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ABSTRACT 

The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the 
space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of 
solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used 
are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus. 
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1. Introduction 

The class of functional integral equations of various 
types plays very important role in numerous mathemati- 
cal research areas. An interesting feature of functional 
integral equations is its role in the study of many prob- 
lems of functional differential Equations [1-4]. 

In this work we study the solvability of the following 
initial value problem 
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where D y  denotes the fractional derivative of order 
  of  with y  0,1  . Such initial value problem of 
arbitrary order (1) was investigated in [5-7]. To achieve 
this goal, let us consider the integral equation 
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which is different from that studied in [2]. 
Section 2 contains some basic results. Our main result 

will be given in Section 3. Solvability of the considered 
initial value problem will be discussed in Section 4. 

2. Basic Concepts 

This section is devoted to recall some notations and 
known results that will be needed in the sequel. 

AIf  is a Lebesgue measurable subset of the set of 
real numbers  then we use the symbol R  meas. A  to 
denote the Lebesgue measure of A  1L A. Let  be the 
space of all real functions defined and Lebesgue meas- 
urable on the set A  1x L A. If  then the norm of x  
is defined as: 

   
1

d .
L A

A

x x x t   t  

when  0, ,A R    we will write  instead of 1L
 1L R .  

2.1. The Superposition Operator 

An important operator called the superposition operator 
can be investigated in the theories of differential integral 
and functional equations [4,8-10]. It can be defined as 
follows: 

Definition 1. Assume that :f I R R   satisfies 
Carathéodory conditions, that is it is measurable in  
for any 

t
x  and continuous in x  for almost all  

where 
t

,t I x R  . Then for every measurable function 
x  on the interval I  we assign the function: 

     , , .Fx t f t x t t I   
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The operator F defined in this way is called the super-
position operator generated by the function f . 

Carathéodory [11] gave the first contribution to the 
theory of the superposition operator and proved its 
measurability according to the measurability of f . 

We state the following result giving the necessary and 
sufficient condition so that the superposition operator F  
generated by f  will map continuously  into itself 
[12]. 

1L

Theorem 2. Let f  satisfy the conditions in Defini- 
tion 1. The superposition operator F  generated by the 
function f  maps continuously the space  into itself 
if and only if: 

1L

   , ,f t x a t b x   

for all  and t I x R
b

, where  is a function that 
belongs to  and  is a nonnegative constant. 

a

1

It is known that a real valued continuous function is 
measurable and that the converse is not necessarily true. 
However, for the converse we have the following results 
due to Dragoni [13]. 

L

Theorem 3. Let I  be a bounded interval and 
:f I R R   be a function satisfying Caratheodory 

conditions. Then for each 0   there exists a closed 
subset D  of the interval I such that  meas. I D   
and 

D R
f

 
 is continuous. 

2.2. Volterra Integral Operator 

We proceed by recalling some basic facts concerning the 
linear Volterra integral operator in the Lebesgue space 

1  Suppose  is a given function which is 
measurable with respect to both variables where 

.L :k   R

  , : 0t s s t      .  

For an arbitrary function 1x L  define Volterra inte-
gral operator as follows: 

       
0

, d ,
t

Kx t k t s x s s t R  .  

It is well known that if 1: 1K L L  then it is con-
tinuous [4,9]. 

In general, it is rather difficult to find necessary and 
sufficient conditions for the function  ,k t s  guarantee-
ing that the integral operator K  transforms the space 

1  into itself. Some special cases of this problem were 
discussed in [4,14]. In this direction we state the next 
result [15]: 

L

Theorem 4. Let  be measurable on  and such 
that 

k 
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ess sup , d .
s s

k t s s
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
   

Then the Volterra integral operator  generated by 

 maps (continuously) the space 

K

k  1 1L L R  into 
itself and the norm K  of this operator is majorized by 
the number 

 
0

esssup , d
s s

k t s s



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Observe that if  is a nonempty and measurable 
subset of 

D
R  then we can also consider the linear 

Volterra integral operator associated with the Lebesgue 
space  .L D  1

Namely, 
 1x L D

R
If  where  is a nonempty and measur-

able subset of 
D

 then we extend x  to the whole half 
axis R  x t 0 t R D by putting  for . Then we 
can treat K K in the usual way. When the operator  
transforms  1L D  into itself its norm will be denoted 
by 

D
K . 

