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ABSTRACT 

We set in this paper a coherent theory based on functional empirical processes that allows to consider both the poverty 
and the inequality indices in one Gaussian field in which the study of the influence of the one over the other is done. We 
use the General Poverty Index (GPI), that is a class of poverty indices gathering the most common ones and a functional 
class of inequality measures including the Entropy Measure, the Mean Logarithmic Deviation, the different inequality 
measures of Atkinson, Champernowne, Kolm and Theil called Theil-Like Inequality Measures (TLIM). Our results are 
given in a unified approach with respect to the two classes instead of their particular elements. We provide the asymp- 
totic laws of the variations of each class over two given periods and the ratio of the variation and derive confidence in- 
tervals for them. Although the variances may seem somehow complicated, we provide R codes for their computations 
and apply the results for the pseudo-panel data for Senegal with a simple analysis. 
 
Keywords: Functional Empirical Process; Asymptotic Normality; Welfare and Inequality Measure; Weak Laws;  

Pro and Anti-Poor Growth 

1. Introduction 

In many cases, one has to monitor a specific situation 
through some risk measure J on some population. The 
variation of J over time is called growth in case of nega- 
tive variation and recession alternatively. This growth or 
recession is not itself sufficient to describe the improve- 
ment or deterioration of the situation. Often, the distribu- 
tion of the underlying variable over the population should 
also be taken into account in order to check whether the 
growth concerns a great number of individuals or is ra- 
ther concentrated on a few numbers of them. 

In the particular case of welfare analysis, one may 
measure poverty (or richness) with the help of poverty 
indices J based on the income variable X. Over two pe- 
riods s = 1 and t = 2, we say that we have a gain against 
poverty when , or simply a 
growth against poverty. Before claiming any victory, one 
must be sure that, meanwhile, the income did not become 
more unequally distributed, that is the appropriate ine- 

quality coefficient I did not increase. One can achieve 
this by studying the ratio 

     , 0J s t J t J s   

   , ,R J s t I s t   . 
To make the ideas more precise, let us suppose that we 

are monitoring the poverty scene on some population 
over the period time [1,2] and let  1 2, X X  be the in- 
come variable of that population at periods 1 and 2. Let 
us consider one sample of  individuals or house- 
holds, and observe the income couple 

1n 
 1 2,j j jZ X X , 

1, ,j n  . For each period , we assume that Xi 
is strictly positive, and we compute the poverty measure 

1,i 2

 nJ i  and the inequality measure  nI i . We draw the 
attention of the reader that we consider here classes of 
measures both for poverty and inequality rather than spe- 
cific ones. This leads to the very general results but re- 
quires extended notation. 

For poverty, we consider the Generalized Poverty In- 
dex (GPI) introduced by Lo at al. [1] and Lo [2] as an 
attempt to gather a large class of poverty measures re- 

iewed in Zheng [3] defined as follows for period i, v     

Copyright © 2013 SciRes.                                                                                  AM 



P. D. MERGANE, G. S. LO 987

  

      
  

 
    

 
,

1 2 3 4
1

, , n iQ i
n j n

n n
jn

A Q i n Z i Z i X
J i w n Q i j d

Z inB Q i
   



 
    

 
                   (1) 

 
where 

1j
     .

n

nB Q w j ,  .Z  is the income level 
representing the poverty line,  is the number of 
poor, 

 .nQ

1 2 3, ,    and 4  are constants,  , ,A u v s ,  w t , 
and  are mesurable functions of   d y
 s      ,t, ,u v

,i

    and  By par- 
ticularizing the functions A and w and by giving fixed 
values to the 

 0,1 .x

s  we may find almost all the available 
indices, as we will do it later on. In the sequel, (1) will be 
called a poverty index (indices in the plural) or simply a 
poverty measure according to the economists’ terminal- 
ogy. 

This class includes the most popular indices such as 
those of Sen [4], Kakwani [5], Shorrocks [6], Clark- 
Hemming-Ulph [7], Foster-Greer-Thorbecke [8], etc. See 
Lo [2] for a review of the GPI. From the works of many 
authors ([9,10] for instance),  nJ i  is an asymptotically 
sufficient estimate of the exact poverty measure 

       
   

0
,

Z i

i i

Z i x
dJ i L x G d G

Z i

 
   

 
 x       (2) 

where i  is the distribution function of G  1,2iX i  , 
and L is some weight function. 

