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ABSTRACT 

The paper is going to give a quantitative computational method for “Landslip Orientation of a body isolated from bed 
rock in Mountain” only with spatial analytic geometry. The paper gives computational formulae in proper order for only 
landslip plane, just two landslip planes and just three landslip planes, and gives numerical examples. And the paper 
gives a general computational model for landslip orientation of m landslip planes. The author puts forward “Un-allowed 
Straight Angle Law”, “Critical Straight Angle Law” and “Allowed Straight Angle Law”. Finally, the author gives a 
project expression of a landslip plane on unit sphere. 
 
Keywords: Landslip Plane; Normalization of Horizontal Project; Un-Allowed Straight Angle Law; Critical Straight 

Angle Law; Allowed Straight Angle Law; Project Expression According to Unit Sphere 

1. Introduction 

In paper [1], Professor Shi Gen Hua found that the land- 
slip of an isolated rock body is only able to produce 
along finite planes. If one parallel moves the finite planes 
passed through origin O, then he will find on the unite 
sphere centered O they form a polygon constructed by 
their up sides. Let S denote the lowest point (or points) of 
the polygon, if the perpendicular height of point S is 
lower than the equatorial plane of the sphere, then OS 
denotes the landslip orientation. In this paper, in order to 
convenient to engineers, the author provides mainly a 
quantitative computational method to solve OS. There- 
fore we suppose that 1 2, , ,    and n  are n possi- 
ble landslip planes, where n is a natural number. Their 
equations are as follows1: 

1 1 1 2 2 2, , ,

and n n n

z a x b y z a x b y

z a x b y

     
  

: :

:
      (1) 

For convenient and united, we let x axis point to east, y 
axis to north, and z axis perpendicularly to up orientation.  

Professor Shi originally used stereographic projection2 

to transfer the planes onto the equatorial plane, and he 
applied topologic method to prove the existence of the 
orientation of landslip. Furthermore, Shi prevented land- 
slip by piling to withstand landslip along the steepest 
decent orientation. 

2. To Analyze the Landslip Orientation in  
the Case of Only One Landslip Plane 

The basic supposition and deduction of compute formu- 
las for the Case of Only One Landslip Plane are as fol- 
lows.  

Here suppose there is only one landslip plane , 
whose equation is: z ax by  , where    , 0,0a b  . 
Its normal is  , , 1a b n . And the intersection line L 
of  and the contour plane z  constant C satisfies 
ax by c  . The normal of z c  is  0,0,1c n . Let 
the orientation of intersection L be 1  then it holds 

 det 1 , ,0

0 0 1
c a b b a

 
      
 
 

i j k

l n n        (2) 

Let s  denote the steepest ascent orientation, then it 
holds 

1Refer to [3], pp. 10-11, general equation of a plane. 
2For stereographic projection, please refer to p. 459 in EDM [2]. 
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 2 2det 0 , ,

1

b a a b a b

a b

 
       
  

i j k

s l n      (3) 

Let 2 2a b   , cosa    sinb    then the 
steepest ascent orientation after normalization of hori-  

zontal project is denoted by 0 


s
s , then 0s  is ex- 

pressed as follows 

 0 cos ,sin ,  s , cos
a


 , sin
b


      (4) 

where  denotes the horizontal angle in the xy plane dur- 
ing the steepest ascent,  the ascent gradient. From ab,  

one may compute actg
b

a
. For the signs of  ,a b , we 

have the following eight cases: 

               ,0 , , , 0, , , , ,0 , , , 0, , ,             (5) 

If signs are  ,  , then actg
b

a
  , in the fourth quad-  

rant. Let angle  denote the steepest ascent orientation. 
The steepest decent angle is 180T       , satis- 
fies 0 , 2T    . The following open interval 

 90 , 90 ,
2 2

          
 

            (6) 

denotes the angle interval on horizontal plane, in which 
does not allow slip, called un-allowed interval. However 
the open interval 

 90 , 90 ,
2 2

T T T T          
 

        (7) 

denotes the angle interval on horizontal plane, in which 
allows slip, called allowed interval.  

We explain basic properties for the case of Only One 
Landslip Plane. 

Because the normal of the decent slip plane is 
 , , 1a b n , and the steepest ascent orientation is 
 2 2, ,a b a b s , the horizontal projects of n  and s  

are equal to each other, i.e. equal to  ,a b . The orienta- 
tion of intersectional line of the contour plane z  C and 
 is  , ,0b a l , whose horizontal project orientation 
is b a, which is perpendicular to horizontal project of 
s .  

From ab one obtains actg
b

a
. We have supposed  

that  is an angle in xy horizontal plane for the 
steepest ascent case. If the signs of ab are , then  

actg
b

a
  , in the first quadrant; if the signs of ab are 

, actg
b

a
   , in the third quadrant. If the signs 

of ab are , then actg
b

a
   , in the second 

quadrant. If the signs of ab are , then actg
b

a
  , 

in the fourth quadrant. 
The steepest decent angle is 180T       . In 

the horizontal plane the un-allowed open interval is  

,
2 2

       
 

. The allowed interval is  

,
2 2

T T T       
 

. The intersectional line L of them 

is their boundary line.  
Because the line L is horizontal, the weight is not able 

to move the isolated rock. However, if there is wind force, 
water force or earth force to move it, possibly it is able to 
produce horizontal movement. So the line L is critical line.  

We have known that the normal of the slip plane  is 
 , , 1a b n , whose horizontal project is ab. The 

horizontal project orientation of intersectional line L is 
ba, which is the critical orientation between   and 

T . The horizontal project of  is resolved to be 
TL  .  

However, the slip orientation 0s  after normalization 
of horizontal project had not been mentioned in Shi’s 
paper [1].  

The first case of plane division is as follows. When 
0a   and 0b  ,  is in the first quadrant of xy plane, 

the decent orientation from north-east points to south- 
west. The support must from south-west points to north- 
east. If  denotes the angle of gradient, then we have  

tg  , and actg  .          (8) 

where   denotes the falling gradient of up support,  
denotes the angle of altitude.  

The included angle between plane  and horizontal 
plane 0z   is equal to . The intersection line between 
plane  and horizontal 0z   is 0ax by  .  

Especially, when 1a b  , the steepest ascent angle  

45
4

 
  , the steepest decent angle  

5
180 225

4
T   
        , and 2  , the angle 

of gradient actg 2 54 45    . The allowed angle 

interval is   3 7
135 ,315 ,

4 4

    
 

  . And the angle inter- 

val   3
45 ,135 ,

4 4

     
 

   is un-allowed to slip.  

Now 45  , the slip orientation points from north- 
east to south-west. In the practice, at the risk area, the 
support orientation should point from south-west to 
north-east according to the horizontal angle , and to the 
angle of gradient  by piling to withstand landslip. 
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3. To Analyze the Other Seven Cases for the  
Plane Division in the Case of Only One  
Landslip Plane 

The second case of plane division is as follows. When  

0a   and 0b  , 90
2

 
  , 

3

2 2
T  
    , the  

slip orientation points from north to south. The support 
orientation should point from south to north. If  denotes 
the angle of gradient, then tg b   , and actg  . 
 is ascent gradient,  is ascent angle. The un-allowed 
angle interval is 

 , 0,
2 2

       
 

           (9) 

The allowed angle interval is 

 , , 2
2 2

T T        
 

         (10) 

The third case of plane division is as follows. When  

0a   and 0b  , 
2


   , in the second quadrant: 

3
2

2
T

   , the slip orientation is from north-west to  

south-east. The support orientation is from south-east to 
north-west. If  denotes the angle of gradient, then  

2 2tg a b    , and actg  , where  is the gra-  

dient of ascent support,  is ascent angle.  
The fourth case of plane division is as follows. When 

0a   and 0b  ,    , at x axis; 0T  . The slip 
orientation is from west to east. The support orientation 
is from east to west. If  denotes the angle of gradient, 
then tg a   , and actg  , where  is ascent 
support gradient,  is ascent angle. The un-allowed in-  

terval is 
3

, ,
2 2 2 2

            
   

; the allowed interval 

is , ,
2 2 2 2

T T              
   

. 

