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ABSTRACT 

In this paper, a Beddington-DeAngelis type chemostat model with nutrient recycling and impulsive input is considered. 
Except using Floquet theorem, introducing a new method combining with comparison theorem of impulse differential 
equation and by using the Liapunov function method, the sufficient and necessary conditions on the permanence and 
extinction of the microorganism are obtained. Two examples are given in the last section to verify our mathematical 
results. The numerical analysis shows that if only the system is permanent, then it also is globally attractive. 
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1. Introduction 

The chemostat is an important and basic laboratory ap- 
paratus for culturing microorganisms. It can be used to 
investigate microbial growth and has the advantage that 
parameters are easily measurable. The chemostat plays 
an important role in bioprocessing, hence the model has 
been studied by more and more people. Chemostats with 
periodic inputs were studied [1,2], those with periodic 
washout rate [3,4], and those with periodic input and 
washout [5]. In recent years, those with nutrient recy- 
cling [6-10] have been investigated and some investing 
results were obtained. Now many scholars pointed out 
that it was necessary to consider models with periodic 
perturbations, since those phenomena might be exposed 
in many real words. However, there are some other per- 
turbations such as floods, fires and drainaye of sewage 
which are not suitable to be considered continually. 
Those perturbations bring sudden changes to the system. 
Systems with sudden changes are involving in impulsive 
differential equations which have been studied inten- 
sively and systematically [11-13]. Impulsive differential 
equations are found in almost every domain of applied 
sciences. 

Recently, many papers studied chemostat model with 
impulsive effect the Lotka-Volterra type or Monod type 
functional response. But there are few papers which 
study a chemostat model with Beddington-DeAngelis 

functional response, especially a Beddinton-DeAngelis 
type chemostat with nutrient recycling. The Beddington- 
DeAngelis functional response is introduced by Bed- 
dington and DeAngelis [14,15]. It is similar to the well- 
known Holling II functional response but has an extra 
term  B t  in the denominator that models mutual inter- 
ference in species. The model, we consider in this paper, 
takes the form: 
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(1) 

where S(t),  1x t  represent the concentration of limit- 
ing substrate and the microorganism respectively, D is 
the dilution rate, a is the uptake constant of the microor- 
ganism, k is the yield of the microorganism  1x t

0 b 

 per 
unit mass of substrate, r is the death rate of microorgan- 
ism, b is the fraction of the nutrient recycled by bacterial 
decomposition of the dead microorganism, p is the 
amount of limiting substrate pulsed each T, T is the pe- 
riod of pulsing. Obviously, we have  and 1

10 k  . D, A, B, k, a, p are all positive constants. 
The organization of this paper is as the following. In 

Section 2, we introduce some useful notations and lem- *Corresponding author. 
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mas. In Section 3, we will state and prove the main re- 
sults on the global asymptotic stability and permanence. 
In Section 4, we give a brief discussion and the numeri- 
cal analysis. 

2. Preliminaries 

In this section, we will give some notations and lemmas 
which will be used for our main results. Firstly, for con-  

venience, we set    1x t
x t

k
  , then system (1) be-  

comes 
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 is left continuous at t = nT and x(t) is continuous at 

t = nT. 
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Lemma 1. Suppose  is any solution of 
system (2) with initial solution 
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. 0t 

The proof of Lemma 1 is simple, we omit it here. 
In what follows, we give some basic properties about 

the following system. 
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is a positive periodic solution of system (3). Any solution 
of system (3) is 

         
 

0 0 exp

, 1 , .

u t u u Dt u t

t nT n T n Z

   



     
  

,
 

Hence, we have the following result. 
Lemma 2. System (3) has a positive periodic solution 

 u t  and     0u t u t  , as  for any solu- 
tion u(t) of system (3). Moreover, 

t 
   u t u t  if 

   0 u 0u     and   u t  u t  and  
   0 0uu    . 
The proof of Lemma 2 can be found in [16]. 
Lemma 3. There exists a constant M > 0 such that S(t) 

< M, x(t) < M for each solution of (S(t); x(t)) system (2), 
for t large enough. 