As for the inequality measure, we use this Theil-like 
family, where we gathered the Generalized Entropy Mea- 
sure, the Mean Logarithmic Deviation [11-13], the dif- 
ferent inequality measures of Atkinson [14], Champer- 
nowne [15] and Kolm [16] in the following form: 

         2
11

1 1 n
i

n j
jn

nI i h X h
nh i


 


 


 i





   (3) 

where   1

1 n i
n j

i
n




  jX  denotes the empirical mean 

while , ,  and h 1h 2 ,h   are measurable functions. 

The inequality measures mentioned above are derived 
from (3) with the particular values of 1, , ,h h   and  
as described below for all : 

2h
0s 

 Generalized Entropy 

   
     1 2

1
0, 1, ,

1

, 0

s
s

h s h s s h s

  
 


  



   ;

 

 Theil’s measure: 

           1 2, log , , log ;s s h s s s h s s h s s      

 Mean Logarithmic Deviation 

         1
2 1, log ,s s h s h s s h s    1;  

 Atkinson’s measure: 

 
     

1

1 2

1 and 0, 1 ,

, 0;

s s

h s h s s h s





     

  
 

 Champernowne’s measure: 

           2 11 exp , log , 1;s s h s h s s h s       

 Kolm’s measure: 

   

       1 2

1
0, log ,

exp , 0.

s s

h s h s s h s

 



 

   
 

We will see below that  nI i  converges to the exact 
inequality measure 

 
         20

1

1
d iI i h x G x h

h i
 


 

   
 

 i   (4) 

where    ii X    is the mathematical expectation of 
iX  that we suppose to be finite here. 
Each measure of the Theil-like family has its own par- 

ticular properties, derived from the combination of dif- 
ferent concepts. One may mention the concept of welfare 
criteria (Atkinson [14], Sen [17]), that of the analogy 
with analysis of risks (Harsanyi [18,19]; Rothschild and 
Stiglitz [20]), the complaints approach (Temkin [21]) etc. 
The Theil inequality itself finds all its interest in the in- 
formation-theoretic idea following that of main compo- 
nents (Kullback [22]) and based on the three axioms 
(Zero-valuation of certainty, Diminishing-valuation of 
probability, Additivity of independent events). A deep re- 
view of such of individual properties for a number ine- 
quality measures can be found in Cowell [13,23,24] for 
instance. 

It is worth mentioning that the TLIM presented here is 
rather a mathematical form gathering of a number of dif- 
ferent measures having different insights. Its main inter- 
est is to provide a general and uniform approach for 
dealing with both poverty and inequality measures in the 
same time and to avoid details and repetitions, in a co- 
herent framework for useful comparison studies. In com- 
ing papers, the families presented by Cowell [13,23,24] 
will be studied in similar ways. 

The motivations stated above lead to the study of the 
behavior of 

    , , ,n nJ s t I s t   

as an estimate of the unknown value of 

    , , , .J s t I s t   

Precisely confidence intervals of 
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will be an appropriate set of tools for the study of the 
influence of each measure on the other. 

To achieve our goal we need a coherent asymptotic 
theory allowing the handling of longitudinal data as it is 
the case here and a stochastic process approach leading 
to asymptotic subresults with the help of the continuity 
mapping theorem. 

We find that the functional empirical process, in the 
modern setting of weak convergence theory, provides 
that coherent asymptotic theory. 

Indeed, we use bidimensional functional empirical 
processes  and its stochastic Gaussian limit  to 
entirely describe the asymptotic behaviour of  

,n

 , ,



   ,n n J s t s tI   in the Gaussian field of   and 
then find the law of      , ,n n ,R s t J s t I   n s t  as 
our best achievement. 

The remainder of the paper is organized as follows. In 
Section 2, we remind key definitions and properties for 
functional empirical processes, and we state the asymp- 
totic representation of the GPI of Sall and Lo [25] stated 
in Theorem 1 that will be used later on. In Section 3, we 
give our main results and make some commentaries and 
data driven applications to Senegalese pseudo-panel data 
are considered while the proofs and the tables are post- 
poned in an appendix Section 5. Section 4 concludes. 