The fifth case of plane division is as follows. When  

0a   and 0b  , 
3

2
 

   , in the third quadrant; 

0
2

T 
  , the slip orientation is from south-west to  

north-east. The support orientation should be from 
north-east to south-west. If  denotes the angle of gradi-  

ent, then 2 2tg a b    , and actg  , where  

is ascent support gradient,  is ascent angle.  
The sixth case of plane division is as follows. When  

0a   and 0b  , 
3

2
 
 , at y axis; 

2
T 
 . The slip 

orientation is from south to north. The support orienta-  
tion should be from north to south. If  denotes the angle 

of gradient, then tg b   , and actg  , where  
is ascent support gradient,  is ascent angle. The un-al-  

lowed interval is  , , 2
2 2

        
 

; the allowed 

interval is  , 0,
2 2

T T       
 

. 

The seventh case of plane division is as follows. When  

0a   and 0b  , 
3

2
2


   , it is in the fourth quad-  

rant, and the slip orientation is from south-east to 
north-west. The support orientation should be from 
north-west to south-east. If  denotes the angle of gradi-  

ent, then 2 2tg a b    , and actg  , where  

is ascent support gradient,  is ascent angle. 
The eighth case of plane division is as follows. When 

0a   and 0b  , 0  , at x axis, and T   . 
The slip orientation is from east to west. The support 
orientation should be from west to east. If  denotes the 
angle of gradient, then tg a   , and actg  ,  
denotes the ascent gradient of supporting,  is the angle 
of ascent supporting. The un-allowed interval is  

, ,
2 2 2 2

              
   

; the allowed interval is 

3
, ,

2 2 2 2
T T            

   
. 

4. The Case of Just Having Two Slip Planes 

Now we suppose that 1  and 2  are two possible 
slip planes. If 1  and 2  are parallel each other, and 
because the two planes have a common point: , 
they must be coincident, and turn to be the case of only 
one slip plane, as stated in the former section. Therefore 
we only discuss the case of that the two slip planes 1  
and 2  have an intersectional line. Suppose the equa- 
tions of the two slip planes are as follows; 

Suppose 1 1 1: z a x b y   , 2 2 2: z a x b y   . The 
two planes have a common point: . Because we 
have supposed that 1  and 2  have an intersectional 
line 1,2L , then 1 2a a  and 1 2b b  are not able to hold 
simultaneously. Because of the normal of 1  is 

 1 1 1, , 1a b n , and the normal of 2  is 
 2 2 2, , 1a b n . It follows that the orientation 1,2l  of 

1,2L  is denoted by3 

 

1,2 1 2 1 1

2 2

1 2 2 1 1 2 2 1

det 1

1

, ,

a b

a b

b b a a a b a b

 
     
  

     

i j k

l n n
         (11) 

3Refer to book [3], pp. 44-45, in the item “vector product of vectors”.
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Let    2 2

1,2 2 1 1 2b b a a     , after normalized 
horizontal project we have 

 1,2
1,2 1,2 1,2

1,2

cos ,sin ,h 



l

          (12) 

where 

   

 

2 1 1 2
1,2 1,2

1,2 1,2

1 2 2 1
1,2

1,2

cos , sin ,

and

b b a a

a b a b
h

 
 



 
 




     (13) 

Let 1,2,0l  denote the slip orientation under normalize- 
tion horizontal project, then it holds the following for- 
mula 

 1,2,0 1,2 1,2 1,2 1,2sgn cos ,sin ,h h  l        (14) 

Or in detail, when 1,2 0h  , it holds 

 1,2,0 1,2 1,2 1,2cos ,sin ,h  l ,          (15) 

while the slip horizontal angle is 1,2 1,2
T    .  

When 1,2 0h  , it holds 

 1,2,0 1,2 1,2cos ,sin ,0  l ,           (16) 

while it is not able to slip, called critical case. 
When 1,2 0h  , it holds 

 1,2,0 1,2 1,2cos ,sin ,0 l ,           (17) 

while the slip horizontal angle is 1,2 1,2
T   

And the absolute value 1,2 1,2 1,2sgnh h h   denotes 
the decent gradient of intersection line 1,2L . Besides if 

1,2a  denotes the ascent angle for slip, then it holds 

1,2 1,2tga h , 1,2 1,2actg h a          (18) 

5. Example for Just Two Slip Planes 

Suppose 1 : z x y    2 : 3z x y    . For  

1 1 1: 1a b   . 1 4
 
 , The un-allowed interval is 

 1

3
, 0.785398, 2.35619

4 4

      
 

.  And  1 2  , 

the ascent angle 1 actg 2 0.955317   , 1  is in the 

first quadrant in xy horizontal plane. The slip orientation  

is from north-east to south-west. 1

5

4
T 
  is the steep-  

est decent horizontal angle. The support orientation 
should be from south-west to north-east. The allowed  

interval is  1

3 7
, 2.35619,5.49779

4 4
T      

 
.  

For 2 2 2: 1, 3a b    . The signs are , 1 10  , 

290 180   is in the second quadrant, 2

10
cos

10
   , 

2

3 10
sin

10
  , 2tg 3   , the slip orientation is from  

north-west to south-east. The support orientation is from 
north-west to south-east.  2 actg 3 1.89254    . The 
un-allowed interval is  2 0.321751,3.46334  ; the 
allowed interval is  2 2.81985,0.321751T   . The as-  

cent angle 2 actg 10 1.26452   .  

The intersection of two allowed interval is as follows 

 1,2 1 2 3.46334,5.49779T T T             (19) 

We have supposed that the intersectional line of 1  
and 2  is 1,2L , where 2 1 2b b  , 1 2 2a a  , it fol- 
lows 

 1,2 1 2 1 1

2 2

det 1 1 1 1 2, 2, 4

1 1 3 1

a b

a b

   
            
        

i j k i j k

l n n

(20) 

   2 2

1,2 2 1 1 2 2 2b b a a              (21) 

 2 1
1,2

1,2

2
cos

2

b b





              (22) 

 1 2
1,2

1,2

2
sin

2

a a





               (23) 

1,2tg 1  ; 1,2 45 0.78539815
4

 
   .    (24) 

And the decent gradient 

 1 2 2 1
1,2

1,2

2 0
a b a b

h



            (25) 

Refer to Equation (15), because 1,2 0h  , it holds: 

 1,2,0 1,2 1,2 1,2cos ,sin ,h  l          (26) 

while the steepest slip horizontal angle is  

1,2 1,2

5
3.92699075

4
T  
      

Very fortunately, here the slip orientation of 1,2L  is: 
 1,2,0 1,2 1,2 1,2cos ,sin ,h  l , which coincides with 0s  

when 1a b  , by using the formula in Equation (4) 
according to condition 1a b  . Note that here 1  is 
namely the plane   when 1a b  . The steepest de-  

cent angle is 1,2 1,2

5
225 3.92699075

4
T  
      ,  

and 1 2  , the ascent angle is  

1,2 actg 2 0.955317 54 45'     . The allowed interval  

is   3 7
135 ,315 ,

4 4

    
 

  . And the un-allowed interval 
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is   3
45 ,135 ,

4 4

     
 

  .  

