the n-simplexes with x0 as their vertex via the 
centers of some white their faces. Every such the face has 
x0 as its vertex. 

Proposition 6. The complex 1nK   can be rebuilt in 
such a vay that  0Bs x  contains only one 1-simplex 

0 1x x . 
Proof. We consider the smooth triangulation of 
 1

0
nS x  induced by all the simplexes with the vertex 

0x  and apply to this triangulation the algorithm from 2), 
1 taking any  –1n -simplex 1

0
n   as initial one where 

1
0
n   is the trace of 0

n  with a vertex 0x . Let 1
0
n   be 

the trace on  x1
0

nS   of 1
n  with a vertex x0 where 

1
1
n   has a common face with 1

0
n  . We repaint 1

n  
black and apply to it the proposition 5 (the remark 4) 
obtaining the canonical polyhedron 1 1

0 1
n n     on 

 1nS 
0 . Further, we iterate the algorithm. Every step 

of the algorithm on 
x

 1nS 
0  implies the transformation 

of 
x

 0xBs  and 1nK   by the proposition 5 (the remark 
4). The maximal tree 1L  on  and the corre-
sponding subtree 1  have been constructed in the end. 
Further, free black simplexes on  and the cor-
responding free simplexes from  can be annihi-
lated by the propositions 3, 4, 5. By the inductive hy-
pothesis only one black point remains on 

 1
0

nS x

1
0

nS 

 0Bs x

L
x



 1
0

nS x

0 1

 in 
the end. This point is the trace of an edge x x  which is 
isolated. 

QED. 
Remark 5. It is clear that if we paint black one inner 

vertex in the canonical polyhedron then we get two black 
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points on  1
0

nS x  in the end of the algorithm. 
3) We consider a small ball  with the center  1

nB x

1x  and the boundary  1x1nS   which is similar to 

0 . The centers of all the n-simplexes 
having 0 1

    1
0

n nB x S x 
x x

 1
1x

 as their edge belong to the subtree L1 and 
the union of all the traces of this n-simplexes on 

 forms the canonical polyhedron on nS   1
1

nS x  
having one black inner vertex (the trace of isolated edge 

0 1x x
nS 

). We apply the Proposition 6 (the Remark 5) to the 
 and . As a result  consists of 

two semi-isolated edges 
 1

1x Bs  1x  1xBs

0 1x x  and 1 2x x . 
Further, we iterate the process getting a broken line  

0 1 kx x x  and for 1, 1i k    consists of two   iBs x

black semi-isolated edges 1i ix x  and 1i ix x 



. We remark 
that the process of the annihilation of black simplexes in 

 cannot bring to an appearance of a black sim-
plex having a generic point with 

 iBs x
–1j jx x j  i . Really, 

otherwise such a black simplex gives an opportunity to 
connect the endpoints 1ix   and ix  of the semi-isolated 
edge 1i i x x  by a black curve which is different from 

1i ix x . As a result a black loop with the semi-isolated 
edge 1i ix x  as its part has been obtained and the loop is 
not contractible that is a contradiction to the simply con-

nectivity of 1nK  . 
The complex 1nK   is connected therefore the broken 

line 0 1x x 
1n

kx  contains all the possible black vertexes 
from K   at some step of the algorithm i.e. we come to 
5, 1. 

By the method of mathematical induction the main 
theorem is true for every , 1n n . N  
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