2. Functional Empirical Process and  
Representation of GPI 

2.1. A Brief Reminder on Functional Empirical 
Processes 

Let 1 2, , , nZ Z Z

 ,S d
:

 be a sequence of independent and 
identically distributed (i.i.d.) random elements defined on 
the probability space  with values in some 
metric space . Given a collection  of mesur- 
able functions , the functional empirical pro- 
cess (FEP) is defined by: 

 , , , 




 

f S 

     
1

1
, .

n

n j
j

f f f Z f Z
n 

    j

stance. It is d

 

This process is widely studied in van der Vaart [26] 
for in irectly seen that whenever  

  2
f Z   , one has  

      1

1 n
. .jj

f Z f f Z a s
n 

   



 

and    20,n ff    where 

     22 ,f f Z f              (5) 

as consequences of the real Law of Large Numbers (LLN) 

and the real Central Limit Theorem (CLT). 
When using the FEP, we may be interested in uniform 

LLN’s and weak limits of the FEP considered as stochas- 
tic processes. This gives the so important results on Gli- 
venko-Cantelli classes and Donsker ones. Let us define 
them here (for more details see [26,27]). 

Since we may deal with non measurable sequences of 
random elements, we generally use the outer almost sure 
convergence defined as follows. Remind that a sequence 

 converges outer almost surely to zero, denoted by 
 whenever there is a measurable sequence 

of measurable random variables  such that 

nU

n 0 . . ,U a s 

nV
1) , ,n nn U V

s
 

2)  0 . .nV a
The weak convergence generally holds in   , 

,
 

the space of all bounded real functions defined on  
equipped with the supremum norm  

  .sup fx x f 
 

Definition 1 A class  is a Glivenko- 
Cantelli class for , if 

 1L 


    

    
1

1

1
lim

1
lim 0 . .sup

n

j j
n j

n

j j
n f j

f Z f Z
n

f Z f Z a s
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Definition 2 A class  is a Donsker class 
for , or -Donsker class if  con- 
verges in 

 2L 
    ;n f f 

    to a centered Gaussian process 
  ;f f  with covariance function 

    
           d ;

, .

f g

f z f z g z g z z

f g

  

 


  
 



  

Remark 1 When S    and   , 
 is the real empirical process and is denoted by 

 , ,t tf t   
.nn   

In this paper, we only use finite-dimensional forms of 
the FEP, that is   , 1, ,n i .f i   k  And then, any 
family  ,, 1,if i   k  of measurable functions satisfy- 
ing (5), is a Glivenko-Cantelli and a Donsker class, and 
hence 

         1 2, 1, , , , ,d
n i kf i k f f f       

where  is the Gaussian process, defined in Definition 
2. 



We will make use of the linearity property of both n  
and . Let 


 1, , kf f

, 1ia i
 be measurable functions satisfy- 

ing (5) and , ,k   , then 

 
1 1

.
k k

d
j n j n j j j j

j j j
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The materials defined here, when used in a smart way, 
lead to a simple handling the problem tackled here. 

2.2. Representation of the GPI 

In this paper, we use the GPI in a unified approach that 
leads to an asymptotic representation for a large class of 
indices classified in three kinds. 

First we consider the threshold condition: 
(H1) There exist 0   and 0 1   such that, 

 0 1G Z     .



 

Next we have form conditions (on the indices): 
(H2a) There exist a function  where  

 and a function 
 ,h p q

  2,p q   ,c s t  where  
such that, when  

   2
, 0,1s t 

,n 

     

   

1
1 2 3 4

1

1 2

max , ,

, ;

j Q
A n Q h n Q w n Q j

c Q n j n o n

   

 



  

  

 

(H2b) There exists a function  π ,s t  with   2,s t   
such that, when  ,n 

       1 3

1

1
max , π , .

j Q
w j h n Q Q n j n o n

n
 

 
  

2  

Further we need regularity conditions on  and : c π
(H3) The functions  and  c   π   have uniformly 

continuous partial derivatives, that is 

       
   

2, 0,0
, 0,1
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k l
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(H4) The functions  ,
c y x y
y





 and  ,y x y

y





 

are monotonous. 
(H5) The distribution function  is increasing. G
(H6) There exist  and  such that 0 0H  H  