 1,2 1 23.92699075 3.46334,5.49779T T T     .  

Very fortunately, here we have 1,2 1

5

4
T T  
  . In  

dealing with the landslip of an isolated rock in a tunnel, 
we should note not only the caving in along the slip ori- 
entation 0s  of the intersectional line 1,2L  of 1  and 

2 ; but also note the landslip along the steepest decent 
orientation 0s  of the plane 1 . Therefore, the support 
area should be some what wider, while we should decide 
according to practical survey. 

Note the following data for comparing: 

0.78539815
4


 ; 1.5707963

2


 ; 

3
2.35619445

4


 ; 3.1415926  ; 

5
3.92699075

4


 ; 

3
4.7123889

2


 ; 

7
5.49778705

4


 ; 2 6.2831825  ; 

To sum up, the damage orientations are three:  
The slip orientation along the intersectional line 1,2L  

   1,2,0 1,2 1,2 1,2cos ,sin , cos 45 ,sin 45 , 2h    l   (27) 

The steepest horizontal normalized slip orientation 
along 1: 

 1,0 1 1 1

1 1
cos ,sin , , , 2

2 2
         

 
s     (28) 

The steepest horizontal normalized slip orientation 
along 2; 

 2,0 2 2 2cos ,sin ,

10 3 10 10 3 10
, , 10 , , 10

10 10 10 10

    

   
           

   

s

  (29) 

Fortunately, it holds here: 1,2,0 1,0 l s . If having not 
done through repeated computations, only by intuition, it 
is difficult to see the result. In the paper [1] of Professor 
Shi Gen Hua, he claimed that the slip orientation 1,2,0l  
of the intersectional line of the most damage one, the 
author also had the view. However the slip orientations 

1,0s  and 2,0s  had not be mentioned, which should be 
noted also.  

According to the data of the problem, the most damage 
orientations are three: 1) The slip orientation 1,2,0l  along 
the intersectional line 1,2L ; 2) The steepest slip orienta- 
tion 1,0s  along 1 ; and 3) The steepest slip orienta- 
tion 2,0s  along 2 . Because the existence of 1  
forms a bound for the orientation 2,0s ; but the exis- 
tence of 2  does not form a bound for the orientation 

1,0s . That needs a detail analysis for three orientations, 
please refer to the following minimal analysis.  

Because the section appears fortunate case: 1,2,0 1,0 l s , 
we must note special cases which  appear occasionally 
like this kind.  

Checking computations: Substituting    , 1, 1x y     
into 1 we get: 2z x y    . Substituting  
   , 1, 1x y     into 2  we get: 3 2z x y     . It 
is certainly the intersection of 1  and 2 .  

The following is to find Allowed Slip Pyramid. Refer 
to Figure 1, the slip horizontal angle is POR. The al- 
lowed slip three edge pyramid formed by two planes 1  
and 2  is as follows: The first edge is OP. The first 
boundary surface is 2 . The second edge is 1,2l  which 
is under the ray 1 2T. The second boundary surface is 

1 . The third edge is OR. The third boundary surface is 
the horizontal plane from OR to OP along clockwise.  

The following is Minimal Analysis.  
The horizontal project figure of 1 and 2 .The al- 

lowed interval is  1,2POR 3.46334,5.49779T    . 

Fortunately it holds 1 1,2

5
3.92699075

4
T T  
   ,  

which is the first minimal angle. However 

2 5.03413 1.60241T    , which falls in the fourth 
quadrant and beyond the scope of PO - 1 2T, we do 
not take it. Therefore, in the section, the steepest slip  

horizontal angle is namely 1 1,2

5
3.92699075

4
T T  
   . 

The ascent angle is actg 2 0.955317   . 

6. Example for Just Three Slip Planes 

Suppose the first landslip plane 1  is:  

1 1z a x b y x y    . Through computation, the normal 
of 1  is:    1 1 1, , 1 1,1, 1a b   n ,  

1
1

1

actg actg1 0.785398
b

a
    , 1 3.92699T  . 

 

2T 

1T 

x
O 

12T

P

R 

y

2T 

1T 

 

Figure 1. The horizontal project figure for 1Π  and 

2 . 
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2 2
1 1 1 2a b    , 1 1actg 0.955317   . 

 1,0 1 1 1

1 1
cos ,sin , , , 2

2 2
       

 
s ; 

the un-allowed interval is  

 1 1 1, 0.785398, 2.35619
2 2

         
 

; 

and the allowed interval is  

 1 1 1, 2.35619,5.4779
2 2

T T T        
 

. 

Suppose the second landslip plane 10  is: 

10 10 2z a x b y x y    ; through computation we get: the 
normal of 10  is:  

   10 10 10, , 1 2,1, 1a b   n ,  

10
10

10

actg 0.463648
b

a
   , 

10 3.60524T  .  

2 2
10 10 10 5a b    , 

10 10actg 1.15026   . 

 10,0 10 10 10

2 1
cos ,sin , , , 5

5 5
       

 
s ; 

The un-allowed interval is  

 10 10 10, 1.10715, 2.03444
2 2

         
 

;  

and the allowed interval is  

 10 10 10, 2.03444,5.17604
2 2

T T T        
 

. 

It follows that the orientation 1,10l  of intersectional 
line 1,10L  is denoted by 

 

1,10 1 10 1 1

10 10

det 1

1

1 1 1 0, 1, 1

2 1 1

a b

a b

 
     
  

 
      
  

i j k

l n n

i j k
        (30) 

Let    2 2

1,10 10 1 1 10 1b b a a      , and let 1,10,0l  
denote horizontal normalized decent slip orientation, and 

1,10  the decent slip angle in the horizontal project plane, 

1,10cos 0  , 1,10sin 1   , and 1,10 1h   ; And the 
horizontal signs of 1,10l  is 0, then 1,10  is on y axis,  

it holds 1,10

3
4.7123889

2
 

  , and 

 1,10,0 0, 1, 1  l , 1,10 4.7123889          (31) 

Because of it holds 1,10 1,10 4.7123889T   ; the de- 
cent slip orientation 1,10,0l  of 1,10L  is a horizontal pro- 
ject normalized orientation. The angle 

1,10 1,10 4.7123889T              (32) 

On one hand, we must note the first paragraph in Sec- 
tion 6, the steepest decent slip orientation of 1  is 

 1,0 1 1 1

1 1
cos ,sin , , , 2

2 2

1 1
, , 2

2 2

    
     

 
 

    
 

s

    (33) 

The allowed interval is 

 1 2.35619,5.49779T              (34) 

On the other hand, through computation we get: the 
steepest decent slip orientation of 10 is 

 10,0 10 10 10

2 1
cos ,sin , , , 5

5 5

2 1
, , 5

5 5

    
     

 
 

    
 

s

  (35) 

The allowed interval is 

 10 10 10, 2.03444,5.17604
2 2

T T T        
 

   (36) 

Because of the intersection of 1
T  and 10

T  is 

 1,10 2.35619,5.17604T             (37) 

This is the allowed decent slip interval.  
Refer to Equation (37), it holds the inequalities 

2.35619 4.7123889 5.17604          (38) 

It namely holds the membership 

 1,10 1,10 1,104.7123889 2.35619,5.17604T T      (39) 

And note that 1,10  denotes the ascent angle of the 
slip, it follows 

1,10 1,10 1,10tg 1 1, actg1 0.78539815
4

h  
        

(40) 

Suppose the third landslip plane 2  is:  

2 2 3z a x b y x y     . Through computation we get: 
the normal of 2  is    2 2 2, , 1 1,3, 1a b    n ,  

2
2

2

actg 1.24905 1.89254
b

a
     ,  

2 1.24905T   . 
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2 2
2 2 2 10a b    , 2 2actg 1.26452   . 