2.3. Measures of Weak Noncompactness 

Let us assume that  is an infinite dimensional Banach 
space with the norm 

E
  and the zero element  . De-

note by Em
E
 the family of all nonempty and bounded 

subsets of  and by W
En  its subfamily consisting of 

all relatively weakly compact sets. The symbol WX  
stands for the weak closure of a set X  and the symbol 

 will denote the convex closed hull (with respect 
to the norm topology) of a set 
ConvX

X . We denote by 
 ,B x r  the ball centered at x  and of radius . We 

write r  instead of 
r

B  r,B  .  In what follows we ac-
cept the following definition [16] 

Definition 5. A function  is said to be a 
measure of weak noncompactness if it satisfies the fol-
lowing conditions: The Family 

: Eµ m R

1) The family   ker : 0Eµ X m X    is non-  

.Wempty and is nonempty and ker Eµ n  
2)    .X Y X Y     

3)    .µ ConvX X  

4)         1 1µ ,X Y X Y          for
   0,1  . 

5) 1and for 1,2, ,W
n E n n n nX m X X X X n    If  

And if  lim 0µ Xn
n

  then the intersection is non-

empty 
1

n
n

X X





  

The family ker µ  is said to be the kernel of the meas-
ure of weak noncompactness µ . Let us observe that the 
intersection set X  from 5) belongs to ker µ . Indeed, 
since    µ nX Xµ  for every  then we have that  n

  0µ X  . 

We can construct a useful measure of weak noncom-
pactness in the space 1  that based on the following 
criterion for weak noncompactness due to Dieudonné 

L
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We state here some results concerning the above men-
tioned operators: 

[17,18]. 
Theorem 6. A bounded set X  is relatively weakly 

compact in 1  if and only if the following two condi-
tions are satisfied: 

L

a) for any 0   there exists 0   such that if 

meas.  D   Then   d
D

x t t   for all,

 

x X . 

b) for any 0  there is  such that 0T 

  d
T

x t t 


  for any , x X . 

Now, for a nonempty and bounded subset X  of the 
space  let us define: 1L

      ,X c X d X                (3) 

where 
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It can be shown [17] that the function   is a measure 
of weak noncompactness in the space 1  such that L
     2X X    X , for any 

1LX m , where   
denotes the De Blasi measure of weak noncompactness 
in . Moreover, 1L   2rrµ B . 

In our approach we will need the following fixed point 
theorem due to Schauder. 

Theorem 7. Let  be a nonempty, convex, closed, 
and bounded subset of a Banach space . Let 

C
E

:H C C  be a completely continuous mapping. Then 
H  has at least one fixed point in . C

2.4. Fractional Calculus 

The definitions of both differential operator and the inte-
gral operator of fractional order are stated as follows 
[19,20]. 

Definition 8. Let 1, .f L R    The Riemman- 
Liouville (R-L) fractional integral of the function  f t  
of order   is defined as 

   
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Definition 9. Let  g t  be an absolutely continuous 
function on  ,a b . Then the fractional derivative of or-
der  0,  1  of  g t  is defined as 
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1) Let  1, and , 0f Df L    ,1 , then 

i)   then .a a a I I f t I f t     

ii)      , when 0.a aDI f t I Df t f a  
I

 

2) The operator a
  maps  into itself continuously. 1L

3. Existence Theorem 

Consider the integral Equation (2) and let H  denotes 
the operator determined by the right hand side of this 
equation, i.e., 

         1 2
0 0

, , , d
t s

d ,Hx t k t s f s k s x s   
 

  
 

   (4) 

where t R  In fact the operator H  can be written as 

the product 1 1 2 2H K F K F  of the linear Volterra opera-

tor 

      
0

, d , 1
t

i iK x t k t s x s s i  , 2.  

and the superposition operator  

     , , .Fx t f t x t t R   

Therefore Equation (4) can be written as: 

 1 1 2 2 .x Hx K F K F x              (5) 

To establish our main result concerning existence of 
an integrable solution of Equation (2) we impose suitable 
conditions on the functions involved in that equation. 
Namely we assume 

1) The functions :f R R R    satisfy the Cara- 
theodory conditions and there exist functions 1a L  
and constants  such that 0b 

   ,f t x a t b x   

holds for all  , .t x R R   

2) The functions  satisfy the Cara- 
theodory conditions and the linear Volterra operators 

:ik R R R  

1 2,K K  associated with  map into itself. 1 2 1

3) 
,k k L

: R R    is increasing, absolutely continuous 
and there exists a constant  such that 


0M   t M   

a.e. on R . 

4) 1
1 2 1b K K M   . 