          0 0
, dc ,H H G c G Z G y y G y H



    

and 

          0 π 0
π , dH H G G Z G y e y G y H



    

where    x Z

Z x
x d

Z
 

   
 

  and    x Ze x    for 

. x
Based on these hypotheses, we put 

     π ,cJ G H G H G  
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π π
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with 

                 π, , π , ,cg c G Z G g G Z G e         

           1 2
π πc c πK G H G K G H G H G K G    

where 

       1 1

0
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c
,K G G Z s G s s
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π 0
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Now recall the functional empirical process 

    
1

1 n

n j
j

jg g X g X
n




    

and introduce 

        
1

1
,

n

n n j j
j

G X G X X
n

  


  j  

the reduced process of Sall et Lo (see [25]). 
The representation results of [25] for the GPI is the 

following. 
Theorem 1 Suppose that (H1)-(H6) are true, then we 

have the following representation 

          1 .n n nn J G J G g o         (R) 

Although these conditions may appear complicated, 
they are simple to check in usual cases with the popular 
poverty measures. We will see this in Section 3. 

We are going to state our main results. 

3. Results and Commentaries 

3.1. Notations 

Let us consider the following Renyi representations. Let  

 
1, ,j j n

U
 

 and  
1, ,j j n

V
 

 two sequences of independ-  

ent uniform rv’s on  0,1D  . Then we have the repre- 
sentation, meant as equalities in distribution: 

     1 1 2 1
1 2and , 1, ,j j j jX G U X G V j n      

where 1
iG  is the generalized inverse of . We sup- iG
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pose that is continuous. The copula associated with 
the couple 

iG  
 1 2, X X

1,2G

 is defined by 

 v       1 1
1 2, , , ,C u G u G v u v D   2 ,  

where G1,2 is the joint distribution function of  1 2,X X . 
Next we consider the bidimensional functional em-

pirical process based on   
1, ,

,j j
j n

U V
 

, for some Don- 
sker class : 

        ,
1

1
, ,

n

n j j U V
j

;f U V f
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d

f f 
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f f
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f g

 

and the limiting centered Gaussian stochastic process 
 its variance-covariance function defined by, for 

: 
,
, f g 
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U VD

g g

,f u v

 



   

f g u v g C u v





 



  

   

where 

      2, , , dU V D
, .f f U V f u v C u v     

Now we introduce the following notations based on 
the functions  , , h 1 , 2  3) and on the functions h h of (
g  and   o

 

f Theo m 1. The subscript i  refers to th  
period. The following series of notations are about the 
variation of the inequality measures and are listed below. 
Let us first denpte: 

re e

       
0

1

1
, d

n
i

n j
j

h X B i h x G x
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   ;i



B i  

and next, for all ,   2,u v D
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And finally, 
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2,I I

   
 

, ,

 and  

     , , 1,IF u v u v F u v  

h
F 

h
 

where 1 , 2  and    are respectively the derivatives 
of the functions   and 1 2,h h .  

For our results on the variation of the GPI, we need the 
functions ig  and i  provided by the representation of 

Theorem 1. Put accordingly with these functions: 

             1and .i i i i i ig x c G x q x s c s q G s    

We define for all   2,u v D  

          , , ,, ,i s i o s o sf u v u v     

where  is the indicator function on the set  ,o s  0, ,s  

    1
, , ,i J i i i i i , ,F u v g f u v g G u v      

and 

    2, 1,, ,J J J , .F u v F u v F u v     

3.2. Main Theorems 

We are now able to state our theorems. The first concerns 
the variation of the inequality measure. 

Theorem 2 Let  i  finite for  and let each 

i  continuously differentiable at each , 
1,2i 
h  i 1,2i  . 