 2,0 2 2 2

1 3
cos ,sin , , , 10

10 10
       

 
s ; 

The un-allowed interval is  

 2 2 2, 0.321751,3.46334
2 2

        
 

;  

and the allowed interval is  

 2 2 2, 2.81985,0.321751
2 2

T T T         
 

.  

It follows that the orientation 2,10l  of intersectional 
line 2,10L  is denoted by 

 

2,10 2 10 2 2

10 10

det 1

1

1 3 1 2, 3, 7

2 1 1

a b

a b

 
     
  

 
        
  

i j k

l n n

i j k
       (41) 

Let    2 2

2,10 10 2 2 10 13b b a a      ,  and let 

2,10,0l  denote the horizontal normalized decent slip ori- 
entation, and 2,10  the slip angle in horizontal plane,  

2,10

2
cos

13
   , 2,10

3
sin

13
   , and 2,10

7

13
h   ; 

And 2,10

3
tg 1.5

2
   , actg1.5 0.98279  and the hori-  

zontal signs of 2,10l  are , then 2,10  is in the third 
quadrant, it holds  

2,10

3
actg 3.1415926 0.98279 4.12438

2
       ,  

which is between 
5

3.92699075
4


 ; 

3
4.7123889

2


 . 

We have the following formulae 

2,10,0

2 3 7
, ,

13 13 13

     
 

l  2,10 4.12438    (42) 

Because it holds 2,10 2,10 4.12438T   ; the decent 
slip orientation 2,10,0l  of 2,10L  is horizontal project 
normalization. The angle 

2,10 2,10 4.12438T               (43) 

On one hand, through computation we get: the steepest 
decent slip orientation along 2  is 

 2,0 2 2 2

1 3
cos ,sin , , , 10

10 10

1 3
, , 10

10 10

    
      

 
 

   
 

s

 (44) 

The allowed interval is 

 2 2.81985,0.321751T             (45) 

On the other hand, through computation we get:, the 
steepest decent slip orientation along 10  is  

 10,0 10 10 10

2 1
cos ,sin , , , 5

5 5

2 1
, , 5

5 5

    
     

 
 

    
 

s

 (46) 

The allowed interval is 

 10 10 10, 2.03444,5.17604
2 2

T T T        
 

    (47) 

The intersection of 2
T  and 10

T  is 

 2,10 3.46334,5.17604T              (48) 

This is the allowed interval of the slip. 
Refer to Equation (43), it holds the inequalities 

3.46334 4.12438 5.17604            (49) 

It namely holds the membership 

 2,10 2,104.12438 3.46334,5.17604T T          (50) 

And note that 2,10  denotes the ascent angle of the 
slip, it holds 

2,10 2,10

7 7
tg

13 13
h                (51) 

2,10

7
actg actg1.941450 1.095159 0.34851

13
       

(52) 

We have supposed that the intersectional line of 1  
and 2  is 1,2L , where 2 1 2b b  , 1 2 2a a  , it fol- 
lows 

 1,2 1 2 1 1

2 2

det 1 1 1 1 2,2, 4

1 1 3 1

a b

a b

   
            
        

i j k i j k

l n n

(53) 

   2 2

1,2 2 1 1 2 2 2b b a a             (54) 

 2 1
1,2

1,2

2
cos

2

b b





              (55) 

 1 2
1,2

1,2

2
sin

2

a a





              (56) 

1,2tg 1  ; 1,2 45 0.78539815
4

 
        (57) 

And the decent slip gradient is 
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 1 2 2 1
1,2

1,2

2 0
a b a b

h



            (58) 

Refer to Equation (15), because of 1,2 0h  , it holds 

 1,2,0 1,2 1,2 1,2cos ,sin ,h  l          (59) 

The steepest decent slip horizontal angle is  

1,2 1,2

5
3.92699075

4
T  
     . 

Fortunately, here the decent slip orientation of 1,2L  is 
 1,2,0 1,2 1,2 1,2cos ,sin ,h  l , which is coincide with 

0s  in section 2, above Equation (8). Note that here 1  
is namely the plane   in the example in section 2, 
when 1a b  . The steepest decent angle is  

1,2 1,2

5
225 3.92699075

4
T  
      , and 2  , 

the ascent angle actg 2 0.955317 54 45     .  

The allowed interval is 

 1

3 7
135 ,315 ,

4 4
T       

 
           (60) 

The un-allowed interval is 

 1

3
45 ,135 ,

4 4

       
 

           (61) 

 1,2 1 23.92699075 3.46334,5.49779T T T      (62) 

For three planes 1 , 2  and 10 , the allowed in-
terval is 

 1,2,10 1 2 10 3.46334,5.17604T T T T            (63) 

Therefore it holds the memberships 

 1,2 1,2,103.92699075 3.46334,5.17604T T       (64) 

 2,10 1,2,104.12438 3.46334,5.17604T T       (65) 

 1,10 1,2,104.7123889 3.46334,5.17604T T      (66) 

Correspondingly, the ascent angles are 

1,2 actg 2 0.955317 0.304087            (67) 

2,10

7
actg 1.095159 0.34851

13
           (68) 

2,10 actg1 0.78539815
4

 
            (69) 

And it holds the inequalities 

1,2 2,10 1,10

3

2
T T T   

               (70) 

1,10 1,2 2,10 1.095159 0.34851
4

  
         (71) 

Along counter clockwise, from 10  to 1  to 2 , 
now 2,10  is the steepest decent gradient. How to ana- 
lyze? At first we list the main data for planes as follows 

 

 10 10 10 10: 0.463648; 1.15026; 2.03444,5.17604T                          (72) 

 1 1 1 1: 0.785398; 0.955317; 2.35619,5.49779T                          (73) 

 2 2 2 2: 1.89254; 1.26452; 3.46334,6.60494T                           (74) 

Afterwards, we list the main data for intersectional lines as follows 

 1,2 1,2 1,2 1,2: 3.92699075; 0.955317; 3.46334,5.49779T TL                     (75) 

 2,10 2,10 2,10 2,10: 4.12438; 1.095159; 3.46334,5.17604T TL                     (76) 

 1,10 1,10 1,10 1,10: 4.7123889; 0.78539815; 2.35619,5.17604
4

T TL   
               (77) 

 
Now we draw the orientation figure of horizontal pro- 

ject as follows 
We give explanations for the Figure 2. Let the coordi- 

nates Oxy denote the horizontal project plane  
The straight angle under the line 2T-O-P is denoted 

by  2 3.46334,6.60494T  .  
The straight angle on the left of the line 10T-O-P is 

denoted by  10 2.03444,5.17604T  .  
The straight angle on the left of the line 1T-O-R is 

denoted by  1 2.35619,5.49779T  .  
The angle of ray  T is denoted by  

1,10 4.7123889T  . 

