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ABSTRACT 

Our aim in the present article is to introduce and study new types of retractions of Lobachevsky space. Types of the 
deformation retracts of Lobachevsky space are presented. The relations between the folding and the deformation retract 
of Lobachevsky space are deduced .Types of minimal retractions of Lobachevsky space are also presented. Also, the 
isometric and topological folding in each case and the relation between the deformation retracts after and before folding 
have been obtained. New types of homotopy maps are deduced. Theorems governing this connection are achieved. 
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1. Introduction 

Lobachevsky space represents one of the most intriguing 
and emblematic discoveries in the history of geometry. 
Although if it were introduced for a purely geometrical 
purpose, they came into prominence in many branches of 
mathematics and physics. This association with applied 
science and geometry generated synergistic effect: ap- 
plied science gave relevance to Lobachevsky space and 
Lobachevsky allowed formalizing practical problems El- 
Ahmady [1,2]. 

Most folding problems are attractive from a pure ma- 
thematical standpoint, for the beauty of the problems 
themselves. The folding problems have close connections 
to important industrial applications Linkage folding has 
applications in robotics and hydraulic tube bending. Pa- 
per folding has application in sheet-metal bending, 
packaging, and air-bag folding. Following the great So- 
viet geometer, also, used folding to solve difficult prob- 
lems related to shell structures in civil engineering and 
aero space design, namely buckling instability El-Ahmady 
[3,4]. Isometric folding between two Riemannian mani- 
fold may be characterized as maps that send piecewise 
geodesic segments to a piecewise geodesic segments of 
the same length El-Ahmady [5]. For a topological folding 
the maps do not preserves lengths El-Ahmady [6,7], i.e. 
A map : M N  , where M  and  are N C  Rie- 
mannian manifolds of dimension m and n respectively is 
said to be an isometric folding of M into N, iff for any 
piecewise geodesic path : J M  , the induced path 

: J N   is a piecewise geodesic and of the same  

length as  . If   does not preserve length, then   is 
a topological folding El-Ahmady [8,9]. 

A subset A of a topological space X is called a retract 
of X if there exists a continuous map  such 
that 

:r X A
 r a A,a a  

:

ri

 where A is closed and X is open 
El-Ahmady [10-20]. Also, let X be a space and A a sub- 
space. A map  such that  is 
called a retraction of X onto A and A is the called a retract 
of X Reid [21]. This can be re stated as follows. If 

 is the inclusion map, then  is a 
map such that A

r X 

X
id

A   ,r a a a 

:r X A

A

:i A
 . If, in addition, X , we call 

 a deformation retract and A a deformation retract of X 
Arkowitz [22], Shick [23] and Storn [24]. The aim of this 
paper is to describe and study new types of retraction, de- 
formation retract and folding the of Lobachevsky space. 

ri id
r

2. Main Results 

We start with a metric of the Lobachevsky space 4L  in 
the special spherical Riemann mode  Kudryashov 
[25]. 
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And   is a curvature radius. The spherical coordi- 
nates are given by 
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which is a Riemann sphere  in Lobachevsky 
space 
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Using Lagrangian equations 
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From Equation (4) we obtain 2 2 2cos sin
z r 
 

       
   

  

= constant say  , if 0  , we obtain the following 
cases, if 0   then constant say  ; if 0  , 
then from (2) we obtain 
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2
1S L 4

4L  with 1x ct  and , which is a retrac- 
tion and geodesic. Specially if , hence we get the 
coordinates are defined by 
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which is a hypersurface 4
1

4L L  in Lobachevsky space 
4L , with 1x ct , which is a retraction and geodesic. 

Also if   takes the values , , , , 
, ,  and  we get new types of hy- 

persurface 
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4L L , i = 2 - 9 in Lobachevsky space L4 
with x1 = ct. Specially if β = 90˚ hence we get the coor- 
dinates are defined by 

1

2

3

4

5

,

0,

sin cos ,

cos cos ,

sin

x ct

x

r z
x

z r
x

z
x


 


 








   
    

   

   
    

   

 
  

 

         (9) 

Which is a Riemann sphere  in Lobachevsky 
space, it is a geodesic and retraction. Also, if  
we have a Riemann sphere , it is a geodesic and 
retraction. Where 
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And also, if , we have a Riemann sphere 

3  in Lobachevsky space, it is a geodesic and re-
traction, where 

270 
2
4S S
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Now, if 2sin 0.
r


 

 
 

 Then we get the following co- 
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Hence,  is the great circle, it is a geodesic and 
retraction. 