Let    2
, <IU V F , 

n 
 then we have the following con- 

vergence as  

       1,2 1,2 0, 1,2n dn I I     I  

where  stands for the convergence in distribution 
and 

d

          2

2

,1,2 , d , .I I IU VD
F u v F C u v      

The second concerns the variation of the GPI. 
Theorem 3 Let  i  finite for . Suppose that  1,2i 

    2

1,, ,sU V f      2

2,, sU V f  and    2
, JU V F   are 

finite. Then 

    
          2, 2 1, 1

1, 2 1, 2

d

n

d J s sD

n J J

F f s f s 

 

     s
 

which is a centered Gaussian process of variance-co- 
variance function: 

      1 2 31,2 1,2 1,2 2 1,2J         

where 

          2

2

1 ,1,2 , d , ;J JU VD
F u v F C u v      

 2 1 21,2 2 3       

with 

      21 2 2 min , d d ,
D

s t s t st s    t  

      22 2 1 , d
D

d ,s t C t s st s t     

      23 1 1 min , d d ;
D

s t s t st s    t  

and 
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Thus last one handles the ratio of the two variations. s
 

Theorem 4 Supposing that the above mentioned hy- 
potheses are true, then 
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3.3. Commentaries 
with 
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First of all, the results cover a large class of poverty 
measures and inequality indices. This explains why the 
notations seem heavy. Secondly, the variances of the 
limiting Gaussian processes seem also somehow tricky. 
But all of them are easily handled by modern computa- 
tion means. We are going to particularise our results for 
famous measures and provide workable software codes 
for the computations. 

3.4. Representation of Some Poverty Indices 

We may easily find the functions g and   for the most 
common members of the GPI family (see [25,28]) in 
Table 1. 

In this case, let Where 
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Notice that the functions are indexed by  for the 
Kakwani measure. For the FGT measure of index 

k
 , we 

have that 0   and 

    max 0, .g x Z x Z


   

3.5. Datadriven Applications and Variance  
Computations 

3.5.1. Variance Computations for Senegalese Data 
We apply our results to Senegalese data. We do not 
really have longitudinal data. So we have constructed 
pseudo-panel data of size 116n  , from two surveys: 
ESAM II conducted from 2001 to 2002 and EPS from 
2005 to 2006. We get two series 1X  and 2X . We pre- 
sent below the values of  1,2I  denoted here  1 , 

 denoted here  and  denoted 
here . 

1,2J
3
  2  1,2


When constructing pseudo-panel data, we get small 
sizes like n = 116. We use these sizes to compute the 
asymptotic variances in our results by mean of nonpara- 
metric methods. In real contexts, we should use high 
sizes comparable to those of the real databases, that is 
around ten thousands, like in the Senegalese case. Nev- 
ertheless, we back on medium sizes, for instance n = 696, 
which give very accurate confidence intervals.We use 
here the abreviations are given in Table 2. 

The obtained confidence intervals are described in  

Tables 3 to 10, in Subsection 5.2. Before we present the 
outcomes, let us say some words on the packages. We 
provide different R script files at: 
http://www.ufrsat.org/lerstad/resources/mergslo01.zip 

The user should already have his data in two files 
data1.txt and data2.txt. The first script file named after 
gamma_mergslo1.dat provides the values of  1 , 
 2  and  3  for the FGT measure for 0,1,2   

and for the six inequality measures used here. The sec- 
ond script file named as gamma_mergslo2.dat performs  
 

Table 1. Specific functions of the poverty measures. 

Mesure g    

Shorrocks     2 1
y Z

Z y
G y
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y Z

Z y
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Thon     2 1
y Z

Z y
G y
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   2
y Z

Z y
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Sen sg  s  

Kakwani kg  k  

 
Table 2. Notation of each measure. 

Notations Indices 

 GE  , 0.5,2,3  Generalized Entropy with parameter 

THEIL Theil 

MLD Mean Logarithmic Deviation 

 ATK  , 0.5, 0.5   Atkinson with parameter   

CHAMP Champernowne 

SHOR Shorrocks 

SEN Sen 

 KAK k , 1,2k   Kakwani with parameter k 

 FGT  , 0,1,2  Foster-Greer-Thorbecke with parameter 

 
Table 3. Variations of the inequality indices. 

Indice  1,2I   1,2I    95% 1,2CI I  

GE (0.5) −0.04025832 0.01770106 [−0.05588673; −0.03611789] 

GE (2) −0.06408679 0.07224733 [−0.09545863; −0.05552007] 

GE (3) −0.1008038 0.1205114 [−0.1495352; −0.09795348] 

THEIL −0.04569319 0.02223474 [−0.0635651; −0.04140879] 

MLD −0.03645671 0.01523784 [−0.05085476; −0.03251291] 

ATK (0.5) −0.01976068 0.004225092 [−0.02742201; −0.01776374] 

ATK (−0.5) −0.04423886 0.02212773 [−0.06159485; −0.03949192] 

CHAMP −0.03421829 0.01283687 [−0.04734396; −0.03050904] 
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Table 4. Variations of the poverty indices. 