The angle of ray  T is denoted by  

2,10 4.12438T  . 

The angle of ray 1 2T is denoted by  

1,2 1,2

5
3.92699075

4
T  
     . 

The angle POQ denotes the allowed interval  

 1,2,10 3.46334,5.17604T   
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Pyramid Allowed to Decent Slip 

We start from OP, and let OP be the first edge. According 
to counter clockwise, the first boundary surface of pyra- 
mid is 2 . Through computation we have 10 1.75z   , 

1 1z   , and 2 0z  .  
Refer to the Figure 2, according to counter clockwise, 

the second edge of the pyramid is the edge 1,2l  which is 
under the ray 1 2T. Through computation, according to 
counter clockwise, the second boundary surface of the 
pyramid is 1 . 10 1.5z   , 1 1z   , 2 1z   .  

Refer to the Figure 2, according to counter clockwise, 
the third edge of the pyramid is the edge 2,10L  which is 
under the ray 2 10T. Through computation, according 
to counter clockwise the third boundary surface is still 

1 . The third edge under T is covered by 1 . 

10 1.4z   , 1 1z   , 2 1.4z   .  
Refer to the Figure 2, according to counter clockwise, 

the fourth edge of the pyramid is the edge 1,10L  which is 
under the ray 1 10T. Through computation, according 
to counter clockwise, the fourth boundary surface of the 
pyramid is 10  or 1 . 10 1z   , 1 1z   , 2 3z   .  

Refer to the Figure 2, according to counter clockwise, 
the fifth edge of the pyramid is OQ. Through computa- 
tion, according to counter clockwise, the fourth boundary 
surface is defined by 10 . 10 0z  , 1 0.33333z   , 

2 2.33334z   .  
Refer to the Figure 2, the fifth boundary surface of the 

pyramid is defined by the horizontal plane which is from 
OQ to OP according to clockwise.  

To sum up, the allowed decent slip pyramid degener- 
ates to be a four edge pyramid, whose boundary surface 
begin with the edge OP, through 2  to the edge under 
1 2T, and through 1  to the edge 1,10L  under 1 
10T, and through 10  arrived OQ, and according to 
clockwise, through horizontal plane to the edge OP.  

Through minimal computation, the final conclusion is 
as follows: in the four edge pyramid of the section,  
 

2T 

1T 

x

y 

O 

12T 

T 
 T 

P 

Q 

T 

R 

 

Figure 2. The orientation figure of horizontal project. 

1 1,2

5

4
T T   

    is the steepest decent slip orientation.  

We should firstly reinforce along the orientation, i.e. 
from south-west to north-east, with ascent angle 

actg 2 0.955317 54 45'     , to reinforce.  
Minimal value, i.e. the steepest decent slip orientation 

is along the edge 1,2l  which is under the ray 1 2T 

7. Discussions for the Case of m Slip Planes 

According to Section 1, let 1 2, , ,    and m  be m 
possible slip planes, where m is a natural number. Their 
equations are expressed by  

1 1 1 2 2 2: , : , ,z a x b y z a x b y        and  
:m m mz a x b y   . For convenient and unification, the x 

axis points to east, the y axis points to north, and the z 
axis points to up.  

Suppose 1 i j m    
Among them, we choose an element i , whose equa- 

tion is i iz a x b y  . Its normal is  , , 1i i ia b n . And 
the intersectional line iL  of the contour plane z c  
and i  satisfies i ia x b y c  . The normal of z c  is 

 0,0,1c n . Let il  be the orientation of intersectional 
line iL , it follows 

 det 1 , ,0

0 0 1
i i c i i i ia b b a

 
       
 
 

i j k

l n n      (78) 

Let is  denote the steepest ascent orientation, it fol- 
lows 

 2 2det 0 , ,

1
i i i i i i i i i

i i

b a a b a b

a b

 
       
  

i j k

s l n   (79) 

Let is  denote the horizontal project of the steepest 
ascent orientation is , which is also the horizontal pro- 
ject of normal in , i.e. it holds 

 ,i i is a b                   (80) 

This is a deputation of plane i .  

Let 2 2
i i ia b   , cosi i ia    sini i ib   , the 

horizontal project decent slip orientation is denoted by 

,0
i

i
i


s

s , then ,0is  is able to be expressed by 

 ,0 cos ,sin , , cos , sini i
i i i i i i

i i

b
    

 
  s    (81) 

Let ,0is  denote the horizontal normalized project of 
the steepest ascent orientation, then it follows 

 ,0 cos ,sini i is               (82) 

The intersectional line of two planes i  and j  is 
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,i jL , whose orientation ,i jl  is expressed as follows 

 

, det 1

1

, ,

i j i j i i

j j

i j j i i j j i

a b

a b

b b a a a b a b

 
 

    
  

     

i j k

l n n
        (83) 

Let    2 2

,i j j i i jb b a a     , after horizontal 

project normalizing one obtains 

 ,
, , ,

,

cos ,sin ,i j
i j i j i j

i j

h 



l

           (84) 

where 

   

 

, ,
, ,

,
,

cos , sin ,

and

j i i j

i j i j
i j i j

i j j i

i j
i j

b b a a

a b a b
h

 
 



 
 




      (85) 

Let , ,0i jl  denote the decent slip orientation of hori- 
zontal project normalization, then it holds 

 , ,0 , , , ,sgn cos ,sin ,i j i j i j i j i jh h  l       (86) 

Or in detail, when , 0i jh  , it holds: 

 , ,0 , , ,cos ,sin ,i j i j i j i jh  l ,         (87) 

while the decent slip horizontal angle is , ,
T
i j i j     

When , 0i jh  , it holds 

 , ,0 , ,cos ,sin ,0i j i j i j  l ,          (88) 

while don’t produce slip, it may produce horizontal 
movement, it is critical line. 

When . 0i jh  , it holds 

 , ,0 , , ,cos ,sin ,i j i j i j i jh  l           (89) 

while the decent slip horizontal angle is , ,
T
i j i j   

And the absolute value , , ,sgni j i j i jh h h   denotes 
the decent slip gradient of the intersectional line ,i jL . 
And if ,i ja  denotes the ascent angle of the decent slip, 
then it holds 

, ,tg i j i ja h , , ,actgi j i ja h          (90) 

The steepest decent slip horizontal angle is  
180T

i i i       . The un-allowed horizontal angle  

open interval is ,
2 2i i i       

 
. The allowed in- 

terval is ,
2 2

T T T
i i i       

 
. The horizontal inter- 

sectional line iL  is their boundary line. 

7.1. “Un-Allowed Straight Angle Law” about m  
Planes 

Now we draw the figure of the un-allowed straight angle 
law about m planes as follows. 

In the Figure 3, we draw the m steepest ascent angle 

1, , , , , ,i j      and m  whose corresponding rays 
are denoted by 1, , , , , ,i j      and m  and the 
corresponding m planes are 1, , , , , ,i j      and 

m . Suppose they permute according to counter clock- 
wise.  

There is an angle between two adjacent rays. Suppose 
all the angles are less than , i.e. less than a straight angle, 
then the un-allowed intervals 1, , , , , ,i j      and 

m  formed by m planes 1, , , , , ,i j      and 

m  cover the whole circumference angle. Therefore, 
there is not any horizontal angle which is allowed decent 
slip. This may be simply called un-allowed straight angle 
law. 

7.2. “Critical Straight Angle Law” about m  
Planes 

Now we draw the figure of the critical straight angle law 
about m planes as follows.  