Proof Let (S(t); x(t)) be any solution of system (2) 
with initial value      20 , 0S x 

R . Define a func- 
tion      x tV t S t  . 

Then 
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From the comparison theorem of impulsive differential 
equations, we have    V t u t  for all t¸ 0, where u(t) is 
the solution of system (3). From Lemma 2, we have 
     t t V t u t u   as , where 
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Thus, V(t) is ultimately bounded. From the definition 
of V(t), there exists a constant 

 1 exp

p
M
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such that S(t) < M, x(t) < M for any solution (S(t), x(t)) of 
system (2), for t large enough. This completes the proof. 

The solution of system (2) corresponding to x(t) = 0 is 
called microorganism-free periodic solution. For system 
(2), if we choose   0x t  , then system (2) becomes to 
the following system 
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System (4) has a unique global uniformly attractive 
positive solution 
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Hence, system (2) has a positive periodic solution 
  ,0u t  at which microorganism culture fails. In the 
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     .V t S t x t   next section, we will study the global asymptotical sta- 

bility of the microorganism-free periodic solution 
 as a solution of system (2).   ,0u t Then similar to the proof of Lemma 3, we obtain 

   V t u t  for all  where u(t) is the solution of 
system (3) and 

0,t 
   u t tu  as . Hence, there 

exists a function 
t 

  : Ra t R  satisfying   0a t   as 
 such that t 

3. Main Results 

Theorem 1. Suppose 
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Lemma 3. Since  as , from (9) we have p  t 

 0x  0  as t , which is a contradiction. Hence,  

0Tthere is a , T0, such that t    0x t   . 

Now, we claim that there exists a constant  0 1M 
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such that 

  0 0 for allx t M t   t  

In fact, if there exists a such that 01t t  1 0x t M
 2 0x t

, 
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integrating the above inequality from t2 to t1, from (7) we 
obtain (10). 

Obviously, let 0 0expM T , then from (10) we 
obtain a contradiction. Hence,   0 0x t M  for all 

. Since t t 0  is arbitrary, we finally have  

 lim 0
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This completes the proof. 
Theorem 2. Suppose 
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Then system (2) is permanent. 
Proof Let (S(t); x(t)) be any solution of system (2) 

with initial value     20 , 0S x 
 R . By Lemma 3, 

the first equation of system (2) becomes 
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Using Lemma 2 and the comparison theorem of im- 
pulsive differential equation, we obtain    S t t  for 
all,  where 0t   t  is the solution of the following 
impulsive system 
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from Lemma 2, system (12) has a globally uniformly attractive positive periodic solution 
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 paper, we investigate Beddington-DeAngelis type 

chemostat with nutrient recycling and impulsive input. 
We prove that the microorganism-free periodic solution 
of the system (2) is globally attractive. The necessary and 
sufficient condition for permanence of system (2) are ob- 
tained in this paper. 
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 Discussion and Numerical Analysis 

In this

  ,0S t

 this kind of 
under this co

D  and set 

 is globally attractive if (5) 
hold. That is, microorganisms can not be 
cultivated ndition. Suppose that  

,r a D a  

    

   

exp 1 exp 1

.

D D r T
A Dt

a

a

  
      



 

Then Theorem 1-2 can be state as: If  
 and 

exp exp

p
D D r T

Dt

 
 

 
 

,a D r a D   0 p p  , then the microorgan- 
ism will eventually disappear; If ,a D r a D    and 
p p , then sy

if we choose a sm
stem s that 

aller im when 
the death rate of microorganism is larger than some cer- 
tain value, then the microorganism x(t) will tend to ex- 

nutrient, 
e know 

 (2) is perm
pulsive i

anent. This implie
nput of nutrient 

tinct; If we choose a lager impulsive input of 
then system can coexist. By the above analysis, w

Copyright © 2013 SciRes.                                                                                  AM 



M. REHIM  ET  AL. 1103

that conditions for the system coexist or non-coexist are 
due to the influences of the impulsive perturbations. 