Ratio  1,2J   1,2J    95% 1,2CI J  

SHOR −0.03024621 0.02353406 [−0.04264967; −0.01985518] 

KAK (1) −0.02108905 0.01097123 [−0.02982085; −0.01425729] 

KAK (2) −0.02055594 0.01007820 [−0.02961271; −0.01469601] 

FGT (0) −0.05977098 0.3170756 [−0.09355847; −0.009889805] 

FGT (1) −0.01859332 0.00922992 [−0.02620413; −0.01192899] 

FGT (2) −0.00432289 0.0008381113 [−0.007194404; −0.002892781] 

 
Table 5. Ratio of the variations with Shorrocks measure. 

Ratio  1,2R   1,2IJ   1,2    95% 1,2CI R  

SHOR/GE (0.5) 0.7513034 0.005477263 15.60737 [0.3858608; 0.9728719] 

SHOR/GE (2) 0.471957 0.006487665 8.157275 [0.2018082; 0.6261873] 

SHOR/GE (3) 0.3000503 0.009018111 2.851175 [0.1271085; 0.3780043] 

SHOR/THEIL 0.6619413 0.005642781 12.36007 [0.3342390; 0.8566255] 

SHOR/MLD 0.8296473 0.8296473 18.77303 [0.4278509; 1.071647] 

SHOR/ATK (0.5) 1.530626 0.002695030 64.49043 [0.7866646; 1.979908] 

SHOR/ATK (−0.5) 0.6837023 0.007288597 12.21780 [0.555278; 1.395697] 

SHOR/CHAMP 0.8839194 0.005165236 20.86647 [0.4634852; 1.142229] 

 
Table 6. Ratio of the variations with Sen measure. 

Ratio  1,2R   1,2IJ   1,2    95% 1,2CI R  

SEN/GE (0.5) 0.3290702 0.003112166 7.754599 [0.272201; 0.6859714] 

SEN/GE (2) 0.3290702 0.003512353 4.013294 [0.1431155; 0.4407834] 

SEN/GE (3) 0.2092089 0.005939808 1.354192 [0.0916464; 0.2645570] 

SEN/THEIL 0.461536 0.003364929 6.035583 [0.237376; 0.6024165] 

SEN/MLD 0.5784683 0.002968939 9.506736 [0.2996504; 0.7577893] 

SEN/ATK (0.5) 1.067223 0.001542060 31.99108 [0.555278; 1.395697] 

SEN/ATK (−0.5) 0.4360427 0.003368434 6.534366 [0.2461303; 0.625955] 

SEN/CHAMP 0.6163094 0.003038844 10.33521 [0.3273292; 0.8050137] 

 
Table 7. Ratio of the variations with Kakwani (2) measure. 

Ratio  1,2R   1,2IJ   1,2    95% 1,2CI R  

KAK (2)/GE (0.5) 0.510601 0.002574653 7.443462 [0.2788993; 0.6842854] 

KAK (2)/GE (2) 0.3207516 0.008486058 2.93814 [0.1661299; 0.4208233] 

KAK (2)/GE (3) 0.2039203 0.005185377 1.276858 [0.09508295; 0.2629838] 

KAK (2)/THEIL 0.4498688 0.002906321 5.72986 [0.2442552; 0.5999303] 

KAK (2)/MLD 0.5638451 0.002365820 9.220372 [0.3058926; 0.7570787] 

KAK (2)/ATK (0.5) 1.040245 0.001292464 30.63183 [0.5694048; 1.391776] 

KAK (2)/ATK (−0.5) 0.4646579 0.001933209 6.672792 [0.2464103; 0.630237] 

KAK (2)/CHAMP 0.6007296 0.002781442 9.709634 [0.3376321; 0.8006341] 
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Table 8. Ratio of the variations with FGT (1) measure. 