Now we can state our main result in the next theorem. 
Theorem 10. Under the above assumptions the Equa-

tion (2) has at least one solution 1.x L  
Proof. Since H  is a nonlinear operator defined by 

Equation (5), then based on assumptions i) and ii) if 

1x L , then 1.Hx L  Moreover, from Equation (5), and 
noting that 1 2,K K  according to our assumptions are 
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indeed bounded, we have 

   

    

      

 

  

    

 

1 1 2 2 1 1 2 2

1 2
0 0

1 2
0 0

1 1 2

1 1 2
0

1 1 2
0

1
1 1 2

0

1
1 1 2

, , d d

, d

d

d

d

.

s

s

Hx K F K F x K F K F x

K f s k s x s

dK a s b k s x s

K a b K K x

K a b K K x

K a b K K x
M

K a b K K M x u u

K a b K K M x

 

   

   



  

 
  














 

 
  



    
  

 

 


 

 

 

 

 









 

The above estimate shows that the operator H  maps 
 into itself, where rB

  11
1 1 21 .r K a b K K M

    

Moreover, according to Theorem 2, we deduce that the 
operator H  is continuous on the space . L₁

Next, to prove that H  is a contraction, let X  be a 
nonempty subset of B Fix .r  0   

e
and take a measur-

able subset D such that mR   as.D  . Then for 
any x X , we get 
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where the symbol 
D

 denotes the operator norm acting  

from the space  1L D  into itself. Also in the above 
calculation we used the fact that  for t  0a t  R . 
From the absolute continuity of the function   and the 

obvious equality 

 
0

lim sup d : ,meas. 0
D

a t t D R D




      
   

  . 

and using Theorem 6 we obtain 

   1 2 .D D
b K K

c HX c X
M

 
   
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         (6) 

Furthermore, fixing  we can deduce that 0T 

  

       

   
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1
1 2 1 2,

1 2
1

d

d

d d

T

L T
T

T T
T

T T

Hx t t

,

K FK x K FK x t t

bK K
K a t x u u
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
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where the symbol 
T

 denotes the operator norm acting  

from the space  1 ,L T   into itself. Now according to 
the fact that the set consisting of one element is weakly 
compact, by using Theorem 6 and the formula 

   lim sup d : .
T

T

d X x t t x X




      
   

  

 lim ,
T

T


   we get and since 

   1 2 .
b K K

d HX d X
M

 
  
 

       (7) 

According to Equation (3), combining (6) and (7), we 
get 

   1 2b K K
HX X

M
 

 
  
 

        (8) 

 q b K K M ₁ ₂Put . Clearly, according to as-  

sumption iv) 1q  . Consider the sequence of sets  

 n
rB   1 2,r r rB Conv GB B Conv GB , where 1

r

B

 and  

so on. Obviously this sequence is decreasing i.e. 

r  for 1n n
rB   1,2, .n    Moreover, r . Apart 

from this, all sets belonging to this sequence are closed 
and convex, so weakly closed. On the other hand in view 
of inequality (8) we have 

1
rB B

    ,n n
r rB q B   

which yields that  lim 0.n
r

n
B


  

Consequently, by axiom 5) of Definition 5 we infer 
that the set 

1

n
r

n

Y B




  
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is nonempty, closed, convex and weakly compact (in 
view of   0µ Y  ). Moreover, . GY Y

GYIn the sequel we show that the set  is relatively 
compact in the set . 1

To do this let us take an arbitrary sequence 
L

 ny Y  
and fix arbitrarily a number 0  . Since  is weakly 
compact, in view of Theorem 6 we deduce that there ex-
ists  such that for any natural number  the fol-
lowing inequality is satisfied 

Y

0T  n

  d .
4n

T

y t t


                (9) 

To apply the classical Schauder fixed point theorem, 
we need to prove that the set HY  is relatively compact 
in 1 . For this aim let us consider the functions L  ,f t x  
on the set  0,T  and the functions  ,ik t s  on the set  

    0, 0, 2T T 1,i  . 

In view of Theorem 3 we can find a closed subset D  
of the interval  0,T  such that  meas. cD   (where  

 0,cD T D   ) and such that the functions 
D R

f
 

  

and   0,
1,2i D T

k i
 

   are continuous. Hence we infer 

that   0,
1,2i D T

k i
 

   are uniformly continuous. 

In what follows we show that  ny  is an equicon-
tinuous on D , for that let us take arbitrarily 1 2,t t D . 
Without loss of generality we can assume that 1 2t t . 
Then, keeping in mind our assumptions, for an arbitrary 
fixed  we obtain: nN

   

      

      
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2

1

1

1

2 1

1 2 2
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1 2 1 2
0 0

1 2
0
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n n

t s
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n
t
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  
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 
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 
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where  denotes the modulus of continuity of 
the function  on the set 

 1,T k 
1k  0,D T   and  

      
   

      

    
2 2

1 1
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1 2 1 2
0 0 0
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d d d
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T
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n
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
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 
  

 

 

 

  



By rearranging the order of double integrations, we get 
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From the above estimate and the consideration of the 
fact that  we obtain rY B

     
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
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 nyNow, utilizing the fact that the sequence  is 
weakly compact and taking into account Theorem 6 we 
can show that the number 

 
2

1

d
t

t

a s s  

d d     
is arbitrarily small provided the number  2 1t t  is  

taken to be sufficiently small (it is a consequence of the 
fact that a one element set is weakly compact in ). 1L

Furthermore, 
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Hence 

   1
1 1 2 .nHy t k a bk k TM r   

Hence consequently the sequence  nHy  is a se-
quence of uniformly bounded and equicontinuous func-
tions on D . Hence, in view of Ascoli-Arzela theorem 
we deduce that the sequence  nHy  is relatively com-
pact subset in the space  C D . 