1
1S L 4

Also, if 2cos 0
z


 

 
 

, 
π π

,
2 2

z
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mann point  in Lobachevsky space is repre- 
sented by the following coordinates 
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it is a minimal retraction in Lobachevsky space 4L . 
Now, if 0  , then the retraction is represented by 

the following coordinates 
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Which is a Riemann point  in Lobachevsky space. 
0
2S

4L . From Equation (3) we obtain 2 constant sayC t   , 
if 0  , then we get the following coordinates 
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Hence,  is a Riemann hyper sphere, it is a 
geodesic and retraction. 

3S L 4

Theorem 1. The retractions of Lobachevsky space 4L  
are geodesics Riemann hypersphere, great circles, Rie- 
mann point and hyper subspace. 

In this position, we present some cases of the deforma- 
tion retract of Lobachevsky space 4L . The retraction of 
the open Lobachevsky space 4L  is given by 

  4 4
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The deformation retract of Lobachevsky space is 

     4 4: i ib I bL L      

where   4
ibL   is the open Lobachevsky space and I 

is the closed interval [0,1], be present as 
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The deformation retract of the Lobachevsky space 
  4

iL b  into the retraction Riemann sphere  
is 

2 4
1S L
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The deformation retract of the Lobachevsky space 
 into the retraction Riemann sphere  

is defined as 
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The deformation retract of the Lobachevsky space 
  4

ibL   into the retraction Riemann sphere  
is 
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The deformation retract of the Lobachevsky space 
  4

ibL   into the retraction Riemann sphere  
is defined as 
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The deformation retract of the Lobachevsky space 
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  4
ibL   4 into the great circle  is defined by 1
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The deformation retract of the Lobachevsky space 
 into the retraction Riemann point  
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The deformation retract of the Lobachevsky space 
 into the geodesic Riemann hyper sphere 

is 
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Now, we are going to discuss the folding  4L  of 
the Lobachevsky space. Let , where 4: L L  4

   1 2 3 4 1 2 3 4 5, , , , , , ,x x x x x x x x x      (16) 
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The deformation retract of the folded Lobachevsky 
space  4L  into the folded geodesic  4 4

1L L   is 
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Then, the following theorem has been proved. 
Theorem 2. Under the defined folding, the deforma- 

tion retract of the folded Lobachevsky space i.e.  4L  
into the folded geodesic is the same as the deformation 
retract of the Lobachevsky space into the geodesics. 

Now, if the folding is defined by , where 4: L L  4

   1 2 3 4 1 2 3 4 5, , , , , , ,x x x x x x x x x      (17) 
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Hence, we can formulate the following theorem . 
Theorem 3. Under the defined folding, the deforma- 

tion retract of the folded Lobachevsky space into the 
folded geodesic is different from the deformation retract 
of the Lobachevsky space into the geodesics. 
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which is hypersurface 2L  in Lobachevsky space. 
From the above discussion we will arrive to the fol- 

lowing theorem. 
Theorem 4. The limit folding of the Lobachevsky 

space 4L  into itself, under Condition (18), is different 
from the retraction of the Lobachevsky space 4L . 
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  which a zero-di- 

mensional hypersphere in Lobachevsky space 4L . 
Thus the following theorem is obtained. 
Theorem 5. The limit folding of the Lobachevsky 

space 4L  into itself, under Condition (19), is equivalent 
to the zero-dimensional sphere in Lobachevsky space. 

Theorem 6. The end of the limits of the foldings of 
Lobachevsky space nL  of dimension n is a 0-dimen- 
sional Lobachevsky space. 

Proof: If we let 
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1 1
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dimensional space. 
Proposition 1. Under Condition

 
(19) the retraction of 

0-dimensional Lobachevsky space is a 0-dimensional 
space. 

Theorem 7. Under Condition (19) the limit of foldings 
of Lobachevsky space 4L  into itself coincide with mini- 
mal retraction. 

3. Conclusion 

In this paper we achieved the approval of the important 
of the geodesic retractions of the Lobachevsky space. 
The relations between folding, retractions, deformation 
retract, limits of folding and limits of retractions of Lo- 
bachevsky space are discussed. Theorems which governs 
these relations are presented. 
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