Ratio  1,2R   1,2IJ   1,2    95% 1,2CI R  

FGT (1)/GE (0.5) 0.4618504 0.003359959 6.109622 [0.2308332; 0.5981059] 

FGT (1)/GE (2) 0.29901272 0.004159761 3.140289 [0.2316082; 0.4949175] 

FGT (1)/GE (3) 0.1844506 0.005815332 1.100702 [0.0761356; 0.2320249] 

FGT (1)/THEIL 0.4069167 0.003487018 4.824886 [0.2000723; 0.5264534] 

FGT (1)/MLD 0.5100109 0.003329621 7.371324 [0.2557003; 0.6591174] 

FGT (1)/ATK (0.5) 0.9409253 0.001652060 25.25488 [0.4705622; 1.217276] 

FGT (1)/ATK (−0.5) 0.4202938 0.004429351 4.81098 [0.2142764; 0.5401868] 

FGT (1)/CHAMP 0.5433737 0.003126249 8.218207 [0.2768286; 0.7027897] 

 
Table 9. Ratio of the variations with FGT (0) measure. 

Ratio  1,2R   1,2IJ   1,2    95% 1,2CI R  

FGT (0)/GE (0.5) 1.484686 1.484686 192.9616 [0.09236428; 2.156398] 

FGT (0)/GE (2) 0.9326567 0.02159780 82.69382 [0.009587167; 1.360782] 

FGT (0)/GE (3) 0.5929437 0.03215672 31.62072 [0.0002219161; 0.8357621]

FGT (0)/THEIL 1.308094 0.01626234 149.7108 [0.07643712; 1.894496] 

FGT (0)/MLD 1.639505 0.01332770 236.7108 [0.09833456; 2.383401] 

FGT (0)/ATK (0.5) 3.024743 0.00717539 799.837 [0.1882737; 4.390527] 

FGT (0)/ATK (−0.5) 1.351097 0.01606948 160.4669 [0.08224307; 1.964480] 

FGT (0)/CHAMP 1.746755 0.01248913 266.9863 [0.1148277; 2.542700] 

 
Table 10. Ratio of the variations with FGT (2) measure. 

Ratio  1,2R   1,2IJ   1,2    95% 1,2CI R  

FGT (2)/GE (0.5) 0.1073788 0.000974483 0.5139224 [0.05637792; 0.1628977] 

FGT (2)/GE (2) 0.06745369 0.001055690 0.2494247 [0.02970793; 0.103916] 

FGT (2)/GE (3) 0.0428842 0.001371335 0.09271563 [0.01813633; 0.06338001] 

FGT (2)/THEIL 0.09460689 0.0009653898 0.4092489 [0.04856479; 0.1436198] 

FGT (2)/MLD 0.118576 0.001013111 0.6110173 [0.06292282; 0.1790699] 

FGT (2)/ATK (0.5) 0.2187623 0.0004795731 2.126811 [0.1148914; 0.3315849] 

FGT (2)/ATK (−0.5) 0.09771703 0.001424631 0.3939442 [0.05315702; 0.1464178] 

FGT (2)/CHAMP 0.1263327 0.000954164 0.6848654 [0.0680842; 0.1910499] 

 
the same for the Shorrocks measure. Lastly, gamma_ 
mergslo3.dat concerns the kakwani measures. Unless the 
user uploads new data1.txt and data2.txt files, the out- 
comes should be the same as those presented in the 
Appendix. 

3.5.2. Analysis 
First of all, we find in Tables 3 and 4 in the appendix 5 
that at an asymptotical level, all our inequality measures 
and poverty indices used here have decreased. When 

inspecting the asymptotic variance, we see in Table 4 
that for the poverty indice, the FGT and the Kakwani 
classes respectively for 1  , 2   and k = 1, k = 2 
have the minimum variance, specially for 2   and k 
= 2. This advocates for the use of the Kakwani and the 
FGT measures for poverty reduction evaluation. As for 
the inequality approach in Table 3, it seems that Atkin- 
son measure ATK (0.5) has the minimum variance and 
then is recommended. 

As for the ratio of the poverty index over the inequality     
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Table 11. Dependence of over 50%. 