In the Figure 4, we draw the m steepest ascent angles 

1, , , , , ,i j      and m  whose corresponding rays 
are denoted by 1, , , , , ,i j      and m  and the 
corresponding m planes are 1, , , , , ,i j      and 

m . Suppose they permute according to counter clock- 
wise. 

There is an angle between two adjacent rays. Suppose 
among the angles there is an angle equal to , i.e. equal 
to a straight angle. No harm of the generality, suppose 
the angle between m and  is equal to , then the criti- 
cal line 1,mL  between m  and 1  is namely the 
critical line among 1, , , , , ,i j      and m .  
 

 i 

 m 

y

O



 j 

x

 

Figure 3. The figure of un-allowed straight angle law. 
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Figure 4. The figure for critical straight angle law. 
 
This is called critical straight angle law. If there is wind 
force, water force or earth force to move it, possibly it is 
able to produce horizontal movement. 

7.3. “Allowed Straight Angle Law” about m  
Planes 

Now we draw the figure of the allowed straight angle law 
about m planes as follows.  

In the Figure 5, we draw the m steepest ascent angle 

1, , , , , ,i j      and m  whose corresponding rays 
are denoted by 1, , , , , ,i j      and m  and the 
corresponding m planes are 1, , , , , ,i j      and 

m . Suppose they permute according to counter clock- 
wise.  

There is an angle between two adjacent rays. No harm 
of generality, suppose along counter clockwise the angle 
mO is more than , i.e. more than a straight angle. 
The angle mOP is equal to a right angle, then the an- 
gle POQ which is more than zero, is the intersectional 
part of all allowed angles 1, , , , , ,i j      and m , 
and is called allowed interval . Because of the existence 
of allowed interval , which is called allowed straight 
angle law.  

Let 1,mL  denote the intersectional line of 1  and 

m  Generally let ,i jL  denote the intersectional line of 
planes i  and j , then the set  ,i jL  have  

 1

2

m m 
 elements. And there are m plane steepest de- 

cent slip angles 1 , , , , , ,T T T
i j      and T

m , which is 

denoted by the set  T
i . 

Let the intersectional set  ,i jL   denote the set of 
all intersectional lines in the angle POQ. Let the inter- 
sectional set  T

i   denote the set of all steepest 
decent slip angles in the angle POQ. Afterwards, we  

 i 

 m 
y 

O



 j 

x

L
1m 

Q 

P 

 

Figure 5. The figure of allowed straight angle law. 
 
compare the z values along these orientations on unit 
sphere. How to analytically compare? Please refer to 
Section 6: the example for just have three decent slip 
planes, in which we should give up some planes and ori- 
entations. After sifting we need only analytically com- 
pare the values on the left orientations, in which the ori- 
entation of the minimal z value is just the steepest decent 
slip angle formed by m planes 1, , , , , ,i j      
and m . This is the most important orientation which 
need reinforce. 

8. Project Expression of Landslip Plane on  
Unit Sphere 

If thinking of the theoretical beauty-ness, one should 
naturally use the unit spherical project 

8.1. Inspiration from the Computation along  
One Orientation 

Now let    , 1, 2a b   to be an example, while the al- 
lowed interval is  

 , 2.67795,5.81954
2 2

T T T        
 

,  

1.10715  , 4.24875T  . The ascent angle  
actg 1.15026   . cos 0.40825  ,  

sin 0.91287  .  
The component sin 0.91287z     , is the vertical 

component of the intersectional point of the ray formed 
by  ,T   and on the lower semi unit sphere. Because  

of 2 2 5a b    , the steepest ascent orientation is 

  1 2
cos ,sin , , , 5

5 5
      

 
, and the steepest decent 

slip orientation is  
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  1 2
cos ,sin , , , 5

5 5
T T         

 
.  

The equation of unit sphere is 2 2 2 1x y z   . Let 
2 2x y r  , cosr  . And let 

cos cos cos ,

sin cos sin

T T

T T

x r

y r

  

  

 

 
          (91) 

Now cos 0.40825  , it follows 

0.40825 cos 4.24875 0.18257;

0.40825 sin 4.24875 0.36515.

x

y

   

   
       (92) 

8.2. An Example of Practical Computation on  
the Project of Unit Sphere 

We consider on plane z  0 the following ellipse whose 
long radius is equal to 1, and short radius is equal to 
cos . The orientation of long radius is , pointed to  

2
T 
 . The orientation of short radius is , pointed to .  

The equation of the ellipse in the coordinates  is as 
follows 

2
2

2
1

cos




                 (93) 

We plan to solve the equation of the ellipse in the 
coordinates xy. In order to doing this, we should 
find the corresponding formula of the coordinate 
transformation. Therefore we should firstly draw the 
hint figure of coordinate transformation.  

The hint Figure 6 for coordinate transformation is 
as follows. 

In the figure  denotes the angle from  axis to x  

axis, whose measure is equal to the angle from 
2

T 
  

to x axis. In the problem, refer to the first and second 

paragraphs of article 8.1, because of tg
b

a
  , we have 

1
actg actg 0.46365 2

2 2

2 5.81954

Ta

b
         

 
  

  (94) 

The deduction of the formula for coordinate transfor- 
mation: let 

i , iw x y                 (95) 

Because of 

 ie cos i sinw w            (96) 

It follows the formula 

  
 

i i cos isin

cos sin i sin cos

x y

x y x y

   

   

   

   
     (97) 

Finally, we obtain 

cos sin ; sin cosx y x y             (98) 

The above elliptic Equation (93) changes into 

   2
2

2

sin cos
cos sin 1

cos

x y
x y

 
 




        (99) 

For the decent slip plane , the allowed interval is 

 , 2.67795,5.81954
2 2

T T T        
 

,  

4.24874T  . Now we divide T  into equidistance 
10n  components. In practice the n should be , , or . 
In the section being only a hint, so we take 1n  . Note  

0.31415926
10


  . Similarly, we have the data as fol- 

lows 
Let  

0 2.67795  ,  

1 0 0.31415926 2.99211    , 

2 1 0.31415926 3.30627    , 

3 2 0.31415926 3.62043    ,  

4 3 0.31415926 3.93459    ,  

5 4 0.31415926 4.24875    ,  

6 5 0.31415926 4.56291    ,  

7 6 0.31415926 4.87707    ,  

8 7 0.31415926 5.19123    , 

9 8 0.31415926 5.50539    ,  

10 9 0.31415926 5.81995     

In the plane 0z   for the ray with orientation , its 
orientation vector is  cos ,sin  , its normal is 
 sin ,cos  , and its equation is as follows 

sin cos 0x y                (100) 

Note 0.46365  , cos 0.89443  ,  
sin 0.44722  . And note cos 0.40825  ,  

2 2cos 0.40825 0.16667   . The equation of the el- 
lipse is as follows 

 

   2
2

2

0.44722 0.89443
0.89443 0.44722 1

0.40825

x y
x y

  
                         (101) 

    22 2
0.89443 0.44722 0.44722 0.89443 0.40825 1x y x y                         (102) 
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Figure 6. The hint figure for coordinate transformation 
formula. 
 

The detail numerical computation is as follows : 
For 0 2.67795  , its orientation vector is  

   0 0cos ,sin 0.89443,0.44721    . Because its signs 
are , the solution xy falls in the second quadrant. 
Then we use the normal equation:  

sin cos 0.44721 0.89443 0x y x y         . Sub- 
stituting into the ellipse in Equation (102) one ob- 
tains: 

 2
0.89443 0.44721 1x y    ; 

0.89443 0.44721 1x y     . 

