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ABSTRACT 

Impulsive line load in a half-space (Lamb’s problem) can be solved with a closed form solution. This solution is helpful 
for understanding the phenomenon of Rayleigh’s waves. In this article, we use a boundary element method to simulate 
the solution of an elastic solid with a curved free surface under impact loading. This problem is considered difficult for 
numerical methods. Lamb’s problem is calculated first to verify the method. Then the method is applied on the prob- 
lems with different surface curvatures. The method simulates the phenomenon of Rayleigh’s wave propagating on a 
curved surface very well. The results are shown in figures. 
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1. Introduction 

The phenomenon of surface wave is interesting and im- 
portant for many engineers and scientists. Impulsive line 
load in a half-space can be solved by analytic methods 
[1]. Herewith scientists and engineers may get under- 
standing with Rayleigh’s wave. When the free surface is 
not flat the phenomenon of surface wave should be simi- 
lar, but some detail can be different. On the case of curved 
surface, analytic solutions are no longer available. There- 
fore numerical methods become an alternative way to 
understand the phenomena. These problems are consid- 
ered difficult for numerical methods. To the best of our 
knowledge, there are no related reports on this problem. 

Simulating transient wave in elastodynamics needs 
mass computing time and huge memories. Boundary ele- 
ment methods are efficient for simulating elastodynamics 
[2,3]. Recently personal computers (PC) become much 
more powerful and are equipped with more rams then 
ever. Practical problems can be simulated with a PC pre- 
cisely. 

In this article, we use a boundary element method to 
solve two dimensional elastodynamic problems with 
curved surfaces. The curved boundary is assumed to be 
an arc. The loading is an impulse. The numerical method 
is implemented with fortran programs and a PC. In Sec- 
tion 2, the mathematical problem is described. In the fol- 
lowing section, we formulate the numerical method 
briefly. The results are shown in Section 4. 

2. The Problem 

Because our goal is to simulate the Rayleigh wave on a 
smooth surface near the loading point, the boundary of 
the 2D domain  is modeled as a arc with curvature  
1

R
. The loading is a single line impact at the surface.  

The schematic diagram is shown in Figure 1.  
Boundary value problems with zero initial conditions 

and absent body force for 2D elastodynamics in plane  
 

 

Figure 1. The schematic diagram of the geometry of the 
problem. *Corresponding author. 
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strain condition are considered. The material is homo- 
geneous, isotropic and linear elastic. 

Therefore, the displacement  fulfills Navier’s 
equation; i.e. 

 , tu x 

   
2

2
2

,
t

    
     


u

u u       (1) 

where   and   are the Lame constants an  d   is 
the mass density of the elastic material. 

,

The boundary conditions are 
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where   is the stress tensor,  sn  is the outward nor- 
mal vector on ,  s  is the coordinate on the boundary, 
 , s t  is the Dirac delta function, and  sx  presents 

the map from coordinate s  to 2D spatial coordinates  
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. The time-varied dis-  

placements on the curved surface are Rayleigh’s waves. 

3. The Method 

We use a boundary element method to calculate the sur- 
face displacements. The boundary  is approximated 
as a polygon. 



There are two families of particular solutions of Na- 
vier’s equation,  ,x u

ik tB x  and  ,y u
ik tB x . 

Then, the approximated displacements field are 

     
1 2

0 1

, ,
m N

x x u y y u
ik ik ik ik

k i

t a t a



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   u x B x B x, t .  (3) 

Using Hooke’s law, we have stress bases,  ,x
ik tB x  

and  ,y
ik t B x


 i.e. 
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Note that  are vector fields and ikB ik
B  are tensor 

fields. 
The bases  ,x u

ik tB x ,  ,y u
ik tB x ,  ,x

ik t B x  and  
 ,y

ik t B x  have been derived in a close form [4]. The 
the coefficients,  and , will determined with 
the boundary condition (2). 

x
ika y

ika

Then, the approximated stress field is 
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Substituting Equation (6) into boundary condition (2), 

we have 

     
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When a collocation method apply on Equation (7), the 
coefficients  ,ik j lt

B x n  are as many as . It 
is difficult to calculate a precise elastodynamic solution 
on a personal computer with this formulation. Therefore 
we take the advantage of the symmetry of the boundary. 