Couples (KAK (2), GE (0.5)) (KAK (2), MLD) (FGT (1), CHAMP) 

Dependences (%) 51.06 51.06 54.33 

Couples (SEN, MLD) (KAK (2), CHAMP) (SEN, CHAMP) 

Dependences (%) 57.84 60.07 61.63 

Couples (SHOR, THEIL) (SHOR, ATK (−0.5)) (SHOR, GE (0.5)) 

Dependences (%) 66.19 68.37 75.13 

Couples (SHOR, MLD) (SHOR, CHAMP) (SHOR, ATK) 

Dependences (%) 82.29 88.39 153.06 

 
measure, we have a dependence of over 50% for the fol- 
lowing couples in Table 11, that we can find in Tables 5 
to 8. 

The maximum ratio 3.024 is attained for FGT (0) and 
Atkinson (0.5). Based on these data, and on the confi- 
dence intervals in Table 9, we would report at least of 
46.43% for these two measures and conclude that the 
gain over poverty in Senegal between these two periods 
is significally pro-poor. We would have worked with all 
couples with a ratio over 50% to have the same conclu-
sion. 

The present analysis should be developped in a sepa- 
rated paper research since this one was devoted to a theo- 
ritical basis. We plan to apply at a regional basis, that is 
for the countries of the UEMOA in West Africa. 

4. Conclusion 

We have been able to compute confidence intervals for 
the ratio of variations for the poverty and the inequality 
indices. The results enabled us to cheek whether the 
growth is pro or against poor in Senegal from 2002 to 
2006. It always remains to undertake large scale data 
driven applications at a regional level, precisely in the 
UEMOA African area. We used in this paper a Theil-like 
family of inequality measures that does not include the 
celebrated and important Gini index. Moreover other the 
Theil-like families exist. It would be interesting to have 
the same theory developed here using the Gini index and 
other families as well. We plan to do it in a very close 
future. 
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Appendix 

Proofs of the Theorems 

Proof of Theorem 2. 
By using the delta-method, we have for all  1,2i :  
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Similarly, we have 
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that is 
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Finally using the linearity of the FEP, we get 
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and conclude by 
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We arrive at 
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We get the variation of nJ  between to instants 1i   and 2i   as follows 
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This leads to 
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The proof will be complete with the expression of  1,2J . We have 
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Let us compute these three numbers. First consider, 
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By developing and applying Fubini to this term, we get 
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By identification, we get 
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and remind that these quantities were defined in Theorem (3). Finally, we have 
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d .

J s sD

J s J sD D

J JD s s

JU V D

F f s f s s

s F f s s F f s

s F u v C u v s F u v C u v s

F s s s s

 

 

 

 

 

  

 

 

 



 

  



   

     





 

 



 

This achieves the proof of Theorem (3). 
Proof of Theorem 4. 
By (6) and (10), is clear that 

          1,2 1,2 , 1,2 1,2n nn J J n I I       

is asymptotically Gaussian with covariance 

                
                  

, 2 2, 1 1,

2 2, 1

1, 2 d

d d

I J I J s sD

I J I s I sD D

F F s f s f s

1, .F F s F f s x F f

 

 

   

  



 

    

        

 

    s
 

Then 

                         
                   

, 2, , , 0,1 0,

1 1 2,0, 0,1

1, 2 , d , d

, d , d d .

I J I I J J IU V U V U V D s

I IU VD s D

F F F F s F u v C u v

s F u v C u v s F s s s s
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Next straightforward computations yield 

      
 

 
 

 
 

 
 

        
        

               
  

   2 2, 1 1, 2

1, 2 1, 2 1,2 1,2
1,2 1,2

1, 2 1, 2 1,2 1, 2

1, 21
1, 2 1, 2 1,2 1,2

1, 2 1, 2 1, 2

1,21
d 1

1,2 1, 2

n
n

n n n

n n
n n

J s s ID

J J J J
n R R n

I I I I

J
n J J n I I

I I I

J
F s f s f s F o

I I
 

               


     
  


   
 

     .p

 

Then 

                    2 2, 1 1,1, 2 1,2 d 1 .n n J n s n s n ID
n R R a F s f s f s b F o          

p



 

We finish by computing its variance . For this, let 1,2

           
 

2 2, 1 1, d ,J J s sD

I I

F s f s f s

F

   



   

 




 

and 

            2 2 22 21,2 2 .J I J I I Ja b a b ab                

By using the notation of Theorem 4, where we introduced  and b , we arrive at a

       2 2
,1,2 1,2 1,2 2 1,2 .J I I Ja b ab        

This completely achieves the proofs. 
 