When it holds: 0.89443 0.44721 1x y    , from the 
normal equation one obtains:  

0.44721 1
0.49999

0.89443 2

x
y x x

 
      .  Substi tut ing  

into 0.89443 0.44721 1x y    ;  

1
0.89443 1

4
x x

    
 

; one obtains  

1 4
0

0.89443 5
x    , which does not fall in the second 

quadrant, so we give up it.  
When it holds: 0.89443 0.44721 1x y     , still 

from the normal equation one obtains: 
1

2
y x  . Sub- 

stituting it into 0.89443 0.44721 1x y     ,  

1
0.89443 1

4
x x

     
 

, one obtains:  

1 4
0.89442

0.89443 5
x     ; 

1
0.44721

2
y x   . It is 

just wanted, the computation is correct.  
2 2

0 1 0.00002 0z x y     , coinciding.  

For 1 2.99211  , firstly we compute the orientation 
vector:    1 1cos ,sin 0.98885,0.14893    . Because 
its signs are , the solution xy falls into the second 
quadrant. Then we use the normal equation:  

sin cos 0.14893 0.9885 0x y x y         ;  
0.15061y x   Substituting into the ellipse in Equation 

(102) one obtains: 

 

    22 2
0.89443 0.15061 0.44722 0.44722 0.15061 0.89443 0.40825 1x x x x          

   22 2 2 20.96179 0.31251 0.40825 1; 0.92504 0.58597 1;1.22923 1x x x        

 
By taking the negative, one obtains: 0.81352x   ; 

0.12252y  . 2 2
1 1 0.56848z x y      .  

For 2 3.30627  , firstly, we compute the orientation 
vector:    2 2cos ,sin 0.98647, 0.16393     . Because 
its signs are , the solution falls in the third quadrant. 
Then by using the normal equation one obtains: 

sin cos 0.16393 0.0.98647 0x y x y        ;  
0.16618y x . Substituting into the ellipse in Equation 

(102), one obtains 

 

 

2

22

0.89443 0.16618 0.44722

0.44722 0.16618 0.89443 0.40825 1

x x

x x

  

     
 

 
 

22 2 2

2

0.82011 0.59586 0.40825 1;

0.67258 2.13028 1;1.67417 1

x

x x

  

   
 

By taking the negative, one obtains: 

2 2
1

0.59731; 0.09926.

1 0.79584.

x y

z x y

   

     
 

For 3 3.62043  , firstly, we compute the orientation 
vector:    3 3cos ,sin 0.88753, 0.46075     . Because 
its signs are , the solution xy falls in the third 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.46.75 0.88753 0x y x y        ;  
0.51914y x . Substituting into the ellipse in Equation 

(102) one obtains 
 

    22 2
0.89443 0.51914 0.44722 0.44722 0.51914 0.89443 0.40825 1x x x x          

   22 2 2 20.66226 0.0.91155 0.40825 1; 0.43859 4.9855 1; 2.32897 1x x x        
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By taking the negative, one obtains: 

2 2
3

0.42937; 0.2229.

1 0.87519.

x y

z x y

   

     
 

For 4 3.93459  , firstly, we compute the orientation  

vector:    4 4cos ,sin 0.70171, 0.71246     . Because 
its signs are , the solution xy falls in the third 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.71246 0.70171 0x y x y        ;  
1.01532y x . Substituting into the ellipse in Equation 

(102) one obtains: 
 

    22 2
0.89443 1.01532 0.44722 0.44722 1.01532 0.89443 0.40825 1x x x x          

   22 2 2 20.44036 1.35535 0.40825 1; 0.19392 11.02175 1; 3.34898 1x x x       . 

 
By taking the negative one obtains: 

2 2
3

0.2986; 0.30317.

1 0.90495.

x y

z x y

   

     
 

For 5 4.24875  , firstly, we compute the orientation  

vector:    5 5cos ,sin 0.44721, 0.89443     . Because 
its signs are , the solution xy falls in the third 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.89443 0.44721 0x y x y        ;  
2.00002y x . Substituting into the ellipse in Equation 

(102) one obtains: 
 

    22 2
0.89443 2 0.44722 0.44722 2 0.89443 0.40825 1x x x x          

   22 2 2 20 2.23608 0.40825 1; 30.00007 1; 5.47723 1x x x      . 

 
By taking the negative, one obtains: 

5 0.18257x   ; 5 0.36514y   .  
2 2

5 1 0.91288z x y      ,  that coincides with  

1sin 0.91287   in the first paragraph in Article 8.1. 
Therefore the computation is correct.  

For 6 4.56291  , firstly, we compute the orientation  

vector:    6 6cos ,sin 0.14892, 0.98885     . Because 
its signs are , the solution xy falls in the third 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.98885 0.14892 0x y x y        ; 
6.64014y x . Substituting into the ellipse in Equation 

(102) one obtains: 

 

    22 2
0.89443 6.64014 0.44722 0.44722 6.64014 0.89443 0.40825 1x x x x          

   22 2 2 22.07517 6.38636 0.40825 1; 249.01785 1;15.7803 1x x x       

 
By taking the negative, one obtains: 0.06337x   ; 

0.42079y   . 2 2
6 1 0.90494z x y      . It coin-  

cides with 0.90495z    of 4 3.93459  . So the 
computation is reasonable.  

For 7 4.87707  , firstly, we compute the orientation  

vector:    7 7cos ,sin 0.16394, 0.98647     Because 
the signs are , the solution xy falls in the fourth 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.98647 0.16394 0x y x y         ;  
6.01726y x  . Substituting into the ellipse in Equation 

(102) one obtains: 
 

    22 2
0.89443 6.01726 0.44722 0.44722 6.01726 0.89443 0.40825 1x x x x          

   22 2 2 23.58547 4.9348 0.40825 1; 158.96788 1;12.60825 1x x x      . 

 
By taking the positive, one obtains: 0.07931x  ; 

0.47723y   . 2 2
7 1 0.87519z x y       It coin- 

cides with 0.87519z    of 3 3.62043  . Therefore, 

the computation is reasonable.  
For 8 5.19123  , firstly, we compute the orientation 

vector:    8 8cos ,sin 0.46075, 0.88753    . Because 
the signs are , the solution xy falls in the fourth 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.88753 0.46075 0x y x y        ;  
1.92627y x  . Substituting into the ellipse in Equation 

(102) one obtains: 
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    22 2

0.89443 1.92627 0.44722 0.44722 1.92627 0.89443 0.40825 1x x x x          

   22 2 2 21.7559 1.27569 0.40825 1; 12.84743 1; 3.58433 1x x x      . 

 
By taking the positive, one obtains: 0.27899x  ; 

0.53741y   . 2 2
8 1 0.79584z x y      . It coin- 

cides with 0.79584z    of 2 3.30627  . Therefore, 

the computation is reasonable.  
For 9 5.50539  , firstly, we compute the orientation  

vector:    9 9cos ,sin 0.71246, 0.70171    . Because 
the signs are , the solution xy falls in the fourth 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.70171 0.71246 0x y x y         ;  
0.98491y x  . Substituting into the ellipse in Equation 

(102) one obtains: 
 

    22 2
0.89443 0.98491 0.44722 0.44722 0.98491 0.89443 0.40825 1x x x x          

   22 2 2 21.3349 0.43371 0.40825 1; 2.91057 1;1.70604 1x x x      . 