In order to illustrate our mathematical results and in- 
vestigate the effect of impulsive input nutrient we pre- 
sent the following results of a numerical simulation. 

From Theorem 1, we consider dynamical behavior of 
th

0, T = 2, 
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5
2 0.25

20

S t x t
S t S t x t

S t x t
,

5
2 0.5 , 2

20

10, 2

, 2

t n

S t x t

2

x t x t x t t n
S t Bx t

S t S t t n

x t x t t n








     
  

  

  

  

(18) 


     





By calculating, we obtain 

 
  
   

10exp 2 2
0, 2 ,2 1 ,

1 exp 4

t n
S t t n n n Z



 
     

 

and 

 
   2

0
d 5ln 0.6687 5 0.

aS t
D r t

A S t





 
      

  

That is condition (5) holds. We choose initial value 

that 

S

the

0 0, x  = (1,1.3), (1,2.5), (3,3.4), (4,4.7), (5,6), (6,7.3), 
(7,7.9), (8,9.5), (9,10.7), (10,12.5) respectively, then 
from the numerical simulation (Figure 1) we see 

re exists a positive periodic solution   ,0S t  of 
system (18) such that any solution (S(t), x(t)) of system 
(20) with initial value  0 0,S x  tends to   ,0S t   as 

Therefore, if o  (18) 
has a positive periodic solution which is globally attract- 
tive. 

From Theorem 1, we consider dynamical behavior of 
the system (2) with D =1, a = 10, A = 10, B = 2, b = 1, k
= 0.5, r = 0.2, p = 12, T = 2, then system (2) becomes 

t  . condition (5) h lds, then system

 

       
     

       
     

   

   

10
0.2 , 2

10

10
0.2 ,

12, 2

, 2

S t x t
S t S t x t t n

S t x t

S t x t
2

10
x t x t

S t
x t t

Bx t

S t S t t n

n

x t x t t n






      


 



   

  



 

(19) 

By calculating, we obtain 

  
 


 

    
   0, 2 ,2 1 ,

1 exp 2
t t n n n Z

 

(a) 

 
(b) 

Figure 1. (a) Time-series of the nutrient S for periodic os- 
cillation; (b) Time-series of the microorganism population x 
for extinction. 
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that system (2) is global he condition 
(11). Setting D = 1, a = 6, A = 8, r = 0:4, p = 18, T = 2, b 
= 1, so that condition (11) holds. Choosing initial value 

 
t here

attractive under t

 0 0,S x   (2.5,1.6), (4.7,2.6), (7.1,6.3), (9.4,5.8), 
, (14.4), (16.5,9.7), (19.3,11.4), (21.4,12.5), 

 respectively, then from the numerical simulation 
) we see that there exist a unique T-period solu- 

(12.2,7.3)
(23,12),
(Figure 3
tion     , x t   

= 1, a = 
cond
al values 

S t
tractive. Let D 
= 1. Then the 
Choosing initi

of system (2) which is globally at- 
6, A = 8, r = 0:2, p = 20, T = 2, b 

ition (3.9) holds for those parameters. 
 0 0 0, ,S x c  

,2), (3,2.4),

12exp 2t n
S 

 
     

 

= (0.5,0.4), (1,0.8), 
(2.5  (3.5,2.8), (4,3.2)

(4.5,3.6), (5,4), respective the numerical simulation 

 

(1.5,1.2), (2,1.6), , 
ly, 

(Figure 3) also show that system (2) is globally attractive. 
Therefore, we can guess if only condition (11) holds then     
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(a)                                

Figure 2. (a) Time-series of the nutrient S for permanence and periodic os

                             (b) 

cillation; (b) Time-series of the microorganism 
population x for permanence. 
 

   
(a)                                                             (b) 

igure 3. (a) Time-series of theF
a

 nutrient S for global attractivity; (b) Time-series of the microorganism population x for global 
ttractivity. 

 
the system (2) has a unique T-period solution which is 
globally attractive 
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