 22 2m N

Let 

cos sinn yi i
ik ik ik

s s
a a

R R
  xa          (8) 

sin coss yi i
ik ik ik

s s
a a

R R
   xa         (9) 

and 

cos sinn yi i
ik ik ik

s s

R R
x   B B B        (10) 

sin coss yi i
ik ik ik

s s

R R
x    B B B       (11) 

cos sinn u y u x ui i
ik ik ik

s s

R R
 B B B        (12) 

sin coss u y ui i
ik ik ik

s s

R R
   x uB B B

,

s

s

      (13) 

Substituting Equations (8) and (9) into (7), we have 
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Then, we decomposite the traction into normal and 
tangent directions. 
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where  sn  and  st  are normal and tangent vectors 
at s respectively, and   denote the inner product of two 
vectors. 

Let is i s   and kt k t 

n
ika

. Then apply the semicol- 
location method [4] to Equations (15) and (16). Rear- 
ranging the equations for  and , we have the 
stepping equations. 
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where 
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The  ,s t  is approximated by  
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is the Heaviside step function. 
In formulae (17) and (18), the coefficients ,ik j  take 

the form of   ,00i j k  . The usage of computer memory 
is enormously deduced to 2Nm. 
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Equations (17) and (18) are uncoupled. Thus, the time- 
stepping scheme is explicit. 

Then the time-stepping technique is applied on Equ- 
ations (17) and (18) to solve  and  on th 
step. 
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After solving the coefficients,  and , the 
numerical displacement may be calculated by  
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and the numerical interior stress by  

     
2

0 1

, = , ,
m N

x x y y
ik ik ik ik

k i

t a t a 

 

 x B x B .   (21) 

4. The Results 

In order to verify this method, we calculate the problem 
with very large  first. For , the problem be- 
comes Lamb’s problem in which the exact surface dis- 
placements are available. The elastic half space 

R R  

 0y    

is loaded at  by a unit line impulse at . 0t 
0 
0

  
 

x

The solutions for problems of a line impulse load on 
an elastic half plane were derived by Lamb. A modern 

treatment with integral transform technique was given by 
De Hoop, but the results were in complex function form. 
Nevertheless explicit form for surface displacements are 
available. The analytic solution for surface displacement 
can be found in page. 614-626 of [1]. 

The schematic diagram of the geometry of the problem 
is shown in Figure 1. 

In this example Poisson’s ratio 0.25 

dc

. Therefore 
the shear and Rayleigh’s wave speeds are  
and  respectively, where  is the dilatation 
wave speed. 

0.57735 dc
0.5308 dc

Figure 2 shows the displacements with vertical 
loading when 1000R  . The dashed line shows exact 
displacement when R   . There is a Dirac delta func- 
tion at the Rayleigh wave front in the exact solution. The 
vertical line indicate the arriving time of Rayleigh’s  

wave. For this figure, 
1

600
s  . Even though this pro-  

blem is considered difficult for numerical methods, our 
results are precise. This example shows the method is 
applicable for impact problems. 

When 5R  , the results are shown in Figure 3. In 
this case tangential displacement is almost the same with 
Lamb’s problem, but the normal displacement is changed 
much. The normal displacement has a strong and short 
peak at the shear wave front and the head wave is 
enlarged. The head wave is the wave beyond the shear 
wave front [5]. The dashed line is the displacement for 
R   . Figure 4 shows the displacements for 3R  . 
The phenomenon is similar to the case of . 5R 

5. Conclusion 

We use the boundary element method and write a fortran 
program running on a personal computer. In order to 
simulate the phenomenon of Rayleigh’s wave propagat- 
ing on a curved surface, the free surface is assumed to be  

a constant, 
1

R
. The method is verified by the problem of  

1000R  . Two examples, R = 5 and R = 3, calculated to 
demonstrate the phenomenon. On the shear wave front, 
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Figure 2. The displacements with vertical loading when R = 1000. The dashed line shows exact displacement when R = ∞. The 
vertical red lines indicate the arrival time of Rayleigh’s wave. There is a Dirac delta function at the Rayleigh wave front in 

the exact solution. In this figure, 
1

600
s   is used. 

 

 

Figure 3. The displacements when R = 5. The dashed line shows exact displacement when R = ∞. The vertical red lines 

indicate the arrival time of Rayleigh’s wave. In this figure, 
1

400
s   is used. 
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Figure 4. The displacements when R = 3. The red line shows exact displacement when R = ∞. The vertical dashed lines 

indicate the arrival time of Rayleigh’s wave. In this figure, 
1

400
s   is used. 

 
the wave is very different from that of Lamb’s problem. 
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