 
By taking the positive, one obtains: 0.58615x  ;  

0.5773y   . 2 2
9 1 0.56847z x y      . It coincides  

with 0.56848z    of 2 2.99211  . Therefore, the 
computation is reasonable.  

For 10 5.81955  , firstly, we compute the orientation  
vector    10 10cos ,sin 0.89443, 0.4472    . Because  

the signs are , the solution xy falls in the fourth 
quadrant. Then by using the normal equation one obtains: 

sin cos 0.4472 0.89443 0x y x y         ;  

1
0.49998

2
y x x    . Substituting into the ellipse in 

Equation (102) one obtains: 

 

    22 2
0.89443 0.5 0.44722 0.44722 0.5 0.89443 0.40825 1x x x x          

   22 2 2 2 21.11804 0 0.40825 1; 1.11804 1;1.11804 1x x x      . 

 
By taking the positive, one obtains: 0.89442x  ; 

0.44721y   . 2 2
9 1 0.00401 0z x y       . It 

coincides with 0z   of 0 2.67795  . Therefore, the 

computation is reasonable. 

8.3. General Description for the Project  
Computation on Unit Sphere 

The equation of decent slip plane  is zaxby, whose 
normal orientation is:  , , 1a b n . From ab, one ob-  

tains actg
b

a
. Suppose  denotes the steepest ascent an- 

gle in the horizontal plane xy, then by using ab one 

obtains actg actg
b b

a a
     . It follows the steep- 

est decent angle 180T       , the allowed in- 

terval is ,
2 2

T T T       
 

. The equation of unit 

sphere is 

2 2 2 1x y z                 (103) 

Let 2 2a b   , cosa   , and sinb   , then 

after horizontal project normalized the steepest ascent 

orientation is denoted by 0 


s
s , which may be ex- 

pressed by  0 cos ,sin ,  s , cos
a


 , and 

sin
b


 . The ascent angle is actg    

In the plane 0z  , we consider the following ellipse, 
whose long radius is equal to 1, and short radius equal to 
cos. The orientation of long radius is , whose orienta-  

tion denotes to the angle 
2

T 
 . The orientation of  

short radius is , whose orientation points to . In the 
coordinates , the equation of the ellipse is as fol- 
lows 

2
2

2
1

cos




                (104) 

We want to find the equation of the ellipse in the co- 
ordinates xy. Refer to the Figure 6, in which  de- 
notes the angle from  axis to x axis. The coordinate  
transformational formula is cos sinx y    ; and 

sin cosx y    . Substituting into Equation (104), 

one obtains 



C. G. HUANG 

Copyright © 2013 SciRes.                                                                                  AM 

1140 

   2
2

2

sin cos
cos sin 1

cos

x y
x y

 
 




      (105) 

Let cosx  , siny  , then cos sinz a b   , 

the allowed interval is ,
2 2

T T T       
 

. Now we 

divide T  into equidistance 10n  sub-intervals; i.e. we 

take a set  i , where 0,1, ,10ni   . Let 10n  , and 

let 



 , 1i i     , 0 2
T  

  , 
2

T
k  
  . 

The computational process: for given i , we firstly 
compute the orientation vector  cos ,sini i  . Accord- 
ing to its signs, we define what quadrant does the solu- 
tion  ,i ix y  fall in, or what axis it falls on. Then by us- 
ing the normal equation: sin cos 0i ix y    ; we de- 
termine tg iy x  . Substituting into the ellipse in Equa-
tion (105), one obtains 

   2
2

2

sin tg cos
cos sin 1

cos

ix x
x y

  
 




     (106) 

From the above formula and refer to quadrant what the 
solution  ,i ix y  falls in, or what axis the solution falls 
on, then we solve the value of ix . Then we compute: 

tgi i iy x  . And by using the formula 

2 21i i iz x y                 (107) 

we compute the value iz . The three dimensional coor- 
dinates  , ,i i ix y z  is namely the intersectional point of 
the plane  and the unit sphere along the orientation an- 
gle i .  

For the set  i , after finding the corresponding three 
dimensional points, one obtains a downward semi circu- 
lar plane. The solid angle between it and the horizontal 
plane is namely the domain of allowed decent orienta- 
tion.  

For the discussion of m planes, refer to Section 7, here 
we don’t repeat it. 

8.4. Complements for Vertical Plane 

In view of theory, it is possible for the existing of a de- 
cent slip plane 0  which is perpendicular to the hori- 
zontal plane. Suppose the equation of 0  is 

0x y   , where    , 0,0   . Its normal has two 
possibilities:  1 , ,0 v , and  2 , ,0   v , in 
which there is only one who points to the solid part of 

0 , denoted by:  , ,0a bn . Then it holds: 
   1 2  n v n v . The equation of 0  turns into: 

0ax by  , i.e. cos sin 0x y   .  

From ab it follows actg
b

a
. Suppose  is the steep-  

est ascent angle in horizontal plane xy, then from the 

signs of ab we are able to determine  

actg actg
b b

a a
     . Then we solve the steepest 

decent angle 180T       , and the allowed in- 

terval ,
2 2

T T T       
 

  

Let  denote the angle from  axis to x axis, whose  

value is equal to the angle from 
2

T 
  to x axis. We  

have the following coordinate transformational formula 

cos sin ; sin cosx y x y             (108) 

In the coordinates z, the equation of unit sphere 
is as follows 

2 2 2 1z                  (109) 

whose project  on the plane 0   is as follows:  
2 2 1z                   (110) 

Transforming into the coordinates xyz, the equa- 
tions of  is as follows 

 2 2cos sin 1x y z            (111) 

and 

sin cos 0x y               (112) 

When cos sin  , one solves 

sin cosy x                 (113) 

Substituting into Equation (111) one obtains 

 2 2cos sin sin cos 1x x z            (114) 

 2 2cos 1x z                (115) 

This is an ellipse whose long radius is equal to 1 and 
on z axis, and whose short radius is equal to cos and 
on x axis. This is a formula expression in coordinate 
xz of  which is the project of the great circle of unit 
sphere on the plane 0  . We solve 

cosx                   (116) 

When cosx  , siny   , 0z  . It coincides. 
When 0x  , 0y  , 1z   , this is the steepest decent 
slip orientation. It coincides.  

When cos sin  , one solves 

cos sinx y                 (117) 

Substituting into Equation (111) one obtains 

 2 2cos cos sin sin 1y y z            (118) 

 2 2sin 1y z               (119) 

where is an ellipse with its long radius equal to 1 and on 
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z axis, and its short radius equal to sin  and on y axis. 
This is a formula expression in coordinate yz of  
which is the project of the great circle of unit sphere on 
the plane   0. We solve 

siny                   (120) 

When cosx  , siny   , 0z  . This coincides. 
When 0x  , 0y  , 1z   . This is the steepest decent 
slip orientation. It also coincides.  

From formulas Equation (113), Equation (115) and 
satisfying the condition Equation (116), for every given x 
value, we may compute z value for y  0. Therefore, we 
can draw the locus of .  

In order to solve the solid angle between  and , 
where  is the horizontal semi circle of unit circle 

2 2 1x y   along the orientation T , let cosx  ,  

siny  , 
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the coordinates xy, one may draw the figure of .  
Because the data of the figure of vertical plane has 

solved, it follows that the mathematical method for 
spherical project of landslip plane is also obtained. For 
the detail of figure, please refer to three dimension soft- 
ware. The author must do an optimal stopping now. 
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