Further observe that the above reasoning does not de-
pend on the choice of  . Thus we can construct a se-
quence  of closed subsets of the interval  pD  0,T  
such that  as  and such that the   . c

pD meas


0 p 

sequence nHy  is relatively compact in every space  

 pC D . Passing to subsequences if necessary we can 
assume that  nHy  is a Cauchy sequence in each space 
 pC D , for  1, 2p  , .
In what follows, utilizing the fact that the set HY

0
 is 

weakly compact, let us choose a number    such 
that for each closed subset D  of the interval  0,T  
such that  meas. cD   we have 

   d
4cD

Hy t t



              (10) 

for any . y Y
Keeping in mind the fact that the sequence  nHy  is 

a Cauchy sequence in each space  pC D  we can  

choose a natural number  such that 0p  0pmeas. cD    

and for arbitrary natural numbers the following 
inequality holds 

0,n m p

       0
4meas.

n m

p

Hy t Hy t
D


   

for any 
0pt D . Obviously without loss of generality we 

can assume that  meas. 0pD 
0

Now, using the above facts and (10) we obtain 
. 
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


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     (11) 

Finally, from (10) and (11) we get 

     
0

d ,m n n mHy Hy Hy t Hy t t 


     

 nHywhich means that  is a Cauchy sequence in the 
space  .1 1L L R  Hence we conclude that the set 
HY  is relativelycompact in this space. 

In the last step of the proof let us consider the set 
 0 .Y Conv HY

Y
 In view of the Mazur theorem we infer 

that the set 0  is compact in the space 1 . Moreover, 
we have that the operator 

L
H  transforms continuously 

the set 0  into itself. Thus the classical Schauder fixed 
point principle gives that 

Y
H  has at least one fixed point. 

This proves that there exists at least one 1x L  that 
solves Equation (4). 

4. Nonlinear Equation of Convolution Type 

Assume that  is an integrable function. For 
an arbitrary function 

:k R R 
1x L  set 

      
0

d , .
t

Kx t k t s x s s t R    

This operator K  is a linear integral operator of con-
volution type and maps  into itself continuously. 1

Now, consider the following condition 
L

  1: andv k R R k L   .

,

 

Then we have the following Corollary 
Corollary 11. Let the hypotheses i)-v) are satisfied. 

Then a nonlinear equation of convolution type 

        1 2
0 0

, , d d
t s

x t k t s f s k s x

t R

   



 
  

 


  s
  (12) 
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has at least one integrable solution 1x L . 
In the next subsection, we prove an existence theorem 

for integral equation of fractional order as a special form 
of Equation (12). 

Initial Value Problems of Fractional Order 

As a special case of Equation (14), we consider 

     
   1

0 0

, , d d ,
1

t s s
x t k t s f s x s t R


 







 
  
   

   (13) 

where  

   
   2 , 0,
1

s
k s


 




  

 
1  

and     . Equation (13) is an integral equation of 
fractional order that can be written in the form 

      1
1

0

, , d ,
t

x t k t s f s I x s s t R
       (14) 

Obviously, Equation (14) has at least one integrable 
solution 1x L . 

Definition 12. By a solution of the initial value prob-
lem (1) we mean an absolutely continuous function x 
satisfies the initial value problem (1). 

Theorem 13. Let  2 2 1b K     and  0,1  .  

If assumptions i)-iii) and v) are satisfied, then the initial 
value problem (1) has at least one solution . 1

Proof. Let 
y L

x  be a solution of the integral Equation 
(14). Putting 
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0

d .
t

y t x     

Since x  is integrable, then 

   
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d .
t
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where 
d

d
D

t
 . Moreover, the integral  

0

d
t

x    of 

integrable function x  is absolutely continuous then 

   1Dy t DI x t  

Then we have, 

    . .Dy t x t a e  

Furthermore, we obtain 
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Consequently, Equation (14) gives 

        1
0

d
, , d

d

t

,y t Dy t k t s f s D y s s
t

    

Since x  is integrable and absolutely continuous, then 

   
   
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1 1
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0
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d
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Dy x

I Dy I x

y x
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Clearly,   00y y . Hence we deduce that  is an 
absolutely continuous function satisfies the initial value 
problem (1). Hence the proof is complete. 

y

5. Conclusion 

The existence theorem of functional integrable equation 
in the space of Lebesgue integrable functions on un-
bounded interval  0,L ₁  is presented and proved. As 
an application of this theorem, we investigated the exis-
tence of solution of the suggested initial value problems 
of fractional order. 
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